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ABSTRACT
Background. Type II diabetes is a chronic health condition which is associated with
skin conditions including chronic foot ulcers and an increased incidence of skin
infections. The skin microbiome is thought to play important roles in skin defence
and immune functioning. Diabetes affects the skin environment, and this may perturb
skinmicrobiomewith possible implications for skin infections andwound healing. This
study examines the skin and wound microbiome in type II diabetes.
Methods. Eight type II diabetic subjects with chronic foot ulcers were followed over a
time course of 10 weeks, sampling from both foot skin (swabs) and wounds (swabs and
debrided tissue) every two weeks. A control group of eight control subjects was also
followed over 10 weeks, and skin swabs collected from the foot skin every two weeks.
Samples were processed for DNA and subject to 16S rRNA gene PCR and sequencing
of the V4 region.
Results. The diabetic skin microbiome was significantly less diverse than control
skin. Community composition was also significantly different between diabetic and
control skin, however the most abundant taxa were similar between groups, with
differences driven by very low abundant members of the skin communities. Chronic
wounds tended to be dominated by the most abundant skin Staphylococcus, while
other abundant wound taxa differed by patient. No significant correlations were found
between wound duration or healing status and the abundance of any particular taxa.
Discussion. The major difference observed in this study of the skin microbiome
associated with diabetes was a significant reduction in diversity. The long-term effects
of reduced diversity are not yet well understood, but are often associated with disease
conditions.

Subjects Microbiology, Molecular Biology, Diabetes and Endocrinology
Keywords Diabetes, Diabetic ulcer, Diversity, Skin microbiome, 16S rRNA gene sequencing

INTRODUCTION
Type II diabetes is one the fastest growing chronic diseases in the world today, predicted to
rise from 382 million people in 2013 to 592 million in 2035 (Guariguata et al., 2014). The
disease is characterised by persistently elevated blood glucose levels as a result of insufficient

How to cite this article Gardiner et al. (2017), A longitudinal study of the diabetic skin and wound microbiome. PeerJ 5:e3543; DOI
10.7717/peerj.3543

https://peerj.com
mailto:Catherine.Burke@uts.edu.au
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.3543
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.3543


insulin production or insulin resistance. This leads to many serious complications affecting
the heart, kidneys, eyes, blood vessels and nerves (World Health Organisation, 2016). The
development of foot ulcers is the culmination of several of these complications, estimated
to affect 15 % of diabetes sufferers (Reiber, Boyko & Smith, 1995). These wounds are often
slow to heal, difficult to treat, and prone to infection. They have a severe impact on a
patient’s quality of life, and are estimated to increase the risk of lower limb amputation by
15 fold (Australian Institute of Health and Welfare, 2008). The cost of treating these chronic
wounds is estimated at up to $13 billion annually in the US alone (Rice et al., 2014), and is
set to rise with the increasing incidence of diabetes worldwide.

Diabetes is associated with shifts in the gut microbiota (Karlsson et al., 2013; Qin et al.,
2012), and these shifts are thought to contribute to the onset of disease (Parekh et al., 2016;
Zhang & Zhang, 2013). Dysbiosis of the human microbiome is increasingly recognised to
play a role in many diseases, throughmechanisms such as altered intestinal barrier function
(Kelly et al., 2015), triggering or exacerbating inflammation (Strober, 2013) and regulation
of energy metabolism (Samuel et al., 2008). Given the physical changes that occur in the
skin as a result of diabetes, such as increased dryness and pH, and glycosylation of structural
skin proteins (Behm et al., 2012), it is feasible that diabetes may also affect the microbiome
of the skin.

As in the gut, the skin microbiome is thought to protect against infection via both
competitive exclusion and direct inhibition (Bomar et al., 2016; Cogen et al., 2010b; Iwase
et al., 2010; Shu et al., 2013), and have the potential to regulate skin immune function and
wound healing (Kanno et al., 2011; Scales & Huffnagle, 2013). For example, the most
common skin isolate, Staphylococcus epidermidis, has been shown to down-regulate
inflammation following skin injury (Lai et al., 2009), and to up-regulate the production
of antimicrobial peptides in the host (Lai et al., 2010), which work synergistically with
antimicrobial peptides from S. epidermidis to inhibit pathogens such as Staphyloccocus
aureus and Group A Streptococcus (Cogen et al., 2010a). Another skin commensal,
Acinetobacter lwoffii, has been shown to protect against allergic sensitization and
inflammation by promoting TH1 and anti-inflammatory responses in the skin (Fyhrquist
et al., 2014). Given the importance of the skin microbiome in preventing infection, any
shifts to these communities could affect their ability to protect against infection, and may
have an effect on wound healing.

The aim of this study was to determine whether there are differences in the skin
microbiome between persons with diabetes and healthy controls, andwhether anymembers
of the skin microbiome in diabetes are associated with those microbes that colonise chronic
wounds during wound healing. We examined a cohort of eight diabetic and eight control
individuals at six time points over a 10-week period, by swabbing the skin on the soles
of both feet, and collecting swabs and debrided tissue from the chronic foot ulcers of the
diabetic patients. The microbial communities associated with these samples were assessed
via high-throughput sequencing of the V4 region of the bacterial 16S rRNA gene.
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Table 1 Characteristics of diabetic and control cohorts.

Diabetic Control

Age (years) 68.9± 8.2 (58–81) 62.8± 13.4 (50–81)
BMI 35.4± 5.9 (27.2–47.1) 28.0± 6.6 (20.4–37.9)
Males:Females 5:3 2:6

Notes.
Characteristics are shown for the diabetic and control subjects in the study. Average values with standard deviations are re-
ported, including the range in brackets.

MATERIALS & METHODS
Study design, ethics approval, and sample collection
Ethical approval for the study was obtained from both the University of Technology
Sydney Human Research Ethics Committee (approval number 2013000170), and the
Western Sydney Local Health District Human Research Ethics Committee (approval
number HREC2013/9/5.3(3809) AU RED LNR/13/WMEAD/294). Diabetic individuals
and control subjects provided written consent for sample collection and all subsequent
analyses.

Diabetic adults (n= 8) (Table 1) were selected for inclusion in the study based on
medical diagnosis of type II diabetes, the presence of a chronic wound on one foot (chronic
wound = present for six or more weeks) and no antibiotic therapy within the previous four
weeks. Three swabs were collected for each diabetic subject every two weeks for a 10 week
period using sterile rayon tipped swabs (Copan) that had been pre-moistened with a sterile
solution of 0.15 M NaCl and 0.1% Tween 20. Two skin swabs were collected from intact
foot skin (1) adjacent to the chronic wound (skin adjacent, SA) and (2) contralateral site
to the chronic wound (skin contralateral, SC). Skin swabs were collected by firmly rubbing
the moistened swab over the base of the foot skin surface for a period of 30 seconds. The
whole base of the foot was used to maximise the DNA yield. Skin swab samples were taken
prior to any cleaning of the skin surface that routinely took place before debridement of
wound tissue. Chronic wounds were cleaned by applying gauze soaked with Prontosan
wound irrigation solution (B. Braun Medical, Sheffield, UK) for ten minutes prior to sharp
debridement of tissue from the top of the wound (wound debridement, WD). Wound
debridement samples were only taken where debridement was deemed to be necessary
for the standard wound care. Wound swabs were taken after irrigation of the wound with
Prontosan to remove loose tissue, using a dry swab and the Z swab method (wound swab,
WS). The Z swabmethod was the routinemethod used in the clinic at the time of sampling.

Control subjects (n= 8) (Table 1) were recruited from Sydney, Australia. The criteria
for inclusion were not to have been diagnosed as diabetic, between 50–80 years of age, and
without the use of antibiotics within the previous four weeks. Skin swabs were collected
from the left and right feet of control subjects as described above. Samples were taken from
all participants every two weeks for a 10-week period (6 time points in total). All samples
were processed for DNA on the day of collection, or stored at 4 ◦C until processing the
next day. These storage conditions have been shown to adequately preserve the microbial
profile of skin swab samples (Lauber et al., 2010).
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Extraction of microbial DNA from skin and wound swabs and wound
debridement tissue
Genomic DNA was extracted from all skin and wound samples using the BioStic DNA
extraction kit (MO BIO Laboratories, Carlsbad, CA, USA). Swab heads were cut off the
plastic applicator using sterile surgical scissors into the bead beating tube from the DNA
extraction kit, before addition of buffer CB1. For wound debridement tissue, the tissue
was directly placed into the bead beating tube. All subsequent steps were in accordance
with the manufacturer’s instructions, and DNA was eluted in 50 µl of solution CB5 (10
mM Tris pH 8). The extracted DNA was quantified on a Qubit R© 2.0 Fluorometer (Life
Technologies, Carlsbad, CA, USA) with a Qubit R© dsDNAHS Assay Kit (Life Technologies,
Carlsbad, CA, USA).

Preparation of 16S rRNA gene libraries for Illumina sequencing
A library of the V4 region of the 16S rRNA gene was prepared for Illumina sequencing
from the isolated microbial DNA samples. Samples were amplified using primers based
on the Caporaso et al. design (Caporaso et al., 2012), which were modified to include eight
nt rather than 12 nt barcodes, and include a barcode on both the forward and reverse
primer (V4_forward and V4_reverse; Table 2). Different barcoded primers were used for
each sample. For skin samples, the V4 region was amplified from 500 pg template DNA;
for wound samples template DNA started at 10 ng, but in some cases up to 50 ng was
used where a PCR product was not obtained with lower amounts of template DNA. Each
sample was subjected to 10 cycles of PCR with 0.5 µM each of V4_forward and V4_reverse
barcoded primers in a 50 µl PCR reaction that contained 1× Taq core PCR buffer (Qiagen,
Venlo, Netherlands), 1 × Q solution, 250 µM dNTPs, and 1.25 U Taq DNA polymerase.
Thermal cycling was carried out at 95 ◦C for two minutes, followed by 10 cycles of 95 ◦C
for 15 s, 50 ◦C for 30 s and 72 ◦C for 90 s, followed by a final extension at 72 ◦C for five
minutes. Excess primer was removed via a magnetic bead clean-up using 0.8 volume
of Axygen R© AxyPrep Mag beads (Corning, NY, USA) and the eluted amplicons were
subjected to a further 20 cycles of PCR with 0.25 µM enrichment primers (Illumina_E_1
and Illumina_E_2; Table 2). The PCR reaction and cycling was performed as described
above, except that the annealing temperature was increased to 55 ◦C and 20 thermal cycles
were performed. Following confirmation of the PCR product on a 1% agarose gel, the
amplicons were purified using Axygen R© AxyPrep Mag beads (Corning, NY, USA) and
quantified on a Qubit R© 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA) with a
Qubit R© dsDNA HS Assay Kit (Life Technologies, Carlsbad, CA, USA). Equimolar (2 ng)
amounts of the 16S amplicons obtained for each skin and wound sample were then pooled
and the molarity of the pooled amplicons determined using a Bioanalyser High Sensitivity
DNA chip (Agilent Technologies, Santa Clara, CA, USA).

Illumina sequencing and data analysis
The PCR amplicons from 264 samples (including positive and negative controls) were
sequenced over two separate runs on an Illumina Miseq using 500 cycle V2 kits. Sequences
were demultiplexed using phylosift (Darling et al., 2014) and read pairs merged using
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Table 2 Primer sequences used in this study.

Primer name Sequence 5′–3′

V4_forward_1 AATGATACGGCGACCACCGAGATCTACACAACCAGTCTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_forward_2 AATGATACGGCGACCACCGAGATCTACACAACGCTAATATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_forward_3 AATGATACGGCGACCACCGAGATCTACACAAGACTACTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_forward_4 AATGATACGGCGACCACCGAGATCTACACAATCGATATATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_forward_5 AATGATACGGCGACCACCGAGATCTACACACCAATTGTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_forward_6 AATGATACGGCGACCACCGAGATCTACACACTGAAGTTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_forward_7 AATGATACGGCGACCACCGAGATCTACACATTGCCGCTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_forward_8 AATGATACGGCGACCACCGAGATCTACACCAACCTTATATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_forward_9 AATGATACGGCGACCACCGAGATCTACACCCTAATAATATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_forward_10 AATGATACGGCGACCACCGAGATCTACACCCTCTGATTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_forward_14 AATGATACGGCGACCACCGAGATCTACACGAACGGAGTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_forward_16 AATGATACGGCGACCACCGAGATCTACACGCGTTACCTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_forward_18 AATGATACGGCGACCACCGAGATCTACACGGATGCCATATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_forward_20 AATGATACGGCGACCACCGAGATCTACACGTTGGCCGTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_forward_22 AATGATACGGCGACCACCGAGATCTACACTGACTGCTTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_forward_24 AATGATACGGCGACCACCGAGATCTACACTTCAGCGATATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_reverse_1 CAAGCAGAAGACGGCATACGAGATAACCAGTCAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT
V4_reverse_7 CAAGCAGAAGACGGCATACGAGATATTGCCGCAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT
V4_reverse_8 CAAGCAGAAGACGGCATACGAGATCAACCTTAAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT
V4_reverse_9 CAAGCAGAAGACGGCATACGAGATCCTAATAAAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT
V4_reverse_15 CAAGCAGAAGACGGCATACGAGATGCCTACGCAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT
V4_reverse_16 CAAGCAGAAGACGGCATACGAGATGCGTTACCAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT
V4_reverse_17 CAAGCAGAAGACGGCATACGAGATGGAGGCTGAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT
V4_reverse_23 CAAGCAGAAGACGGCATACGAGATTGGCGATTAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT
V4_reverse_24 CAAGCAGAAGACGGCATACGAGATTTCAGCGAAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT
V4_reverse_25 CAAGCAGAAGACGGCATACGAGATTTGGCTATAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT
Illumina_E_1 AATGATACGGCGACCACCGA
Illumina_E_2 CAAGCAGAAGACGGCATACGA
V4_read_1 TATGGTAATTGTGTGCCAGCMGCCGCGGTAA
V4_read_2 AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT
V4_index_read ATTAGAWACCCBDGTAGTCCGGCTGACTGACT

FLASH (Magoc & Salzberg, 2011). Sequences were quality filtered and processed into
OTUs using USEARCH v 1.8.1 (Edgar, 2010) (fastq_filter command with the fastq_maxee
option set to ‘2’ to remove all sequences with two or more expected errors). Further quality
filtering and operational taxonomic unit (OTU) clustering was carried out in QIIME
(Caporaso et al., 2010b) version 1.9.0. The split_libraries.py command was used with the –l
and –L options set to 240 and 260 respectively, to remove sequences shorter than 240 and
longer than 260 base pairs. Sequences were clustered into OTUs at 97% similarity using
the pick_open_reference_otus.py script using default settings except that singleton OTUs
were removed, and the usearch61 method was used for chimera filtering.
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Taxonomy was assigned to OTUs (assign_taxonomy.py) using the UCLUST method
(Edgar, 2010) against the Greengenes (DeSantis et al., 2006) database pre-clustered
at 97% similarity, accessed from the QIIME website (ftp://greengenes.microbio.me/
greengenes_release/gg_13_5/gg_13_8_otus.tar.gz). Representative sequences from each
OTU were aligned against the Greengenes alignment using Pynast (Caporaso et al., 2010a)
(align_seqs.py), OTUs which failed alignment were filtered from the final OTU table
(filter_otus_from_otu_table.py). A phylogenetic tree was built from aligned representative
OTU sequences (make_phylogeny.py script) using Fasttree2 (Price, Dehal & Arkin, 2010),
with the –r option set to midpoint for tree rooting.

Diabetic skin samples adjacent to wounds were found to be more similar to wound
than contralateral skin samples (see Fig. S1), and were removed so as not to confound
comparisons between diabetic and non-diabetic skin. To ensure more even sample sizes
between the diabetic and non-diabetic groups, only the right foot samples were included
from the non-diabetic group for all downstream analyses. Alpha diversity was calculated
using Phyloseq (McMurdie & Holmes, 2013) for the observed number of OTUs, Chao 1 and
Shannon diversity indices on data rarefied to 30,000 sequences per sample. Significance
testing was carried out on alpha diversity estimates using the Wilcoxon rank sum test in R.

Initial beta-diversity analysis was carried out in QIIME on a rarefied OTU table (30K
sequences per sample) using the weighted unifrac metric, and the generate_boxplots.py
script used to compare unifrac distances between groups of samples. Futher beta diversity
analyses, were carried out in Phyloseq, using weighted unifrac distances calculated from
an OTU table with raw counts subject to variance stabilising transformation implemented
in DEseq2 (Love, Huber & Anders, 2014) as described here (McMurdie & Holmes, 2014).
Weighted unifrac distancesmatriceswere also subject to principal coordinates analysis using
the Phyloseq package, and significant differences in variance between groups (diabetic and
control skin) were determined with PERMANOVA (adonis function) implemented in the
Vegan package (Oksanen et al., 2015) in R, using a nested model formula (∼health/subject
+ subject) and the weighted unifrac distance matrix.

The Wald test for differential abundance was used as implemented in the DESeq2
package in R. Multivariate correlation analysis was carried out against OTUs and wound
duration and area using Pearson scores with Bonferroni correction, and p-values were
determined via bootstrapping with 100 permutations (implemented in QIIME using
the observation_metatdata_correlation.py command). OTU tables were filtered to
remove OTUs present in less than 10% of samples for both differential abundance and
correlation tests.

A Random forest learning algorithm implemented in R (Liaw &Wiener, 2002) was
used to determine if diabetic status could be predicted from the foot skin microbiome.
Skin samples were randomly divided into two equal subsets (restricting samples from the
same participant to the same subset) for training and testing of learning algorithms. The
variance stabilizing transformed OTU table was filtered to include skin samples only, and
to remove OTUs observed in less than 10% of samples, and used as the input matrix for
the Random forest algorithm. The Random forest fitted on the training subset was created
using bootstrapping of one third of the training samples with replacement. As a general

Gardiner et al. (2017), PeerJ, DOI 10.7717/peerj.3543 6/23

https://peerj.com
ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_8_otus.tar.gz
ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_8_otus.tar.gz
http://dx.doi.org/10.7717/peerj.3543#supp-9
http://dx.doi.org/10.7717/peerj.3543


practice the rest of the samples were used as a validation set in order to decrease the risk of
over-fitting associated with classification algorithms. An optimisation to minimise the out
of bag error (classification error on validation data) was used to obtain the optimal number
of taxonomic units accessed at each iteration of decision tree creation. Two hundred
decision trees consisting of 30 OTUs evaluated at each node of the tree were created. The
Random forest model was then used to predict the health status of the subjects in the
test subset.

Analysis of the stability of skin microbial communities over time was carried out by
comparing intrapersonal weighted unifrac distances between the diabetic and control skin
samples, along with intrapersonal distances for all samples. Kruskal–Wallis tests were used
to determine significant differences between groups.

Pearson’s Product Moment Correlation was used to test for correlations between
wound size or duration and OTU abundance in wound samples as implemented in QIIME
(observation_metadata_correlation.py). P-values were calculated using bootstrapping
with 100 permutations, and Bonferroni correction for multiple testing. Kruskal-Wallis
tests for OTUs that were differentially abundant in healing vs non-healing wounds were
implemented in QIIME (group_significance.py). Wounds were classified as healing or
non-healing based on a reduction in wound area since the last sampling time (healing) or
no change or greater wound size area since the last sampling (non-healing). OTU tables
were filtered to remove OTUs present in less than 10% of samples prior to testing.

Inter-visit weighted unifrac distances were compared to the overall degree of healing
(1− (final wound area/initial wound area)) using the lm function of the stats package in R.

Quality filtered sequence data has been deposited in the European Nucleotide Archive
under study accession number PRJEB17696. A script containing the code used to process
the data in R is provided as supplementary data, along with all the necessary input files,
including OTU table and phylogenetic tree.

RESULTS
Cohort characteristics
The diabetic cohort (n= 8) consisted of five males and three females, with an average age
of 68.9 ± 8.2 (range 58–81), average BMI of 35.4 ± 5.9 (range 27.2–47.1), and all had at
least one foot ulcer which had been present for a average time of 9.1 ± 8.4 months (range
1.5–24 months). All wounds were neuropathic, with the exception of Patient 6 where the
wound was ischemic. Two of the eight wounds healed during the course of sampling.
Wounds were dressed with either Allevyn foam (Smith and Nephew) to promote moist
wound healing, Zetuvit dressing (Hartmann) to remove excess wound exudate, Inadine
antimicrobial dressing (10% povidone-iodine) (Johnson and Johnson), or Acticoat flex
(antimicrobial silver coated) (Smith and Nephew), as deemed appropriate by the treating
podiatrist or wound care nurse. All wounds were located on the plantar aspect of the foot.
Details of the specific location of each wound, along with size and treatment over time and
are provided in Table S3.
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The control cohort (n= 8) consisted of 2 males and 6 females, with an average age of
62.8 ± 13.4 (range 50–81), average BMI of 28.0 ± 6.6 (range 20.4–37.9), and did not have
wounds present on the feet.

Sample processing, 16S PCR and sequencing
A total of 242 samples were collected from the diabetic and control cohorts, including
170 skin swabs (85 diabetic and 85 control), 40 wound swabs and 32 wound debridement
samples. Full details for samples collected at each time point for each participant can be
found in Table S1 (diabetic participants) and Table S2 (control participants).

DNA yields obtained from diabetic skin swabs varied from 0.51 to 600 ng, with a median
of 8.5 ng. Three skin samples did not yield enough DNA to be measured by the Qubit assay,
however 16S rRNA gene PCR products were still obtained. Control skin sample DNA yields
ranged from 0.5 to 41.7 ng (median 5.55), with 20 samples falling below the detection limit
of the Qubit assay (<5 pg/µl). Of these 20 samples, PCR products were obtained for all but
3. DNA yields from wound swab samples ranged from 15 ng to 5.6 µg (median 760 ng) and
for wound debridement samples ranged from 170 ng to 5.8µg (median 1.2µg). One wound
swab sample did not yield enough DNA to be detected. Negative control swabs (n =4) did
not yield enough DNA to be detected, and also did not yield detectable PCR products.

PCR products from the V4 region of the 16S rRNA gene were obtained for 257 of the
273 samples collected. Repeated attempts were made with increased amounts of template
for those samples that did not initially yield a PCR product, however no PCR product
was obtained (detailed in Tables S1 and S2). Amplicons from the remaining 257 samples
were pooled and paired-end sequenced over two separate MiSeq runs with V2-500 cycle
kits. Sample from four diabetic and four control subjects were sequenced in each run
(Table S4). A median coverage of 73,599 sequences per sample was obtained (minimum
1,683,maximum297,817). Negative controls (two blank swab and 2 noDNAPCR controls)
had between 1,508 and 27,840 sequences assigned. The final sequencing coverage obtained
for each sample can be found in Table S4 . Because negative control samples contained
taxa that are similar to those found on skin (e.g., Staphylococcus, Corynebacterium and
Acinetobacter) specific taxa were not removed from the data, rather samples with less than
30,000 sequences (n= 5) were removed from the analysis, based on the highest level of
sequencing reads obtained from negative controls. A PERMANOVA test was run on a
weighted unfrac distance matrix generated from variance stabilising transformed counts
to assess the amount of variance attributable to the two different sequencing runs, (run
+ subject). Sequencing run was a significant factor accounting for 3.0% of the variance
(p< 0.001), while inter-individual differences accounted for 34.5% (p< 0.001).

The microbiome of diabetic skin is less diverse than control skin
Diversity in all three groups was significantly different for observed richness, Chao1 and
Shannon diversity indices (likelihood ratio test, p< 0.01). Diabetic skin was significantly
less diverse than control skin for richness and Chao1 indices (Wilcoxon rank sum test,
p< 0.01) (Fig. 1). Control skin had a median of 998.5 observed OTUs, compared to 435 for
diabetic skin. Wounds were also significantly less diverse than diabetic skin with a median
of 145 observed OTUs.
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Figure 1 Alpha diversity of skin and wounds. Box plots of 3 different alpha diversity measures, (A)
observed number of OTUs or richness, (B) the Chao I estimator, and (C) the Shannon index, based on
OTUs clustered at 97% similarity for control skin, diabetic skin and diabetic wounds. Significant differ-
ences are indicated by asterix ∗= p< 0.05, ∗∗= p< 0.01 ∗∗∗= p< 0.001.

The skin microbiome is significantly different between diabetic and
control subjects
Skin microbial communities overall were significantly different between diabetic and
control skin (Fig. 2). A clear distinction can be observed between the sample types, and this
was confirmed by a PERMANOVA test (∼health/subject + health), where health (diabetes
vs control) was a significant factor accounting for 11.7% of the variance (R2

= 0.117,
p= 0.001). Subject (inter-individual differences) was themost significant factor accounting
for 34.6% of the observed variance (R2

= 0.346, p= 0.001).

Abundant taxa from skin are similar between persons with diabetes
and healthy controls
Despite the clear distinction between diabetic and control skin in the PCoA plot above,
the most abundant taxa from both groups were similar. Foot skin communities from
diabetic skin were dominated by the genera Staphylococcus, followed by Acinetobacter
and Corynebacterium, then unclassified Enterobacteriacea. Control skin was dominated
by the genera Staphylococcus, followed by Acinetobacter, Kocuria, Corynebacterium and
Micrococcus, (Fig. 3).

To determine which OTUs were contributing to the significant difference detected in the
PERMANOVA analysis, theWald test as implemented in the DESeq2 package (Love, Huber
& Anders, 2014), was carried out. Sixty-nine OTUs were identified as significantly different
in abundance (adjusted p< 0.05), all with an average abundance of less than 1%. A full list
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Figure 2 Principal coordinates analysis of diabetic and control skin samples.Distances are based on
the weighted unifrac metric, calculated using raw counts subjected to a variance stabilising transforma-
tion.

of the results can be found in Table S5. Similar results were found when re-running the
analysis at the Genera level, with 24 genera identified as significantly different, but all at an
average relative abundance of less then 1% (Table S6).

The foot skin microbiome may predict diabetic status
Despite only low abundance OTUs showing significant differences between diabetic and
non-diabetic skin, a Random Forrest classifier was able to predict diabetic status from the
foot skin microbiome. The model achieved an overall accuracy of 85.0%, with a sensitivity
of 79.2%, and specificity of 93.8%. The negative predictive value (75.0%) was lower than
the positive predictive value (95.0%). The classifier’s Gini index provided a list of 106 OTUs
that were important in the classification task (Table S7); the majority were low abundance
OTUs (103 OTUs < 1% average relative abundance), and the majority of these were more
abundant in control than diabetic skin (75 OTUs).

Stability of the diabetic skin microbiome over time
Longitudinal analysis of the skin microbiome over time showed a trend of lower stability
for diabetic skin than non-diabetic skin (Fig. 4), however this difference did not reach
significance (p= 0.09), while both control and diabetic skin intrapersonal differences
over time were significantly smaller (i.e., more stable) than inter-individual differences
(p< 0.05).
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Figure 3 The top 10 most abundant OTUs in diabetic and control skin per subject. The top 10 most
abundant OTUs in (A) control and (B) diabetic skin per subject. Average abundances per person were cal-
culated from data rarefied to 30,000 sequences per sample. Genus assigned taxonomy is indicated in the
legend, individual OTUs of the same genera are indicated with black lines.
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Figure 4 Boxplots of intra-individual differences over time in diabetic and non-diabetic skin micro-
bial communities. Inter-individual distances are also shown for comparison. The stability of non-diabetic
skin was higher (i.e., lower distances over time) than for diabetic skin, however this difference did not
reach significance. (Kolmogorov–Smirnov test, p= 0.09).
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Figure 5 The top 10 abundant OTUs in wounds per subject. The top 10 abundant OTUs per subject in
diabetic (A) wound debridement and (B) wound swab samples. Average abundances per group were cal-
culated from data rarefied to 30,000 sequences per sample. Genus assigned taxonomy is indicated in the
legend, or family level where genus was unassigned. Individual OTUs of the same genera are indicated
with black lines.

Microbiota of chronic diabetic wounds overlap with skin and differ
between patient
Wound swab and debridement samples were similar in taxonomic composition, and the
top ten OTUs from all wounds per patient are shown in Fig. 5. The most abundant OTU
detected in wounds was also the most abundant OTU found on skin, Staphylococcus sp.
(OTU 1084865), and was present in the wounds of all eight patients. Other skin associated
OTUs found in wounds included Corynebacterium (OTU 1011712), which was in the top
10 OTUs in six out of eight patient’s wounds.

The Wald test for differential abundance between diabetic skin and wounds identified
four OTUs that were significantly more abundant across all wounds (two classified as
Enterobactericaeae, one as Serratia and one as Finegoldia). The complete list of results can
be found in Table S8.

The top 10 OTUs in wounds per patient over time are shown in Fig. 6. Of the eight
wounds, six are dominated by the most abundant skin OTU, at the majority of time points
measured (Staphylococcus OTU 1084865). Only Patients 6 and 10 showed wound profiles
dominated by non-skin associated taxa across the time period surveyed. No significant
correlations were found between any abundant OTUs (average abundance > 1%) and
wound duration or healing status. No significant correlation was found between the overall
degree of wound healing, and inter-visit weighted unifrac distances in individual wounds
(Fig. S2, p= 0.29). However, some interesting observations were made that correlated to
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Figure 6 Relative abundance of the top 10 OTUs per patient over time. Patients 1–10 are represented
individually in (A–H). Wound area is overlaid as a red line and is represented as a percentage of the largest
wound area measured over time. Relative abundances were calculated from data rarefied to 30,000 se-
quences per sample. Genus assigned taxonomy is indicated in the legend, or family level where genus was
unassigned. Individual OTUs of the same genera are indicated with black lines.
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clinical events. For example, the wound of Patient 6 had been present for 24 months at
the start of the study. It was dominated by Enterobacteriacaea and showed little healing
until time point 3, which coincided with an angioplasty procedure to improve blood
flow to the foot. This was followed by resolution of the wound within two weeks. When
Patient 7 presented to the clinic, the wound had been present for 12 months, and was
dominated by an OTU from the Neisseriaceae family. Following the standard treatment
of debridement and wound dressing, rapid healing was observed, as well as a shift to a
community dominated by the most abundant skin OTU.

DISCUSSION
This study aimed to compare the skin microbiome between persons with diabetes and
healthy control individuals over time. We additionally sought to characterise the wound
microbiota in diabetic foot ulcers over time and determine if any members of the skin
microbiome were correlated to the wound microbiome or wound healing.

The microbiome from diabetic skin was significantly different to that of control skin,
however this difference was not driven by the most abundant members of the skin
community. The top 10 most abundant OTUs per person were similar in abundance and
not significantly different between groups. Many low abundance OTUs were identified as
significantly different, with the vast majority of these being more abundant in control skin.
One limitation of this study is that, although commonly used in microbiome studies (Cope
et al., 2017; David et al., 2014; Halfvarson et al., 2017; Smith et al., 2016), the V4 region of
the 16S rRNA gene does not allow differentiation between Staphylococcus aureus and other
Staphylococcus species found on skin, such as Staphylococcus epidermidis (Conlan, Kong
& Segre, 2012). Additionally, the V4 primers have mismatches that prevent detection of
Propionibacterium, an important genera in the skin microbiome (Kuczynski et al., 2011).
The clinical consequences of these organisms may be important, and this should be taken
into consideration for the experimental design of future studies (Gohl et al., 2016;Meisel et
al., 2016).

We observed a significant reduction in alpha diversity and a trend of decreased stability
(non-significant) of diabetic skin microbiomes compared to non-diabetic skin. This is in
contrast to a previous study of diabetic skin (Redel et al., 2013) where the opposite result
was observed. It is possible that changes to the skin environment associated with diabetes,
such as increased pH (Yosipovitch et al., 1993) advanced glycation end products in the skin
matrix (Gkogkolou & Bohm, 2012), or increased levels of skin inflammation (Tellechea et
al., 2013) could drive a decrease in diversity. It is also possible that activities associated
with diabetes, such as increased exposure to antibiotics (Mor et al., 2016), contribute to
the observed effect despite our attempts to control for recent antibiotic exposure as a
confounding variable. Another limitation of the current study is the small sample size, and
as such this result should be confirmed on a larger cohort.

If skinmicrobiome diversity is depleted in people with diabetes, what are the implications
for the health of diabetic skin? While in some body sites an increase is microbial diversity is
associated with disease states, particularly the vagina (Van de Wijgert et al., 2014), decreased
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diversity of the microbiome has frequently been correlated with disease and inflammation
in the skin (Alekseyenko et al., 2013; Ellebrecht et al., 2016; Seite et al., 2014; Williams &
Gallo, 2015), gut (Giloteaux et al., 2016; Sze & Schloss, 2016) and airways (Yu et al., 2015).
However it is not known whether decreased diversity in these sites is a cause or merely an
indicator of inflammation. Diversity is commonly used as an indicator of ecosystem health,
with decreased diversity typically signalling a disturbed and less resilient state (Oliver et
al., 2015). In the context of the human skin microbiome, decreased diversity could allow
potential pathogens to overgrow, and these may be capable of triggering inflammation and
triggering or exacerbating a disease state. Alternatively, inflammation could be triggered by
genetic and environmental factors, and the inflammation itself could drive down bacterial
diversity by creating an inhospitable growth environment.

Patients with diabetes enrolled in this study had no exposure to antibiotics within the
previous four weeks, so as not to confound the comparison between diabetic and control
skin. This meant that the foot ulcers analysed in this study were considered to be clinically
non-infected wounds. No significant correlations were found between any OTU in diabetic
skin or wounds with wound size, duration or healing status. This is possibly due to the
small sample size, as a previous study found correlations between the relative abundance
of specific bacterial taxa and ulcer duration and depth (e.g., Staphylococcus was negatively
correlated with wound duration) (Gardner et al., 2013). Another possible limitation of
this study is the use of the z-swab method which samples across the entire wound base
regardless of size, as this will possibly increase heterogeneity with increasing wound size.

A recent longitudinal study of wounds found a negative correlation between wound
microbiota stability and time to heal (Loesche et al., 2017). We did not find any such
correlation here when comparing degree of healing to between visit weighted unifrac
distances (Fig. S2), although again our sample size was smaller, as was the length of time
patients were followed.

The overall composition of the diabetic woundmicrobiota described here is in agreement
with a survey of 910 chronic diabetic foot ulcers, where a dominance of Staphylococcus, as
well as Pseudomonas, Corynebacterium, Streptococcus and Finegoldia (among others) was
found (Wolcott et al., 2016). Gardner et al. (2013) found that diabetic ulcers clustered into
three types, depending on the dominant taxa in the wounds, which were Staphylococcus,
Streptococcus, or a mixture of anaerobic bacteria or Proteobacteria. Similar results were
found in a later study where two wound clusters were dominated by either Staphylococcus or
Streptococcus, and genera such as Corynebacterium and Finegoldia were frequently observed
(Loesche et al., 2017). These same genera were observed in most wounds here, while other
genera such as Serratia and Proteus were specific to individuals.

Other studies of diabetic foot ulcers have reported contrasting results, such as a
dominance of Corynebacterium (Dowd et al., 2008), while a recent study found that
Staphylococcus were common in new ulcers, but not in recurring ulcers (Smith et al.,
2016). One trend that was consistent across several studies was that the microbial profile
from diabetic ulcers was variable, with no one typical diabetic ulcer microbiota apparent.
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CONCLUSIONS
The major effect associated with diabetes observed here was a significant reduction in the
diversity of the skinmicrobiome. The cohort of this study was small, and these observations
should be verified in a larger study. The long-term effects of reduced diversity are not yet
well understood, but low diversity continues to be linked to disease and poor health
outcomes (Hua et al., 2016;Miller et al., 2016; Rook, 2013). One possible effect is increased
infection susceptibility (Seto et al., 2014), and it is intriguing to consider whether decreased
skin microbiome diversity could be contributing to the high incidence of skin and wound
infections associated with this disease (Peleg et al., 2007). There are, of course, many other
well-documented factors such as immune dysfunction that can contribute to an increased
rate of infections (Geerlings & Hoepelman, 1999); however, the skin microbiome may be
an as yet unconsidered contributor to this phenomenon.
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