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Abstract
Cocaine is a highly addictive stimulant and a well-known drug, with multiple effects on physiology. Cocaine can have direct 
effects on all cell types in the brain, including microglia. Microglia can be activated by other conditions, such as infection, 
inflammation, or injury. However, how cocaine regulates microglia and the influence of cocaine on microglial-derived 
exosomes remains unknown. Exosomes are nanovesicles that are responsible for intercellular communications, signaling, 
and trafficking necessary cargo for cell homeostasis. In this study, we hypothesized that cocaine affects exosome biogenesis 
and composition in BV2 microglial cells. BV2 microglial cells were cultured in exosome-depleted RPMI-1640 media and 
were treated according to the experimental designs. We observed that cell viability decreased by 11% at 100 µM cocaine 
treatment but was unaffected at other concentrations. After treatments, the exosomes were isolated from the condition media. 
Purified exosomes were characterized and quantified using transmission electron microscope (TEM) and nanoparticle tracking 
analysis (NTA). By NTA, there was a significant decrease in particles/mL after cocaine treatment. There was a 39.5%, 58.1%, 
32.3% and 28.1% decrease in particles/mL at 100 nM, 1 μM, 10 μM and 100 μM cocaine, respectively. The characterization 
of exosomes and exosomal protein was performed by western/dot blot analyses. Tetraspanins CD11b, CD18 and CD63 were 
relatively unchanged after cocaine treatment. The heat shock proteins (Hsps), Hsp70 and Hsp90, were both significantly 
increased at 10 μM and 100 μM, but only hsp70 was significantly increased at 10 nM. The Rab proteins were assessed to 
investigate their role in cocaine-mediated exosomal decrease. Rab11 was significantly decreased at 10 nM, 100 nM, 1 μM, 
10 μM and 100 μM by 15%, 28%, 25%, 38% and 22%, respectively. Rab27 was decreased at all concentrations but only 
significantly decreased at 100 nM, 1 μM and 100 μM cocaine by 21%, 24% and 23%, respectively. Rab35 had no significant 
changes noted when compared to control. Rab7 increased at all cocaine concentrations but only a significant increase in 
expression at 100 nM and 10 μM by 1.32-fold and 1.4-fold increase. Cocaine was found to alter exosome biogenesis and 
composition in BV2 microglial cells. Western and dot blot analyses verified the identities of purified exosomes, and the 
specific protein compositions of exosomes were found to change in the presence of cocaine. Furthermore, cocaine exposure 
modulated the expression of exosomal proteins, such as Hsps and Rab GTPases, suggesting the protein composition and 
formation of microglial-derived exosomes were regulated by cocaine.
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Introduction

Microglia are considered to be the most potent immune cells 
in the central nervous system (CNS) [1]. Microglia are acti-
vated during stress, inflammation, infections, and conditions 
that result in cellular damage, leading to the phagocytosis of 
damaged cells and the secretion of various cytokines [1–3]. 
Microglia survey and monitor the brain for harmful sub-
stances and pathogenic agents such as bacteria [1–3]. Upon 
activation, these cells transform from a ‘resting state’ to an 
‘active state’ [3], during which microglia undergo changes 
in mobility and cellular morphology. Glial cell activation 
leads to the expression of specific receptors on their surfaces 
[4, 5]. In the ‘active state’, microglial cells release cytokines 
and demonstrate enhanced phagocytic functions [4, 5]. 
Microglia, like other cells, utilize exosomes for intercellular 
communications [6–8]. It is unclear if exosome biogenesis 
changes when microglia are activated.

Exosomes are unique structures that contain multiple pro-
teins, lipids, microRNA, and RNA molecules [6–15]. They 
are usually 30–150 nm in diameter and express specific 
proteins such as alix, tetraspanins, integrins, Tsg101, heat 
shock proteins (Hsps), and Rab GTPases [6–15]. Exosomal 
membranes are enriched in specific lipid compounds, such 
as sphingomyelin, phosphatidylserine, phosphocholine, and 
cholesterol [12–20]. Exosomes have also demonstrated the 
ability to regulate cell waste by acting as cargo vessels [21]. 
Exosomes originate from multivesicular bodies (MVBs), 
through the inward budding of endosomal membranes, and 
are released when MVBs fuse with the plasma membrane. 
All body fluids (such as breastmilk, urine, blood, and plasma) 
have been shown to contain exosomes; however, their specific 
roles in different parts of the body remain unclear.

The regulation of exosome secretion by microglial cells is 
not well-understood; however, some studies have suggested 
that cytokines are involved in the regulation of exosome 
secretion and formation. Drugs of abuse, such as cocaine, 
have been shown to cross the blood–brain barrier and be a 
potent activator of microglia [22]. Several studies have dem-
onstrated that F-actin is disrupted in endothelial cells and a 
concomitant decrease in expression of tight junction proteins 
leading to weakening of the blood–brain barrier [23–26]. 
Cocaine is one of the most used illicit drugs in the United 
States. Cocaine abuse results in a variety of CNS disorders, 
including an increased risk of stroke, seizures, cognitive 
impairment, depression, and, in extreme cases, death [27, 28]. 
Studies have demonstrated that cocaine administration can 
enhance the expression of cytokines/chemokines and adhesion 
molecules, through the binding of cocaine with its cognate 

receptor, which are expressed on a variety of cells [22, 29, 30], 
and these changes could result in altered exosomal production.

Studies have demonstrated cocaine-specific effects on 
microglial activation such as the release of brain-derived 
neurotrophic factor, other growth factors, and associated 
regulation of microRNA [22, 29, 30]; however, the effects 
of cocaine on exosome biogenesis and composition have 
not been studied. Therefore, in the present investigation, 
we aimed to test the effects of cocaine on the biogenesis 
and composition of BV2 microglial-derived exosomes. This 
investigation is the first of its sort and could help improve 
our comprehension of exosomal biology.

Materials and Methods

Cell Culture and Cocaine Exposure

Microglial (BV2) cells were grown in complete medium 
(Roswell Memorial Park Institute-1640 (RPMI-1640) 
medium (Fisher Scientific, Hampton, NH, USA), supple-
mented with 10% fetal bovine serum (FBS), containing 
1X L-glutamine, 1% penicillin/streptomycin, and 0.05% 
Amphotericin-B (Fisher Scientific, Hampton, NH, USA), 
at 37 °C, in a 5%  CO2 atmosphere. These cells were a gen-
erous gift from Dr. Harald Neumann at the University of 
Bonn LIFE and Brain Center in Bonn, Germany [31]. BV2 
microglial cells were plated at a density of 2 × 106 cells/
dish and allowed to acclimatized overnight before cocaine 
(Sigma, St. Louis, MO, USA) treatments. The medium from 
each dish was removed and replaced with either exosome-
free RPMI-1640 media only (control treatment) or exosome-
free RPMI-1640 media containing 10 nM, 100 nM, 1 μM, 
10 μM, or 100 μM cocaine for 24 h. All experiments were 
performed using 3–5 independent experiments.

Trypan Blue Exclusion

To test cell viability, the trypan blue exclusion method was 
utilized. BV2 cells were harvested and centrifuged at 500 
revolutions per min (rpm), for 5 min, at 4 ºC. The superna-
tant was discarded, the cell pellet was resuspended in 1 mL 
complete medium, and 10 µL resuspended pellet was mixed 
with 10 µL trypan blue dye (Fisher Scientific, Hampton, NH, 
USA). After gentle mixing, 10 µL of the cells mixed with 
trypan blue were loaded into a hemocytometer to perform 
a live/dead cell count. The resulting values were plotted on 
a graph to examine differences in the numbers of live and 
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dead cells among the treatment groups. Viable cells were 
calculated using the following formula:

Microscopic Examination

To assess the cell morphology, microglial cells were exposed 
to 10 nM, 100 nM, 1 μM, 10 μM, and 100 μM cocaine for 
24 h. After 24 h, the morphologies of the microglial cells 
were examined at ×10 magnification using an Invitrogen 
EVOS ™ FL system ™ (ThermoFisher Scientific, Waltham, 
MA, USA).

Ultracentrifugation

To isolate and purify exosomes from cocaine-treated micro-
glia, the media was carefully collected and centrifuged at 
1300 rpm at 4 °C for 10 min, using a Sorvall 6000 refriger-
ated centrifuge (Sorvall. Ontario, Canada). The pellet was 
discarded, and the supernatant was centrifuged again at 
39,000 rpm, at 4 °C for 10 min, and the resulting superna-
tant was filtered through a 0.22 μM filter and collected in 
ultracentrifuge tubes. The samples were then centrifuged 
at 10,800 rpm at 4 °C for 45 min, in an SW41T1 swing-
ing bucket rotor, using a Beckmann Coulter Optima L-70 K 
Ultracentrifuge Beckman Counter, IN, USA. The exosome 
fraction was collected by the ultracentrifugation of the 
resulting supernatant at 32,000 rpm, in an SW41T1 swing-
ing bucket rotor, for 70 min at 4 °C. The total protein levels 
in the exosome fraction were quantified using the Lowry 
protein quantification method.

Transmission Electron Microscopy (TEM)

Exosomes were produced by incubating BV2 cells in exo-
some depleted-medium containing 10 nM, 100 nM, 1 μM, 
10 μM, or 100 μM of cocaine and without cocaine (con-
trol) for 24 h. Freshly isolated BV2-derived exosomes were 
resuspended in PBS and diluted in 1:1 with 5% glutaral-
dehyde. Before loading sample on the EM-grids, carbon 
film coated mesh copper EM-grid were glow discharge at 
50 mA for 20 s; thereafter, 7 µL exosomes suspension solu-
tion was loaded on the grid and incubated for 1 min at RT. 
Wick excess with a torn edge of a Whatman filter paper 
by wicking from below the grid was done in order to pull 
the sample towards the grid rather than away from it. Sam-
ples were immediately stained with 7 µL of filtered Uranyl 
acetate (UA) solution on the surface of the EM-grid. After 
15 s excess UA solution was removed and samples were 
observed under transmission electron microscope (TEM) 

Viable cells = [1.00− (Number of blue cells ÷ Number of total cells)] × 100.

Tecnai 120 kV (FEI, Hillsboro, OR) at 80 kV within 24 h 
as compared to the negatively stained grids. Digital images 

were captured with a BioSprint 29 CCD Camera (AMT, 
Woburn, MA).

Nanoparticle Tracking Analysis

To assess the sizes and numbers of exosome particles per 
mL solution, nanoparticle tracking analysis (NTA) was per-
formed, using a NanoSight-LM10 (Malvern Instrument, Inc., 
Malvern, UK). The samples were diluted in 1 × phosphate 
buffer saline (PBS) and loaded into a 0.3 mL disposable 
syringe. The NTA analyzes samples based on the principle 
of Brownian particle movement. The mean values for five 
independent experiments were recorded and processed for 
each reading frame.

Western and Dot Blot Analysis

To examine the expression of tetraspanin, adhesion mol-
ecules, Hsps, and Rab GTPases, western and dot blot analy-
ses were performed, using 60 µg/well for western blot and 
5 µg total protein per dot, after boiling at 99 °C for 5 min. 
Proteins were transferred onto PVDF membranes at 15 V 
for 1 h and for dot blot membranes were allowed to dry 
for 5–10 min, then blocked with Pierce Fast Blocker, con-
taining 0.09% Tween-20 for 5–15 min at room temperature 
(RT) on a shaker. Then, membranes were hybridized with 
the following primary antibodies against tetraspanin and 
membrane molecules, for 1 h, at RT: Cluster of differentia-
tion (CD)11b (0.1 µg/mL), CD18 (1:500), CD63 (0.5 µg/
mL), Calnexin (1:5000), Hsp70 (1:1,000), Hsp90 (1:1000), 
Rab7 (1 µg/mL), Rab11, (0.5 µg/mL), Rab27A (0.5 µg/mL), 
and Rab35 (1:750) (all from Fisher Scientific, Hampton, 
NH, USA). Membranes were washed with 1 × Tris-buffer-
saline (TBS) buffer, containing 0.09% Tween-20 (TBST-
20), for 3x-10 min each wash. The appropriate horserad-
ish peroxidase-conjugated secondary antibodies (Fisher 
Scientific, Hampton, NH, USA), goat anti-rabbit (1:1000), 
goat anti-mouse (11,000), or goat anti-hamster (1:5000), 
were incubated with the membranes in 1–2% non-fat milk 
solution in TBST-20 buffer for 1 h at RT. Membranes were 
washed three times with TBST-20, for 10 min per wash, 
and developed using an Invitrogen Novex ECL chemilu-
minescence liquid substrate kit (ThermoFisher Scientific, 
Waltham, MA, USA). The signals were detected on X-ray 
and a Bio-Rad ChemiDoc  XRS+ system (BioRad, Hercules, 
CA, USA).
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Lipid Assay

Total lipid, total cholesterol, phospholipid, sphingolipid, 
phosphatidylcholine (Cell BioLabs, Inc., San Diego, CA, 
USA), and phosphatidylserine (BioVision, Milpitas, CA, 
USA) and levels were determined in the exosome fractions 
using a fluorometric assay. For each assay, 30 µg isolated 
exosome fraction from control or cocaine-treated samples 
was added to each well, in duplicate, using n = 3–5 of stand-
ard, lipid cholesterol, phospholipid, sphingolipid, phosphati-
dylserine, and phosphatidylcholine. To each well, 100 µL of 
the reaction reagent was added, and the well contents were 
mixed thoroughly. The plates were covered, protected from 
light, and incubated for 45–60 min at 37 °C, then read with 
a fluorescence microplate reader equipped for excitations in 
the 530–570 nm range and for emissions in the 590–600 nm 
range.

Total lipid component =

[

sample corrected fluorescence

slope

]

sample dilution

Statistical Analysis

Statistical analyses were performed using one-way analy-
sis of variance (ANOVA) with Tukey post hoc analysis. 
Statistical significance is indicated by the mean ± SD as 
follows: p < 0.05 (*); p < 0.01 (**); p < 0.001 (***); and 
p < 0.0001(****).

Results

Cocaine Exposure Reduced BV2 Cell Viability

To test the direct effects of cocaine on cellular viability, cells 
were treated with cocaine (10 nM, 100 nM, 1 µM, 10 µM, 
and 100 µM) and then assessed for cell morphology, under 
an inverted light microscope, and cell viability, using a 
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Fig. 1  Cocaine-specific effects on BV2 microglial cell viability and 
the mean size and number of particles. BV2 microglial cells were 
treated with 10  nM, 100  nM, 1  µM, 10  µM, and 100  µM cocaine. 
Cells were grown in exosome-free medium and the cocaine was 
added for a maximum of 24  h. a Microscopy, b cell viability, c 

TEM, d mean particle size and e particle/mL. Mean size is shown 
in nanometers, and particle numbers are shown as  108 per mL. Sta-
tistical significance is taken from 3 to 5 independent experiment 
in triplicates and indicated the mean of SD as follows: *p < 0.05; 
**p < 0.001; and ***p < 0.0001
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trypan blue exclusion method, as previously described 
[32–34]. Our findings demonstrated that control cells 
(Fig. 1a) showed robust growth, as indicated by the cell cul-
ture surface at 24 h, whereas exposure to 100 µM cocaine 
caused morphological alterations, resulting in a more com-
plete rounding of the cells (Fig. 1a). To further validate these 
findings, BV2 cell viability was assessed using the trypan 
blue exclusion method 24 h after cocaine was added, which 
was the duration of the experiment. Our findings suggested 
that cells treated with 100 µM cocaine showed reduced cell 
viability by 11% when compared with control cells and other 
experimental groups, such as the 10 nM, 100 nM, 1 µM, and 
10 µM cocaine treatment groups (* p < 0.05 and ** p < 0.01) 
(Fig. 1b). These findings suggested that BV2 cell viability 
was affected at the highest cocaine concentration examined 
in this study (Fig. 1a and b; all individual data points can be 
observed in supplemental Figs. 1–5).

Effects of Cocaine on Exosome Characteristics

Previous studies have demonstrated that almost all cell types, 
including bacteria, produce nanosized vesicles known as 
exosomes [35, 36]. Exosomes play important roles in cell-
to-cell communication and signaling and can act as cargo 
vesicles, and altering these functions could have critical 
implications for cells. Therefore, we tested the effects of 
cocaine treatments on the mean size and particle numbers 
of exosomes per mL. BV2 cell-derived exosomes were puri-
fied, using ultracentrifugation, and the purified exosomes 
were evaluated for size using TEM and NTA (Fig. 1c and 
d), and the number of exosome particles per mL was also 
determined by NTA (Fig. 1e). Our findings suggested that 
the mean size was not affected by cocaine administration. 
Control mean size (164.83 ± 24.93 nm) was compared to 
100 nM (138.37 ± 40.70 nm), 1 μM (174.64 ± 7.19 nm), 
10 μM (163.74 ± 4.15 nm) and 100 μM (165.04 ± 1.77 nm) 
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Fig. 2  Cocaine-specific effects on cell membrane molecules. BV2 
microglial cells were treated with cocaine (10  nM, 100  nM, 1  µM, 
10 µM, and 100 µM) for 24 h, and the expression of cell membrane 
molecules in exosomes was determined using western and dot blot 
analysis. a representative western blots; (i) CD11b, (ii) CD63, (iii) 

Rab7 and (iv) Calnexin, b CD11b expression, c CD18 expression and 
d CD63 expression. Statistical significance is taken from 5 independ-
ent experiment in triplicates and indicated the mean of SD as follows: 
*p < 0.05; and **p < 0.001
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and no significant changes noted. However, the particle 
numbers per mL were significantly reduced after treat-
ment comparing control (5.20 ± 0.35*108 particles/mL) by 
39.5% at 100 nM (3.23 ± 0.53*108 particles/mL), by 58.1% 
at 1 µM (2.18 ± 1.08*108 particles/mL), by 32.3% at 10 µM 
(3.52 ± 0.95*108 particles/mL) and by 28.1% at 100 μM 
(3.75 ± 1.05*108 particles/mL) of cocaine (Fig. 1e). Treat-
ment with 100 µM cocaine did not result in a significant 
difference compared with the control (Fig. 1e).

Cocaine‑Specific Effects on Cell Membrane Proteins 
in Exosomes

The cell membrane is composed of several types of proteins, 
which act as a barrier and a communication platform, con-
necting the outside world to the intracellular control cent-
ers. Clusters of differentiation proteins, such as CD63 and 
CD81, are tetraspanin molecules that interact with a variety 
of cell surface proteins and intracellular molecules, induc-
ing processes that include adhesion, motility, membrane 
organization, and signal transduction [37–41]. The trans-
membrane proteins CD11b (a surface marker for microglia, 
monocytes, and macrophages) and CD18 play critical roles 
in cellular adhesion [42]. Calnexin protein should only be in 
the cell but not in the exosomes. To examine the expression 
of these proteins following cocaine treatment, western/dot 
blot analyses of exosomal protein was performed. As it was 
shown in a representative Fig. 2a(i) expression of CD11b, 
2A (ii) expression of CD63, 2A (iii) expression of Rab7, 
and 2A(iv) expression of Calnexin. We found that CD11b 
(Fig. 2b), CD18 (Fig. 2c), and CD63 (Fig. 2d) showed 
slightly decreased expression in exosomes after cocaine 
treatment; however, these changes were not significant when 

compared with the control. Furthermore, BV2 cell-derived 
exosomes showed low expression of CD81 (data not shown).

Cocaine‑Specific Effects on Hsp Expression 
in Exosomes

Hsps, or stress proteins, are members of a highly conserved 
group of proteins found in all eukaryotes and prokaryotes, 
including bacteria. They act as molecular chaperones, 
assisting the proper folding/refolding of newly synthesized 
proteins [43, 44]. In addition, they play cytoprotective 
roles under stress and trauma conditions, and their expres-
sion levels increase many-fold when cells are exposed to 
drugs, heavy metals, and heat [43, 44]. HSPs can be found 
in exosomes; therefore, in the current investigation, the 
expression of Hsp70 and Hsp90 were evaluated using dot 
blot analysis. Our results indicated that exosomal Hsp70 
expression were significantly increased after treatment 
with 100 nM (1.11 fold increase, p ≤ 0.05), 10 µM (1.19 
fold increase, p ≤ 0.0001), and 100 µM (1.16 fold increase, 
p ≤ 0.05) cocaine compared with control (Fig. 3A), whereas 
Hsp90 (Fig. 3B) showed statistically significant increases in 
its expression after treatment with 10 µM (1.17 fold increase, 
p ≤ 0.0001) and 100 µM (1.22 fold increase, p ≤ 0.0001) 
cocaine when compared with the control (Fig. 3A and B), 
suggesting that Hsps are regulated by cocaine administration.

Cocaine Modulates Rab GTPases in Exosomes

In this study, we showed that cocaine exposure altered 
the number of exosome particles per mL. To test whether 
this reduction in exosomal numbers was associated with 
Rab GTPases, we examined the expression levels of Rab7, 
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Fig. 3  Cocaine-specific effects on Hsps in BV2 cells and exosomes. 
BV2 microglial cells were treated with cocaine (10  nM, 100  nM, 
1 µM, 10 µM, and 100 µM) for 24 h, and the expression levels of was 
evaluated in in exosomes. a Hsp70 and b Hsp90 densities derived 

from dot blot. Statistical significance derived from 5 independ-
ent experiment in triplicates is indicated the mean of SD as follows: 
*p < 0.05; **p < 0.001; and ***p < 0.0001
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Rab11, Rab27A, and Rab35 in BV2 cells and exosomes. 
Rab proteins belong to the Ras superfamily of small Rab 
GTPases [45]. Rab5 and Rab7 are present in the plasma 
membrane and early endosomes, and regulate vesicular traf-
ficking during early endocytosis, whereas Rab11, Rab27A, 
and Rab35 are associated with protein sorting, secretion, 
and targeting [45–47]. Therefore, Rab proteins represent 
significant components of exosome biogenesis, sorting, and 
secretion machinery. Our experimental findings showed that 
Rab7 expression in exosomes increased after exposure to 
100 nM (1.32 fold increase, p ≤ 0.001), and 10 µM (1.40 
fold increase, p ≤ 0.001) cocaine compared with those in the 
control (Fig. 4a). Furthermore, Rab11 expression was down-
regulated significantly in exosomes after exposure to 10 nM 
(15% decrease, p ≤ 0.05), 100 nM (28% decrease, p ≤ 0.001), 
1 μM (25% decrease, p ≤ 0.0001), 10 μM (38% decrease, 

p ≤ 0.0001) and 100 μM (22% decrease, p ≤ 0.0001) cocaine 
(Fig. 4b), Rab27A expression was significantly downregu-
lated in exosomes after exposure to 100 nM (21% decrease, 
p ≤ 0.05), 1 µM (24% decrease, p ≤ 0.001) and 100 µM (23% 
decrease, p ≤ 0.001) cocaine (Fig. 4c), and Rab35 expression 
had a slight increase at 10 nM and 100 nM and then a declin-
ing trend which was not statistically significant (Fig. 4d). 
This data suggests that Rab proteins may have a role in the 
reduction of exosome particles per mL.

Effects of Cocaine on the Lipid Components 
of Exosomes

Lipids are a diverse group of molecules that consist of mono-
glycerides, diglycerides, triglycerides, fats, sterols, and oth-
ers. Lipids not only play important roles in the maintenance 

Contro
l

10
 nM

10
0 n

M
1 µ

M
10

 µM

10
0 µ

M
0

5×105

1×106

1.5×106

Rab-27A

**
**
*

R
el

at
iv

e 
D

en
si

ty
 (I

N
T/

m
m

2)

Contro
l

10
 nM

10
0 n

M
1 µ

M
10

 µM

10
0 µ

M
0

5×105

1×106

1.5×106

2×106

Rab-11

***
***
***
**
*

*

R
el

at
iv

e 
D

en
si

ty
 (I

N
T/

m
m

2)

Contro
l

10
 nM

10
0 n

M
1 µ

M
10

 µM

10
0 µ

M
0

5×105

1×106

1.5×106

Rab-35

*

*

R
el

at
iv

e 
D

en
si

ty
 (I

N
T/

m
m

2)

D

A

Contro
l

10
 nM

10
0 n

M
1 µ

M
10

 µM

10
0 µ

M
0

5×103

1×104

1.5×104

RAB-7
R

el
at

iv
e 

D
en

si
ty

 (I
N

T/
m

m
2)

**
**

B

C

Fig. 4  Cocaine-specific effects on Rab GTPases. To examine the 
expression of Rab GTPases in microglial cells, cells were incubated 
with 10 nM, 100 nM, 1 µM, 10 µM, and 100 µM cocaine for 24 h, 
and Rab protein expression levels were evaluated in BV2 cells and 
exosomes using dot blot analysis. a Rab7, b Rab11, c Rab27A and 

d Rab35 expression in BV2 cell-derived exosomes. Statistical sig-
nificance derived from 5 independent experiment in triplicates is 
indicated the mean of SD as follows: *p < 0.05; **p < 0.001; and 
***p < 0.0001
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of cellular homeostasis and membrane integrity but also play 
significant roles in cellular communications, signaling, and 
apoptosis. To examine the distribution of lipids in exosomes, 
we performed fluorometric assays. Our data indicated that 

the expression levels of total lipids, phosphatidylcholine, 
phosphatidylserine, phospholipids, phosphatidylserine, 
sphingomyelin, and cholesterol were not significantly altered 
by exposure to cocaine (Fig. 5a–f).
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Fig. 5  Effects of cocaine on exosomal lipids. To examine the expres-
sion of various important lipids in exosomes, cells were exposed to 
various concentrations of cocaine for 24  h, and lipid components 
were tested in exosomes. a total lipids, b total cholesterol, c phospho-

lipids, d phosphatidylserine, e phosphatidylcholine and f sphingo-
myelin were determined in exosomes by ELISA-based fluorometric 
assays. Graph showed the mean of SD derived from 5 independent 
experiment in triplicates
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Discussion

Cocaine has been found to be associated with a variety of 
CNS disorders, such as the increased risk of stroke, seizures, 
cognitive impairments, depression, and, in extreme cases, 
death [48–50]. One plausible explanation for the many 
effects that cocaine has on the CNS may be the interruption 
of cell-to-cell communications and cell signaling, including 
those that involve microglial cells. Microglial cells are the 
most potent resident immune cells of the CNS and play a 
critical role in the surveillance of the brain environment [49, 
51]. Although other studies have demonstrated that cocaine 
plays a role during endoplasmic reticulum stress, neuro-
inflammation, and Toll-like receptor-signaling, whether 
cocaine affects exosome biogenesis and composition has not 
been addressed until the current study. In previous studies, 
we examined the effects of another drug of abuse, alcohol, 
on exosome composition, and characteristics. Alcohol was 
found to have differential effects on the expression of several 
proteins in microglial cells [35], suggesting that other drugs 
of abuse could also affect microglial protein expression.

In the present investigation, we evaluated the cocaine-
specific effects on the biogenesis and composition of BV2 
microglial cell-derived exosomes. Exosomes are nanosized 
vesicles that originate from the fusion of MVBs with the 
plasma membrane and are composed of proteins, lipids, 
mRNAs, and miRNAs. Exosomes play crucial roles in cel-
lular communications, signaling, and the transportation of 
various molecules [52–55]. Recent research has addressed 
the roles played by exosomes in CNS-associated disorders 
(neurodegenerative, neurodevelopmental, and neuroinflam-
matory disorders) and immune regulation, and their roles 
as therapeutic vesicles [56–61]; however, whether cocaine-
mediated alterations occur in exosomes (in the contexts of 
biogenesis and composition) is not yet understood. A study 
by Carone et. al, evaluated the effect of cocaine on tun-
neling nanotube formation and extracellular vesicle release 
in glioblastoma cell cultures [62]. This study used a range of 
cocaine concentrations to evaluate the effects of cocaine on 
tunneling nanotube formation and exosomes produced from 
glioblastoma cells. Our study herein, used a similar range of 
concentrations and time points that overlap this study. Our 
findings suggested that exposure for 24 h to 100 µM cocaine 
significantly reduced the cell viability of BV2 microglial 
cells when compared with the control (Fig. 1a and b). Our 
findings also revealed that the mean size of exosomes after 
cocaine exposure remained unchanged (Fig. 1c and d), 
whereas the production of exosomes (particles per mL) was 
markedly reduced after exposure to 100 nM–10 µM cocaine 
compared with the control (Fig. 1d).

Cell membrane proteins, such as CD63 and CD81, which 
are tetraspanin molecules, interact with a variety of cell 

surface markers and intracellular molecules and are involved 
in adhesion, motility, membrane organization, and signal 
transduction [35, 63]. Moreover, CD11b (a surface marker 
for microglia, monocytes, and macrophages) and CD18 are 
transmembrane proteins that play critical roles in cellular 
adhesion [64]. In this study, we showed that the expression 
of CD11b and CD18 were significantly upregulated in BV2 
cells after exposure to 100 µM cocaine (data not shown). 
These findings are in agreement with previous research 
that showed the increased expression of CD11b following 
nitric oxide exposure was associated with the activation of 
microglial cells during neurodegenerative inflammation 
[65]. A recent report has shown that disease-associated 
microglia express high levels of CD63, CD9, itgax, and Axl 
[66]. However, we found that CD63 did not demonstrate 
significant changes following cocaine exposure (Fig. 2). A 
significant downregulation was observed for CD81 expres-
sion after exposure to 100 nm, 1 µM, 10 µM, and 100 µM 
cocaine when compared with the control (data not shown). 
Furthermore, CD11b (Fig. 2b), CD18 (Fig. 2c), and CD63 
(Fig. 2d) showed a slightly decreasing pattern of expres-
sion in exosomes, but these changes were not significant. 
CD81 was less expressed in microglial-derived exosomes 
(data not shown). These findings agreed with the previous 
studies and suggested that cocaine can impact the composi-
tion of exosomes.

Hsps are an evolutionarily conserved group of molecular 
chaperone proteins found in eukaryotes and prokaryotes and 
demonstrate protective functions under stress and trauma 
conditions, based on the upregulation of their expression 
levels under these conditions [67, 68]. Levandowski et al, in 
2016, showed that cocaine addiction exerted stress during 
early life and accelerated the cellular aging process among 
women [69]. Our findings demonstrated that the expression 
levels of Hsp70 (Fig. 3a) and Hsp90 (Fig. 3b) have upregu-
lated in BV2 cell-derived exosomes, suggesting that cocaine 
exerts stress on BV2 cells, which can further modulate exo-
some biogenesis and composition.

Rab proteins are well-known members of the Ras super-
family of small Rab GTPases, which play important roles 
during exosome biogenesis and secretion [46, 70]. Rab5 
and Rab7 can be found in the plasma membrane and early 
endosomes and are associated with controlled trafficking, 
whereas Rab11, Rab27A, and Rab35 contribute to the sort-
ing, secretion, and transportation of exosomes. Previous 
reports have indicated that Rab5 regulates the early endo-
cytic pathway, can be found on clathrin-coated vesicles, and 
regulates endosomal trafficking [45, 47]. Rab7 is an impor-
tant regulatory component of the endosome-to-lysosome 
pathway [47]; however, the present findings suggested that 
Rab7 expression was upregulated in exosomes after cocaine 
exposure (Fig. 4a), suggesting that it may be involved in 
directing exosomes toward the lysosomal degradation 
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pathway, resulting in a decrease in the number of particles 
per mL. Each Rab protein has a specific subcellular localiza-
tion and a different function; however, only Rab11, Rab27, 
and Rab35 are known to regulate exosome release/secretion 
[71]. We showed that Rab11 (Fig. 4b) and Rab27 (Fig. 4c) 
expression in exosomes were significantly suppressed com-
pared with their respective controls (Fig. 4). These findings 
suggested that the downregulation of Rab protein expression 
might be associated with reduced exosome release into the 
extracellular environment; therefore, the observed decrease 
in exosome particles per mL can be correlated with the cur-
rent findings (Fig. 1e). Since Rab proteins are implemented 
in multiple aspects of disease progression, they might rep-
resent new therapeutic targets in controlling disease pro-
gression [72]. Although Rab-specific drugs have not been 
available for public use, it is important to add findings that 
exposure to cocaine may regulate Rab proteins. Rab-specific 
modulation has already been reviewed by Qin et al. demon-
strated the use of nucleotide based competitive inhibitors 
that target kinases, blocking protein–protein interactions, 
and small interfering RNA such as siRNA and miRNA [73].

Lipids are the most important components of the plasma 
membrane and play important roles in cellular homeosta-
sis, membrane integrity, cellular communications, signal-
ing, and apoptosis. Studies have demonstrated that exosomes 
are enriched in lipids compared with their parent cells, and 
we hypothesized that drugs of abuse, such as cocaine, may 
affect the lipid composition of exosomes [74–76]; how-
ever, our results indicated that the expression levels of total 
lipids, phosphatidylcholine, phosphatidylserine, phospho-
lipids, phosphatidylserine, sphingomyelin, and cholesterol 
remained unchanged during exosome production and secre-
tion after cocaine exposure (Fig. 5). One caveat to our find-
ings may be the limited range of sensitivity of our detection 
system. Further lipid analysis might be warranted with an 
assay that has a greater sensitivity (i.e. gas chromatography-
mass spectrometry).

The strength of this study is that it adds to the body of 
literature concerning the effect of cocaine on exosome pro-
duction in microglial cells. To our knowledge this is the 
first study of its kind to evaluate measures such as micro-
glia cell viability after cocaine treatment, exosome size, 
exosome quantity, and composition (i.e. protein and lipid 
quantity/ profile). Although, one limitation of our work is 
that our work cannot be compared directly to Carone et al. 
[62], because the experimental design differs. However, 
some of our findings concerning the effects of cocaine on 
total exosomes numbers after time show opposite results 
on Carone’s study, indicated that the effect of cocaine and 
exosome regulation may be cell-type specific. In our study, 
we focused on the effect of cocaine on proteins and lipids 
directly and did not look at the effect of microRNA. Cocaine 

could plausibly effect microRNA content and will be the 
focus of future work.

Conclusions

In summary, our findings provide insight into cocaine-
specific effects on BV2 cell-derived exosome biogenesis 
and composition. In brief, our findings demonstrated that 
high concentrations of cocaine exposure reduced the cell 
survival of microglial BV2 cells and disturbed exosome 
biogenesis and composition by modulating the expression 
levels of Rab GTPases and membrane proteins, such as CD 
molecules, Hsps, and signaling molecules; however, the lipid 
components in exosomes remained unchanged after cocaine 
exposure. Specifically, increasing Rab7 expression could 
lead to increase clearance of exosomes via lysosomes and a 
concomitant decrease in exosome production by regulating 
Rab11 and Rab27. Therefore, our findings suggested that 
cocaine can have dramatic effects on exosome biogenesis 
and composition; however, further investigation is warranted 
to explore the specific underlying mechanism(s).
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