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Background: Osteoarthritis (OA) is the most common type of arthritis. OA can cause joint pain, stiffness, 
and loss of function. The pathogenesis of OA is not completely clear. Moreover, there is no effective treatment, 
and clinical management is limited to symptomatic relief or joint surgery. This study utilized bioinformatics to 
analyze normal and OA articular cartilage samples to find biomarkers and therapeutic targets for OA.
Methods: The GSE169077 gene chip dataset was downloaded from the public gene chip data platform of 
the National Biotechnology Information Center. The dataset included 6 samples of OA tissues and 5 samples 
of healthy cartilage tissues. Differentially expressed genes (DEGs) were screened using the R language 
“limma” function package under the threshold of log2[fold change (FC)] ≥2 and a P value <0.05. The Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathways of the target 
genes were enriched and analyzed using the database for annotation, visualization, and integrated discovery 
(DAVID), and a protein-protein interaction (PPI) network was further constructed using the search tool for 
the retrieval of interacting genes/proteins (STRING) database. The coexpression relationship of the genes in 
the module was visualized and screened with Cytoscape. 
Results: A total of 27 DEGs were identified, including 9 downregulated genes and 18 upregulated genes. 
GO signal pathway enrichment analysis showed involvement in hypoxic response, fibrous collagen trimer, 
and extracellular matrix structural components. KEGG analysis demonstrated associations with protein 
digestion and absorption, extracellular matrix receptor interaction, and the peroxisome proliferator-activated 
receptor signal pathway, among several other pathways. A PPI network was obtained through STRING 
analysis, and the results were imported into Cytoscape software. The 27 DEGs were sequenced by the 
cytoHubba plug-in by various calculation methods, and 5 hub genes (COL1A1, COL1A2, POSTN, BMP1, 
and MMP13) were finally selected. These genes were analyzed by PPI again and annotated with GO and 
KEGG in different colors. 
Conclusions: Bioinformatics technology effectively identified differential genes in the knee cartilage tissue 
of healthy controls and patients with OA, providing opportunities to further explore the mechanism and 
treatment of OA on a transcriptional level.

Keywords: Osteoarthritis (OA); differentially expressed genes (DEGs); hub gene; enrichment analysis

Submitted Nov 22, 2022. Accepted for publication Jan 10, 2023. Published online Jan 31, 2023.

doi: 10.21037/atm-22-6450

View this article at: https://dx.doi.org/10.21037/atm-22-6450

12

 
^ ORCID: Junqing Zhong, 0000-0002-3257-8187; Xinlong Ma, 0000-0001-8932-3110.

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-22-6450


Zhong et al. Hub genes in osteoarthritisPage 2 of 12

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2023;11(2):66 | https://dx.doi.org/10.21037/atm-22-6450

Introduction

Osteoarthritis (OA) is the most common form of arthritis 
worldwide, affecting approximately 40% of people over  
70 years old (1). According to the World Health Organization, 
the number of people with OA will double by 2025 and 
again by 2050. OA can cause joint pain, stiffness, and loss of 
function. It is characterized by cartilage erosion, osteophyte 
formation, subchondral bone formation, and synovial 
inflammation due to biomechanical and biochemical joint 
changes (2). Since the first description of hip OA in 1793 (3), 
a large amount of in-depth research has been done on its 
pathophysiology (4-6). To date, the “gold standard” for clinical 
diagnosis of OA is still imageology. However, there is a lag in 
imaging examinations, which often require 1–3 years to obtain 
reliable information on progression (7).

As high throughput sequencing technology has advanced 
and costs have fallen, bioinformatics analysis is now 
widely used to identify disease-specific biomarkers (7-10) 
for screening, diagnosis, prediction, and identification of 
drug targets of tumor genes. In recent years, researchers 
have reported the use of bioinformatics and microarray 
technology to screen the genes and signal transduction 
pathways of OA, providing theoretical support for the 
pathogenesis of OA and new therapeutic targets (11,12). 
Although the pathogenesis of OA is not fully known, we 
can refer to its main risk factors (13). Cartilage tissue in OA 
may be the first to undergo pathophysiological changes, 
including cartilage matrix proteolysis, cartilage cell erosion, 
and fibrosis, while the release of collagen fragments and 

proteoglycans into synovial fluid leads to synovial tissue 
inflammation (14). Data from current bioinformatics 
studies on OA are mostly from synovial tissue (15,16) 
and peripheral blood (11), and some scholars believe that 
although inflammatory response as a major mechanism 
may be involved in the pathogenesis of OA (17), local or 
systemic reactions are affected by other factors.

 Many driving factors (18-20) have been found to induce 
OA development, including mechanical injury, aging, 
cartilage degeneration, and synovitis, among others. A 
major challenge for researchers is applying bioinformatics 
to find the switch that drives OA initiation in a wide variety 
of sample types so that it can be used to improve the early 
diagnosis and prediction of OA. Therefore, we speculated 
that looking for “the Big Bang” might be the key to better 
understanding OA. Further, bioinformatics is usually 
calculated by the cytoHubba plug-in of Cytoscape software, 
which contains many kinds of calculation methods. Most 
previous research has involved a single method (15,21), and 
it is unclear whether there are differences in the hub genes 
obtained by the various calculation methods.

To address the above problems, we employed biological 
information analysis of OA cartilage tissue rather than 
synovium and blood samples. We then performed cluster 
analysis of differential genes, and grouped and compared 
functional paths. In addition, we selected multiple 
computational models for the screening of hub genes to 
avoid the bias of using a single model. Finally, protein-
protein interaction (PPI) analysis of the acquired hub genes 
was conducted to provide a more intuitive understanding 
of their interrelationships. Figure 1 shows a workflow of the 
steps undertaken in this study. We present the following 
article in accordance with the STREGA reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-6450/rc).

Methods 

Data sources 

The GSE169077 dataset was downloaded from the National 
Biotechnology Information Center’s Gene Expression 
Omnibus (GEO) public database (https://www.ncbi.nlm.
nih.gov/geo/) (22). The chip platform used was the GPL96 
(HG-U133A) Affymetrix Human Genome U133A Array. 
The study used data sets from 11 knee replacement surgery 
patients. The patient data in this work were obtained from 
a public database, which included informed consent and 
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ethical approval. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). 

Screening of differentially expressed genes (DEGs)

R version 3.2.3 (The R Project for Statistical Computing, 
Vienna, Austria) was used to analyze and read the chip and 
download the matrix file. The “affy” (23) and “limma” 
packages (24) were employed for quality control, background 
correction, standardization, logarithmic conversion, and 
batch effect elimination. Samples without clinical data 
were filtered, and the rest of the data were analyzed. The 
“limma” software package was used to screen DEGs among 
5 normal controls and 6 OA samples from the GSE169077 
dataset. An absolute value of the log2 difference multiple 
[fold change (FC)] ≥2 and false discovery rate (FDR) <0.05 
were set as the thresholds for screening DEGs (25). The 
“ggplot2” package was utilized to draw the volcano map for 
the obtained DEG data (26). 

Statistical analysis

After gene expression quantification is completed, statistical 
analysis of their expression data is required to screen the 
samples for genes with significantly different expression 
levels in different states. First, to correct for the sequencing 
depth, we normalized the original readcount; then the 
statistical model was used to calculate the probability of 
hypothesis testing (P value), and finally multiple hypothesis 
testing was performed to correct for the FDR.

Enrichment analysis of the DEGs 

The online database for annotation, visualization, and 
integrated discovery (DAVID, https://david.ncifcrf.gov) (27) 
was used to perform gene ontology (GO) (28) and Kyoto 
Encyclopedia of Gene and Genomes (KEGG) pathway 
enrichment analysis (29). GO functional enrichment data 
were annotated and classified according to the biological 

Search the GEO database for
GSE169077

Download 169077’s family file using R software (3.2.3)

Quality control, background correction, standardization, 
logarithmic conversion, and batch effect elimination by using R

DEGs were screened in healthy group [5] and OA group [6] of 
GSE169077 data set with ‘‘limma’’ software package. 

[|log2(FC)| ≥2 and FDR <0.05]

Using ggplot2 package to make volcano

KEGG and GO analysis using DAVID online database

Get hub genes with STRING and Cytoscape

GO and KEGG analysis of hub genes

https://www.ncbi.nlm.nih.gov/

Figure 1 Workflow for this study. The workflow demonstrates the important steps undertaken in this study, including KEGG and GO 
analysis, obtaining hub genes, and secondary analysis of hub genes. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene 
Ontology.
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pathway (BP), cellular composition (CC), and molecular 
function (MF). KEGG enrichment analysis was performed 
to identify the possible biological pathways. Using the 
Expression Analysis Systematic Explorer (EASE) score 
statistical method (30), the screening conditions of the 
GO and KEGG data were set at a P value <0.05. The 
upregulated and downregulated DEGs were explored with 
GO and KEGG to analyze the effects of the two kinds of 
DEGs on OA. The “ggplot2” package was used to draw the 
visualization chart based on results of the analyses.

DEG network construction and hub gene screening 

The search tool for the retrieval of interacting genes/
proteins (STRING version 11.5, https://string-db.org/), an 
online analysis tool (31), was utilized to present and evaluate 
the protein interaction (protein-protein interaction, 
PPI) network. The 27 DEGs selected in this study were 
imported into the STRING website, and the potential 
relationships among these DEGs were further explored 
using STRING analysis tools. The filter condition was set 
as follows: network type selected; “full-STRING network”; 
confidence ≥ medium confidence (0.4). The calculation 
results from STRING were imported into Cytoscape 
version 3.8.2 (Cytoscape Consortium, San Diego, CA, 
USA) (32). The hub genes (33) in key positions in the PPI 
network were screened with a variety of algorithms through 
the cytoHubba plug-in of Cytoscape (34). The obtained 
hub genes were reintroduced into the STRING website to 
determine the PPI interaction (35).

Results 

Results of the downloaded data

The analyzed data included 11 samples, including 6 OA 
cartilage tissues and 5 normal cartilage tissues. The fresh 
OA cartilage tissue was washed with aseptic phosphate-
buffered saline and immediately frozen in liquid nitrogen. 
The samples were preserved at −140 ℃ until the extraction 
of RNA. Healthy cartilage tissue was acquired from the 
National Center for Disease Research and Exchange 
(National Disease Research Interchange, NDRI). 
Eigenvalues of the main components in each sample were 
analyzed through covariance matrix analysis (36), and 
3-dimensional principal component analysis diagrams were 
drawn (Figure 2).

DEG screening results

A total of 31 DEGs from the OA and control groups 
were identified. After weight removal, 27 DEGs were 
retained (Table S1), including 18 and 9 upregulated and 
downregulated genes, respectively (Table 1). A volcanic map 
(Figure 3) was used to analyze and observe the |log2(FC)| 
distribution of the DEGs showing changes of more than 
2 times. The upregulated and downregulated genes were 
marked in red and blue, respectively. The genes with 
|log2(FC)| values less than 2 or P<0.05 were categorized 
as indifferent genes and marked in gray. The DEGs in 
each sample were depicted by a heat map, which presented 
upregulated and downregulated genes as red and green, 
respectively (Figure 4).

Results of GO and KEGG analysis of the DEGs

The results of GO and KEGG signal pathway enrichment 
analysis of the DEGs using DAVID are shown in Figure 5. 
In the BP category, DEGs were mainly correlated with 
oxygen, nutrition, and corticosteroid levels. In the CC 
category, DEGs were mainly enriched in fibrous collagen 
trimers, banded collagen fibrils, and extracellular matrices 
containing collagen. In the MF category DEGs were mainly 
involved in extracellular matrix structural components for 
tensile strength and platelet-derived growth factor binding. 
GO enrichment showed that the upregulated DEGs were 
mainly correlated with hypoxic response and mitochondrial 
matrix and magnesium ion binding. In comparison, the 
downregulated DEGs were mainly correlated with the 
extracellular matrix structure. KEGG analysis demonstrated 
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Figure 2 GSE169077 principal component analysis. The data 
of 11 samples from the control and OA groups were analyzed by 
PCA, and there were significant differences between the 2 groups. 
OA, osteoarthritis; PCA, principal component analysis.

https://cdn.amegroups.cn/static/public/ATM-22-6450-Supplementary.pdf


Annals of Translational Medicine, Vol 11, No 2 January 2023 Page 5 of 12

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2023;11(2):66 | https://dx.doi.org/10.21037/atm-22-6450

Table 1 List of differentially expressed genes

Gene ID Description Log2(FC)

DDIT4 DNA damage inducible transcript 4 4.248

TSC22D3 TSC22 domain family member 3 3.665

TMOD1 Tropomodulin 1 3.632

HILPDA Hypoxia inducible lipid droplet associated 3.578

CYP4B1 Cytochrome P450 family 4 subfamily B 
member 1

3.572

PCK1 Phosphoenolpyruvate carboxykinase 1 3.511

PDK4 Pyruvate dehydrogenase kinase 4 3.281

PDE2A Phosphodiesterase 2A 3.193

ADM Adrenomedullin 3.135

GAB2 GRB2 associated binding protein 2 2.831

C10orf10 Chromosome 10 open reading frame 10 2.828

STC2 Stanniocalcin 2 2.811

ACADL Acyl-CoA dehydrogenase, long chain 2.762

TXNIP Thioredoxin interacting protein 2.736

GLRX Glutaredoxin 2.689

GLUL Glutamate-ammonia ligase 2.666

SCNN1A Sodium channel epithelial 1 alpha subunit 2.654

GADD46B Growth arrest and DNA damage inducible 
beta

2.626

MXRA5 Matrix remodeling associated 5 −2.937

EPHB2 EPH receptor B2 −2.977

SERPINF1 Serpin family F member 1 −2.991

POSTN Periostin −3.115

BMP1 Bone morphogenetic protein 1 −3.206

COL1A2 Collagen type I alpha 2 chain −3.518

MMP13 Matrix metallopeptidase 13 −3.578

COL1A1 Collagen type I alpha 2 chain −3.622

HLA-DRA Major histocompatibility complex, class II, 
DR alpha

−3.83

FC, fold change.
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Figure 4 Heatmap of differentially expressed genes. Heatmap of 
DEGs of 11 samples in GSE169077. Red represents upregulated 
DEGs and green represents downregulated DEGs. OA, 
osteoarthritis; DEGs, differentially expressed genes.

that upregulated genes were mainly related to the 
peroxisome proliferator-activated receptor (PPAR) signal 
pathway, whereas downregulated genes were associated 
with protein digestion and absorption, extracellular matrix 
receptor interaction, and other signal pathways (Figure 6).

Results of the PPI network analysis of the DEGs

STRING analysis demonstrated that the PPI network 
consisted of 27 nodes and 22 edges. The average degree of 
the nodes among the networks was 1.63. The P value was 
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6.33e-15, and the degrees for COL1A2, COL1A1, BMP1, 
MXRA5, and SERPINF1 ranked the top 5. In order to 
better explore the pathogenesis of OA, 27 clustered DEGs 
were analyzed by k-means (Figure 7). These DEGs were 
visualized by hiding the non-interacting genes. Clusters 
were distinguished by 3 colors: the green group (14 genes) 

was primarily involved in the glucocorticoid receptor 
pathway, the blue group (7 genes) was involved in the 
relaxin signaling pathway, and the red group (6 genes) was 
associated with the estrogen receptor pathway (Table 2). 

The results of the PPI network were imported into 
Cytoscape, and the 27 DEGs were sequenced by the 
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Figure 5 GO enrichment analysis of all DEGs. The abscissa represents the percentage of genes enriched in the functional area, and the 
ordinate represents different functional areas. The longer the line, the more significant P is. GO, Gene Ontology; DEGs, differentially 
expressed genes; CH-CH, Hypermethyl structure.
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cytoHubba plug-in according to various calculation 
methods. Ten candidate hub genes were selected, and 5 
hub genes, namely, COL1A1, COL1A2, POSTN, BMP1, 
and MMP13, were selected after combining 6 calculation 
methods (MCC, DMNC, degree, closeness, clustering 
coefficient, and EPC) (Table 3). The 5 genes were analyzed 
by PPI, with a total of 5 nodes and 10 interaction networks 
on the left side. We performed heatmap analysis on the 5 
hub genes and found significant differences between the OA 
and normal groups (Figure 8). The average degree of the 
nodes among the networks was 4. The P value was 3.83e-13, 
which was annotated by GO and KEGG in different colors 
(Figure 9). In the cluster grouping, the genes contained 
were the hub genes in the blue group (Table 2).

Discussion 

In 2015, the Osteoarthritis Research Society International 
(OARSI) proposed a new definition of arthritis (37) to refer 
to cellular stress and extracellular matrix degeneration 
caused by microscopic and macroscopic damage. These 
involve preinflammatory pathways of innate immunity, 

which is primarily a molecular disorder, followed by 
anatomical and/or physiological disorders, including 
cartilage degeneration, bone remodeling, and osteophyte 
formation. Therefore, it is particularly important to 
understand the physiological and pathological changes of 
OA at molecular level.

In this study, we focused on the cartilage of OA, selected 
the GSE169077 dataset in the GEO database, and obtained 
27 DEGs using R software. We used STRING to cluster 
the 27 DEGs, of which the blue cluster group contained 
all of the hub genes involved in the relaxin signaling 
pathway. Relaxin is a peptide hormone discovered by 
Frederick Hisaw in 1926 in the study of changes in the 
pelvic canal during pregnancy. It is mainly produced in the 
ovarian corpus luteum of pregnant mammals and the male 
prostate. As the research progressed, researchers found 
relaxin in the heart, liver, lungs, and kidneys was closely 
related to various functions and diseases, such as regulation 
of the uterus during pregnancy, lowering blood pressure 
and vascular resistance, and anti-pulmonary fibrosis and 
liver fibrosis. Clifton’s study of thumb arthritis found that 
matrix metalloproteinases (MMPs) could act as a potential 

Figure 7 PPI clustering analysis. Twenty-seven DEGs were analyzed by k-means clustering, with disconnected nodes in the network hidden, 
green clustering (14 DEGs), blue clustering (7 DEGs), and red clustering (6 DEGs). PPI, protein-protein interaction; DEGs, differentially 
expressed genes.
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Table 2 DEGs and pathways involved in 3 clusters

Clusters Genes P value Pathway

Green ADM, C10orf10, DDIT4, EPHB2, GAB2, GADD45B, GLRX, GLUL, HILPDA, 
PDE2A, SCNN1A, STC2, TSC22D3, TXNIP

3.06×10−4 Glucocorticoid receptor pathway

Blue BMP1, COL1A1, COL1A2, MMP13, MXRA5, POSTN, SERPINF1 <10−16 Relaxin signaling pathway

Red ACADL, CYP4B1, HLA-DRA, PCK1, PDK4, TMOD1 2.59×10−5 Estrogen receptor pathway

DEGs, differentially expressed genes.

Table 3 Comparison of hub genes by using CytoHubba plug-in methods

Rank MCC DMNC Degree Closeness Clustering coefficient EPC

1 COL1A1* BMP1 COL1A1* COL1A1* MMP13 COL1A2*

2 COL1A2* MMP13 COL1A2* COL1A2* MXRA5 COL1A1*

3 POSTN* MXRA5 POSTN* POSTN* SERPINF1 POSTN*

4 BMP1* SERPINF1 BMP1* BMP1* PCK1 BMP1*

5 MMP13* POSTN MMP13* MMP13* ACADL MMP13*

6 MXRA5 COL1A1 MXRA5 MXRA5 PDK4 MXRA5

7 SERPINF1 COL1A2 SERPINF1 SERPINF1 BMP1 SERPINF1

8 PCK1 PCK1 PCK1 PCK1 POSTN PCK1

9 ACADL ACADL ACADL ACADL COL1A2 ACADL

10 PDK4 PDK4 PDK4 PDK4 COL1A1 PDK4

*, the gene ID was screened for hub genes in this study. MCC, Maximal Clique Centrality; DMNC, Density of Maximum Neighborhood 
Component; EPC, Edge Percolated Component.
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Figure 8 Hub gene heatmap. The heatmap of 5 hub genes 
showing high expression in the control group and low expression 
in OA group. OA, osteoarthritis.
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target for relaxin, which in turn affects joint stability (38). 
In addition, Ko et al. showed that relaxin antagonizes 
synovial fibroblasts in OA, thereby preventing the flexion 
contracture of OA (39). The role of the relaxin signaling 
pathway in the development of OA cartilage should be 
further explored. 

The upregulated genes involved in BP were mainly 
concerned with hypoxic response, while the genes 
involved in CC were correlated with mitochondrial matrix 
enrichment. The identified DEGs were not concentrated in 
critical pathways, but GO identified 3 genes involved in the 
extracellular matrix, while KEGG identified genes involved 
in protein digestion and absorption. Downregulated DEGs 
were analyzed by cytoHubba and utilized as the hub genes 
in this study (Figures 5,6).

Among the 5 hub genes, COL1A1 and COL1A2 are 
major collagen producers and important regulatory genes 
for bone, skin, and other connective tissues. Fang et al. 
suggested that they may be important biomarkers for 
hydroxymethylation and could be used as target genes 
for accurate diagnosis and treatment of OA (40). Another 
study proposed that increased secretion of type I collagen 
encoded by homologous COL1A1 and COL1A2 trimers 
could lead to subchondral bone stenosis and collagen fiber 
disorganization in OA (41).

MMPs are zinc-dependent extracellular proteases, 
the main function of which is to degrade extracellular 

interstitial components (42). Recent studies have found 
that MMP13 prevents articular cartilage damage through 
binding to metalloproteinase tissue inhibitor (43), which 
may be a potential treatment target for OA. In addition, 
Wang et al. found that an MMP13 inhibitor could reduce 
the severity of meniscus and ligament injury in an induced 
OA mice model (44).

Periostin (POSTN) is a protein-coding gene functioning 
as a transforming growth factor β-induced extracellular 
matrix protein. It is also known as osteoblast-specific factor 
2 and is expressed in articular joint components such as 
cartilage, subchondral bone, meniscus, and ligaments (45). 
POSTN can be crosslinked with other extracellular matrix 
proteins, such as type I collagen and fibronectin. The 
study has found that mice with POSTN deletion exhibit 
collagen crosslinking defects and a reduced resistance to 
mechanical stress (46). In the study by Tajika et al., POSTN 
did not upregulate collagen-related genes such as COL1 
and COL2. It is speculated that POSTN might indirectly 
affect collagen-related genes, for example, COL1 and COL2, 
through regulating the expression of MMP13 (47). 

In this study, bone morphogenetic protein 1 (BMP1) was 
a pivotal gene, which plays a variety of roles in regulating 
extracellular matrix formation. BMP1 preprocesses 
functional structural proteins in the extracellular matrix of 
active enzymes, binds with collagen I and II, and regulates 
the size and shape of heteromorphic fibers. Studies have 
suggested direct interaction between Fas1 domains, and that 
BMP1 is indirectly related to the EMI domain of POSTN 
(48,49). Targeted deletion of the POSTN gene in mice led 
to reduced collagen crosslinking (46,50). Kii et al. reported 
that the POSTN-BMP 1-LOX axis was the basis of the 
mechanochemical properties of the collagen matrix (51)  
(Figure 10). In recent studies, POSTN was found to 
determine the incidence of OA in women and predicted 
the occurrence of posttraumatic OA (52). Our interesting 
finding is that POSTN, BMP1, COL1A1 and COL1A2 are 
all closely related to collagen synthesis. This suggests that 
our drug development for osteoarthritis should focus on 
intervening in the intermediate steps that promote collagen 
synthesis (Figure 10).

Pain is a common phenotype in osteoarthritis, and 
extracellular matrix (ECG) receptor interaction is significantly 
different in the KEGG pathway. The proteoglycan and 
hyaluronic acid content of the ECM has been found to be 
elevated in the inflammatory progression of many diseases 
and, due to its unique reticular fibrous structure, is thought 
to be a “landing zone” for inflammatory cells. “This “net” 

C
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EMI FAS 1 Domains CTD
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BMP1
Lysyl oxidase

Lamini γ2

Figure 10 Schematic diagram of POSTN-BMP1-LOX axis. 
Schematic of the POSTN-BMP1-LOX axis as the basis for 
the collagen matrix chemical property. EMI, elastin microfibril 
interfacer; CTD, connect the dots; POSTN, periostin; BMP, bone 
morphogenetic protein.
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influences their adhesion, retention, migration and activation. 
The process of transfer and localisation of leukocytes directly 
determines the duration of the inflammatory response. Nanus 
et al. (53) studies of synovial tissue from multiple painful knee 
lesions found that the most differentially expressed RNA was 
in the inflammatory signalling, which is consistent with our 
findings in this study.

Our study had some limitations. Firstly, we used only 
1 dataset, and there may have been bias in the search for 
markers for OA. Secondly, the effect of OA on cartilage 
metabolism is only 1 factor, and systemic inflammatory 
response and diabetes, among others, can affect cartilage 
metabolism and integrity and possibly have an effect on 
results. Finally, we did not carry out experiments to prove 
the research results, which will be considered in future 
work.

Conclusions

This study applied bioinformatics to analyze the RNA 
expression profiles of healthy and OA groups. A total of 
27 DEGs were identified, and their biological functions 
mainly contributed to the structural components and 
tensile strength of the extracellular matrix. KEGG analysis 
demonstrated that these DEGs were mainly related to 
protein digestion and absorption, extracellular matrix 
receptor interaction, and the PPAR signaling pathway, as well 
as other signaling pathways. COL1A1, COL1A2, POSTN, 
BMP1, and MMP13 were identified as possible diagnostic 
and therapeutic biomarker targets for treating OA.
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