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Background. The genome-wide association studies (GWAS) have been successful during the last few years. A key challenge is that
the interpretation of the results is not straightforward, especially for transacting SNPs. Integration of transcriptome data intoGWAS
may provide clues elucidating the mechanisms by which a genetic variant leads to a disease.Methods. Here, we developed a novel
mediation analysis approach to identify new expression quantitative trait loci (eQTL) driving CYP2D6 activity by combining
genotype, gene expression, and enzyme activity data. Results. 389,573 and 1,214,416 SNP-transcript-CYP2D6 activity trios are
found strongly associated (𝑃 < 10−5, FDR = 16.6% and 11.7%) for two different genotype platforms, namely, Affymetrix and
Illumina, respectively. The majority of eQTLs are trans-SNPs. A single polymorphism leads to widespread downstream changes
in the expression of distant genes by affecting major regulators or transcription factors (TFs), which would be visible as an eQTL
hotspot and can lead to large and consistent biological effects. Overlapped eQTL hotspots with the mediators lead to the discovery
of 64 TFs. Conclusions. Our mediation analysis is a powerful approach in identifying the trans-QTL-phenotype associations. It
improves our understanding of the functional genetic variations for the liver metabolism mechanisms.

1. Introduction

Genome-wide association studies (GWAS) have identified
hundreds of genetic variants associated with complex human
diseases, clinical conditions, and traits. These studies have
also provided valuable insights into the genetic architecture.
Unfortunately, GWAS studies have achieved limited success.
The variants discovered usually explain only a small fraction
of the overall heritability of the disease [1]. The identification
of specific causal genes or mutations from associated regions
is a challenge especially for the transacting SNPs which fall
either far from genes or a region with many equally plausible
causative genes. To make the situation more complicated,

sometimes, a single locus can contain multiple independent
risk variants (common or rare). Even when a locus is
identified by SNP association, the causalmutation itself needs
not to be a SNP [2]. For example, GWAS have associated
the IRGM gene with Crohn’s disease, but a subsequent study
showed that the causal mutation is a deletion of the upstream
of the promoter affecting tissue-specific expression [3].

There is a substantial gap in understanding the SNP
traits associations from a genome-wide association study
and the contribution of the locus to a disease. An eQTL
approach investigates how the abundance of a gene transcript
is directlymodified by polymorphism in regulatory elements.
The validity of eQTL has been shown inmultiple tissue types,
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in which high heritability has been observed in widespread
gene transcripts [4–8]. This indicates that genetic influences
on gene expression are common. The potential of genome-
wide eQTL identification has been shown originally in the
yeast Saccharomyces cerevisiae [9] and then in humans,
animals, and plants [10, 11]. One of the most important
consequences of eQTL mapping is the link that it provides
between genetic markers of a disease identified in GWAS and
the expression of a specific gene or genes. In particular, the
power of these studies depends upon the identification of
specific genetic markers that are simultaneously associated
with a disease and eQTLs. For example, a study generated
genome-wide transcriptional profiles of lymphocyte samples
from participants in the San Antonio Family Heart Study
and showed that high density lipoprotein cholesterol con-
centration was influenced by the cis-regulated VNN1 [5,
12]. Another study of postmortem brain tissue identified
eQTLs affecting the MAPT and APOE genes, which play
an important part in Alzheimer’s disease. Utilizing human
lymphoblastoid cell lines from the HapMap project, recent
pharmacogenomics study reveals novel genetic variants that
contribute to etoposide-induced toxicity through affecting
gene expression, which included genes that may play a role
in cancer (AGPAT2, IL1B, and WNT5B) [13].

The substantial gap between associated regions from
GWAS and the identification of causal variations that con-
tribute to a disease might be filled by eQTL analysis. The
functional effects of DNA polymorphism on a multifacto-
rial disease can be mediated through several mechanisms.
Polymorphisms responsible for the alteration in protein
function can have important effects. However, systematic
studies of complex diseases with known nonsynonymous
SNPs have not yielded many highly significant results, and
many associations implicate nonprotein coding regions. It has
been shown that 5% of the human genome is evolutionary
conserved and thus functional, whereas less than one-third of
this 5% consists of genes that encode proteins [2]. Variation
in gene expression is probably a more important mechanism
underlying susceptibility to complex disease [2, 14].

Three major different methodologies have been devel-
oped and applied to the integrated eQTL andGWAS analyses.
The first method focused on the overlapped SNPtrait, SNP-
gene expression, and gene expression-trait associations [13,
15]. The second method employed the causal inference
framework to identify causal model, reactive model, and
independent model among SNP, gene expression, and traits.
This approach brought in a more molecular mechanism in
analyzing the data [16]. The third approach constructed a
Bayesian network for the gene expression and traits, while the
network construction was weighted by SNP-gene expression
correlation [17].

A multistep procedure for identifying key driver of a
complex trait has been described by Schadt et al. [16]. Pair-
wise regressions among genotype variation, gene expression,
and complex trait are investigated first. Then the likelihood
based causal model selection (LCMS) test is used to identify
expression profiles that sit between the complex-trait QTL
and complex trait. In this approach, without applying the
statistical test for causality, three different models (causal

model, reactivemodel, and independentmodel) are used.The
particular model with the lowest AIC (Akaike information
criterion) value is considered to be the best fit for the
data. One great advantage of this procedure is that when
a correlation between an expression trait and a clinical
phenotype does exist, it can distinguish causal, reactive, or
independent relationship between them.

1.1. Mediation Analysis. Mediation analysis is the study of the
causal chain or the indirect effect, to identify the possible
underlying causal mechanisms. Mediation analysis is widely
used across many disciplines such as social sciences, to
identify the underlying causal mechanisms or to guide the
experiments design [18]. A lot of research works focus on the
relations between two variables, 𝑋 and 𝑌. Much has been
written about two-variable relations, including conditions
under which 𝑋 can be considered a possible cause of 𝑌. To
this 𝑋 → 𝑌 relation, one can add a third variable by using
mediation, whereby𝑋 causes the mediator,𝑀, and𝑀 causes
𝑌, so𝑋 → 𝑀 → 𝑌 (see Figure 1). If𝑋 leads to𝑌 through𝑀,
this is called the indirect effect. Ignoring𝑀 leads to incorrect
inference about the relation of𝑋 and𝑌, since the effect of𝑀 is
confounded. If𝑀 is related to𝑋 and/or𝑌, so that information
about 𝑀 improves the prediction of 𝑌 by 𝑋 but does not
substantially alter the relation of 𝑋 to 𝑌 when𝑀 is included
in the analysis, then we consider𝑀 as a covariate. In another
situation, 𝑀 may also modify the relation of 𝑋 to 𝑌 such
that the relation of 𝑋 to 𝑌 differs at different values of 𝑀.
This is referred to as a moderator or interaction effect (see
MacKinnon et al. [18] and references therein).

To establish this indirect relationship, Baron and Kenny
[19] proposed a four-step approach in which several regres-
sion analyses are conducted, and the significance of the
coefficients is examined at each step. In step 1, a simple
regression analysis with 𝑋 predicting 𝑌 is conducted (see
Figure 1(a)) to test for path 𝛽

1

as

𝑌 = 𝛼
1

+ 𝛽
1

𝑋 + 𝜀
1

. (1)

In step 2, another simple regression analysis is performed
with𝑋 predicting𝑀 to test for path 𝛽
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as
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And in step 3, the following regression equation is fitted with
𝑀 predicting 𝑌 to test for path 𝛽

3

:

𝑌 = 𝛼
3

+ 𝛽
3

𝑀+ 𝜀
3

. (3)

Step 2 and step 3 are combined in Figure 1(b). The final step
is to conduct a multiple regression analysis with 𝑋 and 𝑀
predicting 𝑌 as (see Figure 1(c))

𝑌 = 𝛼
4

+ 𝛽
4

𝑀+ 𝛽
5

𝑋 + 𝜀
4

. (4)

In all the above steps, it is assumed that independently,
𝜀
𝑘

∼ 𝑁(0, 𝜎
2

𝑘

), 𝑘 = 1, 2, 3, 4. The purpose of step 1–
step 3 is to establish that zero-order relationships among
the variables exist. One proceeds to step 4 assuming that
there are significant relationships from steps 1 through 3. To
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Figure 1: Mediation test.

identify potential causal links between genotype and clinical
phenotypes, Huang et al. [20] designed a three-way model
based on a stepwise regression analysis with genotype, gene
expression, and cytotoxicity data as follows:

S1: SNP is associated with cytotoxicity,
S2: SNP is associated with gene expression,
S3: gene expression is associated with cytotoxicity.

Theoretical evidence in the form of “Causality Equiv-
alence Theorem” has been proposed by Chen et al. [21]
to establish causal relationship. According to the theorem,
under the assumption that 𝑋 is randomized, the following
conditions are needed to establish a causal relation:

C1: 𝑋 and𝑀 are associated,
C2: 𝑋 and 𝑌 are associated,
C3: 𝑋 is independent of 𝑌 | 𝑀.

If both 𝑋 and 𝑀 are significant predictors of 𝑌, then
partial mediation is achieved, whereas if 𝑋 is no longer
significant when𝑀 is controlled, this supports the condition
of full mediation. However, there are some limitations of this
test as mentioned by MacKinnon et al. [22]. This includes
a low power to detect mediation and biased estimates. It
does not test for the significance for the indirect pathway. An
alternative and preferable approach to estimate the indirect
effect is by multiplying two regression coefficients, 𝛽

2

× 𝛽
4

[23].
In this paper, we introduce a new method, mediation

analysis, which is somewhere between the overlap analysis
(the first method) and causal inference (the second method).
We use the human liver consortium data to demonstrate its
application and performance.We use genome-wide genotype
and gene expression data to explore functional mutation for
an important pharmacogene, CYP2D6, which is a member
of the cytochrome P450 mixed-function oxidase system and
is responsible for the metabolism of 25% of all drugs on the
market.

2. Material and Methods

2.1. Human Liver Cohort Dataset. Human liver cohort (HLC)
data are collected from Sage Bionetworks Repository and

Gene Expression Omnibus (GEO) database as described in
the literature [17]. The dataset includes 2 genotype arrays
(Illumina Sentrix human Hap650Y genotyping beadchip and
Affymetrix 500K genotyping array), gene expressions (30,128
probes × 466 samples) and enzyme activities (10 activity
measurements of 9 enzymes × 488 samples), and demo-
graphic information. Genotype data for 219 Illumina and
214 Affymetrix that are publicly accessible are used. Patients
with genotyping call rate less than 95% are removed from
further analysis.This filtration reduces the sample sizes to 204
and 207 for Affymetrix and Illumina platforms, respectively.
167 Illumina genotyping has both gene expression data and
enzyme activity data. In case of Affymetrix platform, 180
samples overlappedwith gene expression and enzyme activity
data.

SNPs whose genotyping call rate are less than 95% or
Hardy-Weinberg equilibrium tests are significant (𝑃 < 0.001)
orminor allele frequency <10% are discarded. For Affymetrix
platform, 214,399 SNPs, and for Illumina, 471,394 SNPs are
used for mediation and eQTL analysis. Enzyme activity and
gene expression data are corrected with age and gender and
then are normalized with normal quartile normalization.

2.2. Mediation Analysis. The mediation analysis method is
developed to assess the indirect effects of genetic variant to
CYP2D6 activity mediated by gene expressions. The tests are
performed by parallel programming using C and MPICH.
The computations are run on a Linux cluster computing
environment with 200 compute nodes, and each node takes
around 36 hours.

MacKinnon proposed a permutation test for mediation
that makes use of the permutation-of-raw-data approach
for testing a regression coefficient [22, 24]. It is referred to
as the permutation test of 𝛽

2

× 𝛽
4

. To test for regression
coefficients, permutation tests have been applied in several
ways [24–26]. Applying this method requires, first, that the
regressionmodels in (2) and (4) are estimated for the original,
nonpermuted data to find the values of 𝛽

2

and 𝛽
4

. Values
of the outcome variable, 𝑌, are then permuted 109 times
and reassigned to nonpermuted scores on the predictor, 𝑋,
and mediator, 𝑀, to create many permuted samples. The
permuted 𝑌 values, labeled 𝑌+, are then regressed on the
nonpermuted 𝑋 and 𝑀 values in each permuted sample



4 BioMed Research International

Table 1: Mediation analysis.

Genotype
dataset Enzyme SNP effect

No. of sig.
trios
𝑃 < 10

−5

No. of sig.
SNPs
𝑃 < 10

−5

No. of sig.
exp
𝑃 < 10

−5

FDR
(trios)

Affymetrix CYP2D6 Gene dose 389,573 103,369 3,545 16.63%
Illumina array CYP2D6 Gene dose 1,214,416 251,738 4,770 11.73%

Table 2: eQTL analysis.

Genotype
dataset

No. of pairs
𝑃 < 10

−5

No. of SNPs
Correlated with >1 gene (total SNPs)

No. of SNPs
Correlated with >20 genes

Affymetrix 65,763 28,089 (214,399) 295
Illumina 154,546 63,643 (471,394) 724

(as in (4)), and the coefficient for 𝑀 in each permuted
sample is labelled 𝛽∗

4

. Similarly, values of themediator,𝑀, are
permuted 109 times and reassigned to values of the predictor
𝑋 to createmany permuted samples.The permuted𝑀 values,
labeled𝑀+, are regressed on 𝑋 in each permuted sample (as
in (2)), and the coefficient for 𝑋 in each permuted sample is
labelled 𝛽+

2
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2
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, the estimate of the
mediated effect from the original data, is compared to the
distribution of 𝛽+
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4

to perform a test of the null hypothesis
of no mediation.

The mediated effect is estimated by the product of
coefficients (𝛽

2

× 𝛽
4

) then divided by its standard error,
which is derived by Sobel [23], under the assumption of
multivariate normality for the standard error of the indirect
effect, using the multivariate delta method as
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Hence, the test statistics are

Δ Indirrect effect =
𝛽
2

𝛽
4

se (𝛽
2

𝛽
4

)

. (6)

2.3. Genome-Wide Association Based on Mediation Analysis.
The huge sizes of SNP and gene expression probes in
mediation analysis introduce problems related to multiple
hypotheses testing. False discovery rate (FDR) is used to
control type I error for multiple testing. FDR is calculated as

FDR =
# significance by chance
# significance results

. (7)

A stringent threshold is needed to avoid high FDR. Com-
paring to cis-acting variations, more transacting variations
are detected by GWAS. In GWAS analysis, transeffects are
usually weaker than cis-effects but are more numerous than
the latter [14]. The trans-acting SNPs having smaller effects
than cis-acting SNPs are more likely to be missed if more
stringent threshold is applied.

2.4. eQTL Analysis. Transcript abundance is highly heritable
in human populations and can be considered as a quantitative

trait and be mapped to particular genomic loci, known as
expression quantitative loci (eQTL). Not only gene expres-
sion is itself a complex trait, but also it acts as an intermediate
phenotype between genetic loci and higher level cellular or
clinical phenotypes, such as disease risk or individual drug
response [27].

Linear model is fitted with genome-wide genotype and
gene expression profiles. eQTL analysis is run in parallel
on the same computing cluster with R language program.
eQTL hotspots are defined as SNPs enriched in correlations
with expression profiles across the genome (SNPs correlated
with at least 20 gene expression profiles). The correlation 𝑃
values between SNP and expression probe less than 10−5 are
considered to be significant and used for hotspot analysis.
To test the enrichment of significant correlation between
eQTL and all gene expression probes, exact binomial tests are
conducted and corrected with Bonferroni method, and the
corrected 𝑃 values are used as the enrichment scores.

3. Results

3.1. Mediation Analysis. The result of mediation analysis
is summarized in Table 1. To find the significant trios, 𝑃
values less than 10−5 are considered. Using the same criteria
for both platforms, the number of significant trios differs.
For Affymetrix platform, we have 389,573 trios having 𝑃
values less than 10−5. For the other platform, this number
is 1,214,416. The FDR for Illumina platform is found to be
11.73%, whereas for Affymetrix platform it is a bit higher
(16.63%).

3.2. eQTL Analysis. In Table 2, the result corresponding to
eQTL analysis of the HLC data is reported. The Affymetrix
dataset has 214,399 SNPs after the implementation of the
quality control out of which 28,089 are correlated with at
least one gene at 𝑃 < 10−5 significance level, and there are
total 65,763 SNP-gene pairs significantly correlated. 295 SNPs
are correlated with at least 20 genes. Those 295 hotspots are
used to check for overlapping with the results of media-
tion analysis. 289 eQTL hotspots are found correlated with
1542 gene expression profiles at 𝑃 < 10−5 significance level
(Table 3). In contrast, Illumina dataset has higher quality
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Table 3: QTL overlapping.

Overlapping
Affymetrix Illumina

No. of eQTL
hotspots

No. of mediation
trios

No. of eQTL
hotspots

No. of mediation
trios

295 389,573 724 1,214,416
No. of eQTL hotspot trios (No. of SNPs, No. of genes) 9,296 (289, 1,542) 34,880 (719, 2,444)
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Figure 2: eQTL visualization.Themain plot at the bottom is the scatter plot of the eQTL-transcript association. Each dot denotes a significant
association between a SNP and a transcript (𝑃 value < 10−5). Gray color shows the level of significance where dark means more significant
association. SNPs are arranged according to their chromosomal loci along the𝑋-axis from chromosome 1 to 22, and genes are arranged along
𝑌-axis in the same way. The dots along diagonal line indicate cis-eQTLs, otherwise, trans-eQTLs. The counts plot in the middle gives the
number of genes that a SNP correlated with significantly (𝑃 value < 10−5). Large size means more genes associated with that SNP.The −log

10

(FDR) plot at the top presents the enrichment score of a SNP associated with multiple transcripts comparing with that by chance. SNP has a
large circle in counts plot and a high enrichment score in −log

10

(FDR) plot which indicates eQTL hotspots.

with more SNPs passed quality control tests. Out of 471,394
SNPs, 63,643 SNPs are found to be correlated with at least
one gene at 𝑃 < 10−5 significance level. Numbers of SNPs
that are correlated with at least 20 genes are found to be 724,
and 719 of the hotspots are significantly correlated with 2,444
genes in mediation analysis (Table 3). In Figure 2, a pictorial
depiction of this eQTL analysis is given for both platforms.
The significant SNP-expression pairs (𝑃 < 10−5) are plotted
as a dot according to the locations of the SNP and the gene

on 22 chromosomes along𝑋-axis and𝑌-axis.The grey colors
show the level of significance, with darker dots representing
smaller 𝑃 values. The counts of significant SNP-expression
pairs and −log

10

(FDR) for a given SNP are also plotted above
the eQTL image. For each SNP, the count gives the number
of genes that are correlated with this particular SNP, as the
larger radius of the circle indicates that the SNP is correlated
with more genes. In that case, it may be considered to be a
potential eQTL hotspot.The dots along diagonal line indicate
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Table 4: Functional annotations of the mediators.

Types Affymetrix no.
Mediator genes

Illumina no.
Mediator genes

Cytokine 5 7
Enzyme 246 368
G-protein coupled
receptor 17 20

Growth factor 5 11
Ion channel 13 18
Kinase 52 62
Ligand-dependent nuclear
receptor 5 7

Other 373 596
Peptidase 31 39
Phosphatase 15 21
Transcription regulator 82 118
Translation regulator 6 10
Transmembrane receptor 12 16
Transporter 77 127
Sum 939 1420

cis-effects. It can be seen that cis-eQTLs have bigger effect on
expression profile compared to trans-eQTLs.

3.3. Functional Analysis of Hotspots Mediators. 1,542 and
2,444 hotspot mediators from Affymetrix and Illumina plat-
forms annotated to 1,388 and 2,187 unique genes separately.
939 and 1420 genes are successfully mapped in Ingenu-
ity database for two platforms. The functional annotations
of these genes are summarized in Table 4. Five (CCL16,
CCL20, CMTM5, IL6, and SPP1) and 7 (CCL16, CCL20,
CKLF, CKLFSF5, EPO, FAM3C, and SPP1) cytokines, 5
(AR, NR1I2, NR1I3, NR2F6, and PPARA) and 7 (AR, ESR1,
NR1I2,NR1I3, PPARA,RORA, andRORC) ligand-dependent
nuclear receptors, and 80 and 113 transcription regulators are
found to mediate the relationship between genetic variant
and CYP2D6 activity for Affymetrix and Illumina plat-
forms. 64 transcription regulators overlapped between the
two platforms (Gene List 1). Among the 64 transcription
factors predicted mediateding genetic regulation of CYP2D6
activity, YY1 is reported putatively binding to gene CYP2D6
promoter region and regulating the expression of CYP2D6
and CYP2D4 [28, 29].

4. Conclusion

Cytochrome P450 constitutes a large subfamily of enzymes
that plan an important role in the metabolism of endoge-
nous compounds and the activation of chemical carcino-
gens. In this work, the regulations of P450 expression and
activities have been intensely studied. Several other studies
have found that P450 are subject to regulation by liver-
enriched transcription factors, cytokines, and nuclear recep-
tors. Our study provides some new clues on the regulation
of CYP2D6 enzyme activity. Our mediation analysis is a

powerful approach in identifying the trans-SNP-phenotype
associations. We found a rich class of functional categories
of mediators that potentially control the CYP2D6 activities,
which include many new transcription factors. This method
has some limitations too. In this work, the relationship
between genetic variants, gene expression, and phenotype
is assumed to be a simple one. However, in most of the
situations, this relationship may become very complex. More
sophisticated methods are required to analyze those complex
models. In mediation analysis, we are only interested in
testing the product of two regression coefficients. Mediation
analysis cannot provide causal inference. The mediation
analysis assumes that there is some causal relationship. It will
be necessary to test for the assumption. We need to be extra
cautious about drawing the conclusion of the causal relation-
ship. Our studies provide insights into the comprehension
of the complex regulatory network of CYP2D6 and improve
our understanding of the functional genetic variations for the
liver metabolism mechanisms.

5. Genes List

64TFs overlapped betweenAffymetrix and Illumina datasets,
including AATF, ALYREF, ARHGAP35, ASB8, ATF4, CBX4,
CEBPG, CSDA, DDIT3, E2F5, ETV7, FOXN3, FOXN3,
FUBP1, GPS2, HDAC10, HMGN1, ID1, INVS, IRF9, KANK1,
KAT2B, KHDRBS1, KLF12, MAF, MAML2, MEIS2, MLX-
IPL, MXD4, MYBBP1A, MYCL1, NCOA7, NCOR1, NFIA,
NFKB2, NFYA, NOLC1, NPM1, PEX14, PYCARD, SAP18,
SATB1, SIM2, SLC2A4RG, SMARCC1, SNAI3, SNW1, SOX5,
TCERG1, TCF7L2, TEAD3, TEAD4, TFDP2, TFEB, TOB1,
TP53, YWHAB, YY1, ZGPAT, ZHX3, ZKSCAN1, ZNF132,
ZNF256, and ZNF263.

Abbreviations

GWAS: Genome-wide association study
eQTL: Expression quantitative trait loci
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