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Abstract
Extremely reduced oxygen (O2) levels are detrimental to myogenic differentiation and multinucleated myotube
formation, and chronic exposure to high-altitude hypoxia has been reported to be an important factor in skeletal
muscle atrophy. However, how chronic hypoxia causes muscle dysfunction remains unknown. In the present study, we
found that severe hypoxia (1% O2) significantly inhibited the function of C2C12 cells (from a myoblast cell line).
Importantly, the impairment was continuously manifested even during culture under normoxic conditions for several
passages. Mechanistically, we revealed that histone deacetylases 9 (HDAC9), a member of the histone deacetylase
family, was significantly increased in C2C12 cells under hypoxic conditions, thereby inhibiting intracellular autophagy
levels by directly binding to the promoter regions of Atg7, Beclin1, and LC3. This phenomenon resulted in the
sequential dephosphorylation of GSK3β and inactivation of the canonical Wnt pathway, impairing the function of the
C2C12 cells. Taken together, our results suggest that hypoxia-induced myoblast dysfunction is due to aberrant
epigenetic regulation of autophagy, and our experimental evidence reveals the possible molecular pathogenesis
responsible for some muscle diseases caused by chronic hypoxia and suggests a potential therapeutic option.

Introduction
Chronic high-altitude hypoxia contributes to the muscle

atrophy observed in patients with pathologies associated
with a hypoxic microenvironment, such as chronic
obstructive pulmonary disease (COPD) and arterio-
sclerosis obliterans1. Some studies have reported that the
hypoxia-induced inhibitory effect on muscle regeneration
is a temporary and reversible process2, which seems to
delay myogenic differentiation. By contrast, some studies
have suggested that impaired regeneration under chronic

hypoxia has long-lasting effects that may not be suffi-
ciently reversed and results in muscle mass loss3,4; how-
ever, the underlying mechanism remains unclear.
Myogenesis is an essential step for muscle regeneration.

In addition, myoblasts are required for this process
because, by successfully differentiating and fusing with
each other, they regenerate the characteristic multi-
nucleated myofibers; they also play an important role in
maintaining muscle structure and mass5. Some studies
have shown that 1% O2 represses the myogenic differ-
entiation of C2C12 (from a myoblast cell line)2,6, whereas
a 3–6% O2 level can promote myogenesis7. Previous
studies have reported that severe hypoxia negatively reg-
ulates myogenic differentiation by inhibiting MyoD or
Myogenin in myoblasts in a manner that is dependent on3

or independent of6,8 hypoxia-inducible factor (HIF1α), a
major contributor to the response to hypoxia signaling.
Some studies have noted that myoblast differentiation is a
reversible injury caused by hypoxia because myoblasts
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retain their capacity to proliferate or differentiate when
normal oxygen levels are restored2. By contrast, other
researchers believe that the effect of chronic hypoxia on
muscle is perennial3,4. Furthermore, our laboratory pre-
viously confirmed that microenvironment-induced func-
tional impairments can be transmitted to daughter cells in
an epigenetically regulated manner9. However, the effects
of chronic hypoxia on the functional alterations of myo-
blasts and the intrinsic underlying mechanism of its
effects have been largely unexplored.
Acetylation of lysine residues on histones is a key pro-

cess of the epigenetic regulation of DNA transcription10.
The acetylation levels of lysine residues on histones are
controlled by lysine acetyltransferases (KATs)/histone
acetyltransferases (HATs) and histone deacetylases
(HDACs). In the past several years, some studies have
shown that HDACs respond to long-term hypoxia-
induced gene transcriptional regulation11, adipocyte dys-
function12, and disease development13,14. Importantly, it
has been demonstrated that histone deacetylase is
involved in muscle-specific genes and in the regulation of
muscle differentiation15,16. Therefore, we hypothesized
that hypoxia might induce persistent changes in myo-
blasts via epigenetic regulation that causes subsequent
muscle dysfunction.
In this study, we demonstrated that a high-altitude

hypoxic microenvironment impaired the function of
C2C12 in an epigenetically regulated manner. Mechan-
istically, we revealed that HDAC9 was significantly
increased in the C2C12 due to hypoxia, thereby inhibiting
intracellular autophagy by binding directly to the pro-
moter regions of Atg7, Beclin1, and LC3. Decreased
autophagy resulted in dephosphorylation of GSK3β and
subsequent inactivation of the canonical Wnt pathway,
impairing the myogenesis in the C2C12.

Results
Hypoxia inhibits the properties of C2C12 cells
To investigate the properties of the C2C12, myogenesis

induction was performed. The C2C12 successfully formed
myotubes and showed elevated expression of MyoG and
MyoD (Supplementary Fig. 1), as indicated by qRT-PCR
and western blotting. To investigate the effect of hypoxia
on the function of myoblasts, the C2C12 cells were
exposed to hypoxia (1% O2) or were maintained under
standard conditions (21% O2). The morphology of the
C2C12 was mostly unaltered under the hypoxic micro-
environment; however, the number of granules was
increased in the cytoplasm, and the nucleus was obviously
visible (Fig. 1a). The viability and proliferation of the
C2C12 were significantly reduced in the hypoxia group
compared with the control groups, as shown by MTT and
Edu analyses (Fig. 1b, c), indicating that although hypoxia
promoted the viability of the C2C12 initially, the

proliferation capacity was ultimately reduced after 7 days
of exposure to hypoxia. Moreover, the number of apop-
totic C2C12 was increased in the hypoxia group, as
determined by flow cytometry (Fig. 1d).
We next examined the myogenesis of the C2C12 under

normoxic and hypoxic conditions. The C2C12 cultured
under hypoxic conditions for 7 days manifested severe
inhibition of myogenesis, as indicated by reduced immu-
nostaining and decreased expression of MyoG and MyoD
(Fig. 1e, f), a finding consistent with previous reports2,17.
Collectively, our results indicate that extremely low O2

levels inhibit the proliferation and differentiation cap-
abilities of the C2C12 but promote apoptosis.

Hypoxia inhibits the myogenesis in C2C12 cells via HDAC9
Previous research has confirmed that the hypoxia-

mediated inhibition of myogenic differentiation is rever-
sible2. However, we observed lower expression levels of
MyoG and MyoD in the C2C12 of passages 2, 4, and 6
under hypoxia compared with the same passages of
C2C12 under normoxia (C2C12 cultured under hypoxic
and normoxic conditions for 3 days were used as passage
1; Fig. 2a). The expression levels of MyoG and MyoD were
almost the same with passaging, and they were lower than
in the normal cells (Fig. 2b), indicating that the hypoxia-
mediated inhibition of myogenesis in the C2C12 was
consistent even when the cells were cultured under nor-
moxic conditions for several passages.
Growing evidence suggests that the microenvironment

changes the posttranscriptional modification of histones
via acetylation18–20, which subsequently influences the
function of cells12. Consequently, we compared the
expression patterns of HDAC families between the C2C12
cultured under normoxic conditions and the C2C12 cul-
tured under hypoxic conditions. The results showed that
the expression levels of HDAC1, 2, 8, and 9 were con-
tinually elevated after exposure to hypoxia for 1 h, 24 h,
and 7 days. In particular, the expression of HDAC9
increased nearly 5-fold in the hypoxia-exposed C2C12
compared with the normal control cells (Fig. 2c, Supple-
mentary Fig. 2). Next, we focused on HDAC9 and
examined the expression levels of HDAC9 at different
time points under hypoxia. Western blotting analysis
showed that the level of HDAC9 significantly increased
under hypoxia, and this effect was also apparent in dif-
ferent passages (Fig. 2d, f). As hypoxia usually affects cell
properties via hypoxia-inducible factors (HIFs)3,21, we also
examined the expression levels of HIF1α and HIF2α at
different time points in the cells under hypoxia. Western
blotting analysis showed that HIF1α increased slightly
after 1 h of hypoxia but then decreased continuously and
almost disappeared after 72 h of hypoxia, and the
expression pattern of HIF2α showed no correlation with
the different time points of hypoxia (Supplementary Fig. 3).
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These results indicate that increased HDAC9 in the
C2C12 has no close connection with HIFs; therefore, we
did not study these factors in the other experiments.
HDAC9 has been found to prefer lysine 9, lysine 14, and

lysine 18 of histone H322, which it acetylates to regulate
gene function; therefore, we examined the acetylation
sites of histones 3 and 4 after blocking the expression of
HDAC9. The results showed that, compared to trichos-
tatin A (TSA), sodium butyrate (NaB) had a strong effect
on the simultaneous inhibition of HDAC9 expression and
promotion of H3K9 acetylation (Supplementary Fig. 4).
Lysine residue H3K9 showed the opposite expression
pattern to upregulated HDAC9. Furthermore, H3K9 was

also hypoacetylated (more than 2-fold) in different pas-
sages of the hypoxia-C2C12, despite the enhanced level of
HDAC9 (Fig. 2e–g), suggesting that hypoxia-induced
HDAC9 elevation leads to histone deacetylation at lysine
residue 9 of histone H3.

Inhibition of HDAC9 rescues the hypoxia-induced
impairment of myogenesis
The overexpression of HDAC9 in the C2C12 cultured

under normoxic conditions significantly impaired their
myogenesis. In contrast, the inhibition of HDAC9
expression in the C2C12 cultured under normoxic con-
ditions partially enhanced their myogenesis, as confirmed
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Fig. 1 The properties of C2C12 cells decrease significantly under hypoxia. C2C12 cells were cultured under a normoxic or hypoxic
microenvironment for 7 days. a The morphologies of the C2C12 cells grown under these two conditions were observed using an inverted
microscope. Scale bar: 50 μm. b, c The viability and proliferation of the C2C12 cells under the two treatments were measured using MTT (b) and Edu
(c) assays. d Apoptosis of the two C2C12 cells was examined by flow cytometry. e The C2C12 cells were cultured in myogenic differentiation medium
(MD) under a normoxic or hypoxic microenvironment for 7 days, and MyoG (green)/MyoD (red)/nuclei (blue) were examined by
immunofluorescence staining. Scale bar: 50 μm. f The myogenic genes of the C2C12 cells were detected by qRT-PCR and western blotting. The data
are presented as the mean ± s.d. of triplicate samples from a representative experiment. *P < 0.05. c, d unpaired two-tailed Student’s t-test. b, f one-
way analysis of variance (ANOVA)
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by MyoG and MyoD expression (Supplementary Fig. 5,
Fig. 3a). These data indicate that HDAC9 regulates the
myogenesis in C2C12. We next investigated the ther-
apeutic effect of downregulating HDAC9 on the func-
tional recovery of the C2C12 cultured in hypoxia. We
observed that the decreased expression levels of MyoG
and MyoD induced by hypoxia were successfully rescued
by NaB, suggesting that the therapeutic effect may be
caused by the inhibited expression of the HDAC family
that was induced by hypoxia (Fig. 3b).
Given that HDAC9 directly regulated the myogenesis in

the C2C12 and that NaB is a broad-spectrum HDAC
inhibitor, we next specifically downregulated the HDAC9

level in the C2C12 cultured in hypoxia. As expected, the
decreased expression levels of MyoG and MyoD induced
by hypoxia were also rescued after specifically down-
regulating HDAC9 (Fig. 3c). Collectively, these data
indicate that the inhibited myogenesis of the C2C12
induced by hypoxia was likely due to the elevated HDAC9
level, and the downregulation of HDAC9 successfully
rescued the C2C12 impaired by hypoxia.

HDAC9 inhibits myogenesis via the epigenetic regulation
of autophagy
As autophagy is required to maintain cellular function

and homeostasis under hypoxic conditions23–25, we next
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investigated the effect of hypoxia on autophagy in C2C12.
The expression of LC3II was found in normal cells, and
this expression was decreased after exposure to hypoxia
for 7 days. In contrast, the expression of p62, which acts
as specific cargo degraded by autophagy, was distinctly
increased under the above hypoxic conditions compared
with the control group (Fig. 4a). We next applied the
autophagy-flux inhibitor chloroquine (CQ), which pre-
vents lysosome degradation, thus increasing LC3II
expression significantly when autophagy is active26. The
CQ experiments showed that, in contrast to the cells
cultured in normoxia, the cells cultured in hypoxia lacked
the capacity for further autophagosome formation, as
indicated by western blotting and immunostaining (Fig.

4a, b). Furthermore, we found fewer autophagosomes in
the hypoxic cell group than in the normoxic cell group, as
indicated by transmission electron microscopy (Fig. 4c).
These results suggest that the autophagic activity was
inhibited after long-term exposure of the cells to hypoxia.
Moreover, the decline in the autophagic activity persisted
from P2 to P6, showing the opposite effect of HDAC9.
Accordingly, a lack of autophagy led to the accumulation
of p62 in the passage 2 cells cultured under hypoxia but
remained constant between P2 and P6 (Fig. 4d, Supple-
mentary Fig. 6). Importantly, autophagy in the normal
C2C12 was significantly activated and caused a decrease
in p62 accumulation after the NaB treatment that
downregulated HDAC9 in the presence or absence of CQ
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(Fig. 4e–g), as shown by western blotting and immunos-
taining analyses. These results indicate that HDAC9 and
intracellular autophagy likely have a close relationship.
To examine whether HDAC9 directly regulates

autophagy-related gene expression, we performed a
chromatin immunoprecipitation (ChIP) assay. The results
showed that HDAC9 was highly enriched at the pro-
moters of Atg7, Beclin1, LC3a, and LC3b in the C2C12
(Fig. 4h), indicating that HDAC9 directly binds to the
promoters of those autophagy-related genes. Accordingly,
H3K9 was also highly enriched at the promoters of

autophagy-related genes in the C2C12 (Fig. 4i), indicating
that HDAC9 epigenetically regulates intracellular autop-
hagy in C2C12.
Next, we tested whether the therapeutic effects of NaB

or HDAC9 siRNA could rescue the hypoxia-impaired
C2C12 directly by regulating autophagy. After Beclin1 was
downregulated, the autophagy level decreased sig-
nificantly and then suppressed the myogenic differentia-
tion of C2C12, whereas overexpression of Beclin1
enhanced autophagy and myogenesis, as shown by qRT-
PCR and western blotting (Supplementary Fig. 7, Fig. 5a).
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Then, we observed that activating autophagy in the
C2C12 by upregulating Beclin1 or rapamycin could rescue
the impaired myogenesis caused by hypoxia (Fig. 5b,
Supplementary Fig. 8). More importantly, NaB could
rescue myogenesis in the C2C12 after exposure to
hypoxia, but this effect could be blocked by the down-
regulation of Beclin1 (Fig. 5c). Together, these results
reveal that hypoxia reduced the myogenesis in the C2C12
mainly through HDAC9-mediated epigenetic inhibition of
autophagy. We next assessed the mechanism by which
autophagy regulates myogenesis.

Autophagy regulates myogenesis in C2C12 cells by
activating the Wnt/β-catenin pathway
Wnts represent a class of secreted signaling proteins

that modulate cell fate decisions, cell proliferation, and
stem cell activity in a variety of embryonic and adult tis-
sues. Many robust studies have reported that canonical
Wnt signaling is important for regulating the muscle
regeneration and myogenesis of myoblasts27,28. We also
observed that the expression levels of phosphorylated
GSK3β (p-GSK3β) and activated β-catenin (ac-β-catenin)
were both decreased after exposure to hypoxia, as shown
by immunostaining and western blotting. Furthermore,
the levels of the CCND1 and Axin2 mRNAs, downstream
intermediates in the Wnt/β-catenin pathway, were much
lower in the hypoxic C2C12 (Fig. 6a–c), suggesting that
the Wnt/β-catenin pathway was inactivated in hypoxia.
More convincingly, we observed that activation of the
canonical Wnt pathway by Wnt3a effectively rescued the
impaired myogenesis in the C2C12 caused by hypoxia
(Supplementary Fig. 9). These data indicate that inacti-
vation of the Wnt/β-catenin pathway may contribute to
the impaired function of the C2C12 caused by hypoxia.
Given that emerging studies have indicated that

autophagy can contribute to regulation of the canonical
Wnt pathway29, we first examined the expression of p-
GSK3β and ac-β-catenin after regulating autophagy by
lentivirus. Downregulation of Beclin1 in the normoxic
C2C12 impaired the Wnt pathway, mimicking the phe-
notype of hypoxic C2C12. In contrast, recovering Beclin1
expression in the hypoxic cells reactivated the Wnt
pathway, as confirmed by western blotting and TOPflash
assays (Fig. 6d, e). These results suggest that the Wnt
pathway was activated or inactivated depending on the
level of autophagy. More importantly, we cultured C2C12
in normoxia and hypoxia for 72 h and visualized p-GSK3β
and LC3 via confocal laser scanning microscopy. The
results showed that LC3 could colocalize with p-GSK3β
under both normoxic and hypoxic conditions. Notably,
the merged images demonstrated that the colocalization
of p-GSK3β and LC3 was lower in the hypoxic cell group
due to the decreased expression levels of p-GSK3β and

LC3 (Fig. 6f). Collectively, these results indicate that
autophagy could directly regulate the canonical Wnt
pathway, likely via phosphorylated GSK3β.
We then investigated whether autophagy regulates

myogenic differentiation through the Wnt/β-catenin
pathway. The results indicated that knockdown of the
expression of β-catenin reduced the myogenesis in
C2C12. Importantly, rapamycin could not recover the
inhibited myogenesis after β-catenin was downregulated
(Supplementary Fig. 10, Fig. 6g). Finally, to confirm the
regulatory network of histone deacetylase, autophagy, and
the canonical Wnt pathway, the C2C12 were treated with
NaB, 3-MA, and DKK-1. Notably, NaB inhibited the
expression of HDAC9 and promoted the expression of the
remaining downstream genes, whereas the autophagy
inhibitor 3-MA inhibited the expression of Beclin1 and
ac-β-catenin. Furthermore, the canonical Wnt pathway
inhibitor DKK-1 blocked only the expression of ac-
β-catenin (Fig. 6h). Together, these results imply that the
canonical Wnt pathway is under downstream regulation
by HDAC9-mediated autophagy.

HDAC9 epigenetically regulated autophagy is also
observed in ischemic muscle atrophy
To further verify our investigation conducted in vitro,

we first developed an ischemic muscle atrophy model in
mice. The sections from mouse gastrocnemius muscles
were examined histologically to evaluate the effects of
chronic ischemic hypoxia on tissue integrity. The results
showed normoxically grown muscle fibers had uniform
size and shape with peripherally placed nuclei (Fig. 7a).
Muscle tissue from mice exposed to ischemic hypoxia for
21 days showed severe atrophy of muscle fibers with
irregularity in fiber size and more space between them.
However, no necrotic fiber or cell splitting could be
observed in any of the micrographs (Fig. 7a). Furthermore,
with increased duration of exposure to ischemic hypoxia,
the ratio of rat gastrocnemius muscle weight/tibial length
decreased significantly, decreasing by 22% during 21 days
of hypoxia exposure (Fig. 7b). Calpains are a member of
the Ca2+-activated cysteine proteases that play important
roles in cell motility, cell proliferation, and apoptosis30.
Some investigations have suggested that calpains are
activated during atrophy31,32. In our study, we observed
that the expression level of calpain increased obviously
after exposure to hypoxia for 21 days (Fig. 7c), suggesting
that the muscle is atrophied after exposure to chronic
ischemic hypoxia.
Given that HDAC9 expression was increased in the

C2C12 after exposure to hypoxia and subsequently
affected cell functions via the regulation of autophagy, we
next tested whether HDAC9 regulates the level of
autophagy in an ischemic hypoxia mouse model. The
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expression of HDAC9 increased but the level of H3K9ac
decreased in the ischemic hypoxia group, as shown by
western blotting (Fig. 7d). As expected, autophagy was
dramatically lost in the hypoxia mouse model, as indi-
cated by decreased LC3 levels (Fig. 7e), as in the C2C12
cultured in hypoxia. More importantly, we also observed
the same muscle atrophy and decreased autophagy levels
in patients with chronic muscle atrophy caused by arter-
iosclerosis obliterans (Fig. 7f, g). Collectively, our results
indicate that hypoxia inhibits the regeneration of muscle
likely via autophagy that is epigenetically regulated by
HDAC9 (Fig. 8).

Discussion
The effect of hypoxia on the myogenic process has been

extensively studied. Several studies have provided credible
data to show that less than 1% O2 level represses the
proliferation and myogenesis of primary myoblasts and
C2C12 in vitro2,6,33, raising the question of whether a
long-term hypoxic microenvironment could permanently
impair the myogenesis process. Some studies have
demonstrated that myoblast differentiation is reversibly
inhibited by hypoxia2, as myoblasts regain myogenesis
capability when normal oxygen levels are restored. Con-
versely, our results revealed that the inhibitory effect on
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myogenesis caused by hypoxia was sustained in the
C2C12 after six passages when normal oxygen was
restored. We think the difference between the results
from previous studies and those from our study may be
due to the different culture conditions and observation
methods. We previously reported that the micro-
environment induces long-term effects on cell functions
due to epigenetic regulation5. A previous report demon-
strated that hypoxia-induced myogenic differentiation of
embryonic stem cells is mediated by regulating HDAC634.
Another study has also shown that myogenesis under
hypoxia is correlated with the deacetylation of histones
associated with the myoD promoter33,35–37. Therefore, we
first screened 11 HDACs. The results showed that
HDAC9 was significantly upregulated in response to
hypoxia. Downregulation of HDAC9 by applying

HDAC9 siRNA or the HDACs inhibitor NaB recovered
the inhibitory effect of hypoxia on C2C12 myogenesis.
Thus, we showed that chronic exposure to severe
hypoxia-induced muscle dysfunction or mass loss likely
through epigenetic regulation similar to that observed in
hypoxia-induced Alzheimer’s disease38,39, pulmonary
hypertension40, and cardiac tissue fibrosis41. Notably, we
observed that the autophagy of the C2C12 was first
enhanced after exposure to hypoxia and subsequently
decreased after 6 h in hypoxic culture. However, the
expression of HDAC9 was continuously increased after
exposure to hypoxia. Therefore, we infer that HDAC9
likely regulates autophagy during long-term hypoxic
exposure.
Autophagy24,42 is a primary survival pathway for recy-

cling cellular material during periods of nutrient
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starvation and in response to hypoxia, endoplasmic reti-
culum stress, and other stresses, and it is essential for
maintaining tissue homeostasis. Importantly, dysregulated
autophagy is observed in the pathogenesis of myopathies
and muscular dystrophies43,44. A recent study demon-
strated that autophagy was significantly enhanced in
response to short-term intermittent hypoxia-induced
atrophy of skeletal muscle45. In that study, LC3II pro-
tein was increased (2.4-fold) in limb muscle after 4 days of
intermittent exposure to hypoxia. However, the effect of
hypoxia-induced autophagy on myoblast differentiation
has not been well elucidated. In the present work, we
found that long-term exposure to hypoxia reduced the
level of autophagy in the C2C12 and that autophagy was
suppressed with cell passages. However, we noticed that
the level of autophagy in the C2C12 was increased sig-
nificantly under a short-term (<6 h) hypoxic stimulus and
then gradually declined with prolonged hypoxia (data not
shown). This finding is in agreement with previous
reports showing that acute exposure to hypoxia increases

the expression of markers of autophagy45,46. Interestingly,
we noted that the inhibition of autophagy by
Beclin1 siRNA blocked the effect of the NaB on rescuing
the function of the C2C12 in hypoxia. Importantly, we
confirmed that HDAC9 directly bound to the promoters
of Atg7, Beclin1, LC3a, and LC3b in C2C12. The above-
mentioned results suggest that autophagy, which is epi-
genetically regulated by HDAC9, is required to maintain
the function of C2C12 in a chronic hypoxic
microenvironment.
Some studies have shown that Wnt/β-catenin signaling

is critical for the regulation of muscle development and
the myogenic differentiation of myoblasts47–49. Condi-
tional depletion of β-catenin in mice led to reduced
muscle mass and fewer myofibers, as shown by Pax7-
positive muscle progenitor cell staining50. Previous
reports have demonstrated that Wnt/β-catenin signaling
is essential for the multiple steps of myogenesis28,48,51,52,
but few reports have indicated that Wnt/β-catenin sig-
naling is not required during muscle regeneration53. In

Normal Hypoxia

Myogenic differentiation

21% O2

Beclin1
LC3
Atg7

1% O2

Beclin1
LC3
Atg7

GSK3β

β-catenin

P

β-catenin

β-catenin

GSK3β

β-catenin

P

β-catenin

Myogenic differentiation

NaB

H3K9

HDAC9

HDAC9 H3K9

H3 H3

Fig. 8 Schematic diagram depicts how hypoxia regulates myogenic differentiation of C2C12 cells and an epigenetics-guided therapeutic
method. In the presence of normal oxygen, intracellular autophagy controls the phosphorylation of GSK3β and then promotes the transfer of
β-catenin from the cytoplasm into the nucleus, which subsequently activates myogenesis-related gene expression. Under hypoxia, HDAC9
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the present study, we revealed that autophagy maintained
the functions of myoblast cell lines by regulating the phos-
phorylation of GSK3β, which is an important regulator for
modulating β-catenin nuclear translocation in hypoxia.
Although many researchers have demonstrated that GSK3β
determines the activation of autophagy during different
cytological processes54–56, autophagy-regulating GSK3β
phosphorylation has been poorly described. Recently, some
studies have shown that GSK3β phosphorylation is sup-
pressed by Beclin1 siRNA in renal cells57. In combination
with our results, we suggest that autophagy directly regulates
the phosphorylation of GSK3β and thereby the activation of
the Wnt/β-catenin pathway, which is critical for maintaining
the myogenesis of C2C12.
Our data demonstrate that epigenetic regulation is cri-

tical for the sustained hypoxia-induced inhibitory effect
on the myogenesis of myoblasts and that the activation of
autophagy is a key step in rescuing the myogenic differ-
entiation of myoblasts, which may provide a prospective
strategy for treating myopathies caused by chronic
hypoxia. Further studies are needed to explore how
autophagy degrades phosphorylated GSK3β.

Materials and methods
C2C12 cell line culture and cell hypoxic model
Immortalized murine C2C12 myoblasts obtained from

the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China), originally derived from C3H mouse leg
muscle, were cultured on uncoated 6-well plates at 37 °C
and 5% CO2 in high-glucose growth medium (4.5 g/l d-
glucose) DMEM (GIBCO-BRL, Gaithersburg, MD, USA)
supplemented with 10% fetal bovine serum (FBS, GIBCO-
BRL), 2 mM L-glutamine (Life Technologies, Rockville,
MD, USA), and 1% penicillin–streptomycin (GIBCO-
BRL). After reaching confluence, C2C12 myoblasts were
induced in differentiation medium (DMEM supplemented
with 2% horse serum, 1 mM L-glutamine, 1%
penicillin–streptomycin) for 2–3 days.
To establish hypoxia culture conditions, C2C12 myo-

blasts were placed in a hypoxic (1% O2, 5% CO2, 37 °C)
incubator (Galaxy oxygen control incubator, RS Biotech,
Irvine, UK) for 1, 3, 6, 12, 24, 72 h and 7 days. Control cells
(Normal group) were incubated for equivalent time frames
under normoxic conditions (21% O2, 5% CO2, 37 °C).

MTT assay
The viability of C2C12 myoblasts cultured under nor-

moxic or hypoxic conditions was determined using a
3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bro-
mide (MTT) assay carried out for 8 days according to the
manufacturer’s protocol (Sigma-Aldrich). Absorbance
was determined at 490 nm with a microplate reader (Bio-
Tek Instruments, Winooski, VT, USA). Experiments were
performed in triplicate.

5-Ethynyl-2′-deoxyuridine assays
The proliferation of C2C12 myoblasts cultured under

normoxic or hypoxic conditions was determined using an
5-Ethynyl-2′-deoxyuridine (EdU) DNA Proliferation
in vitro Detection kit (RiboBio, Guangzhou, China)
according to manufacturer´s instructions. Flow cytometry
was performed on these cells previously labeled with EdU.

Apoptosis analysis
The apoptosis of C2C12 myoblasts cultured under

normoxic or hypoxic conditions was determined using an
apoptosis detection kit (BD Pharmingen) according to the
manufacturer’s instructions. Flow cytometry was per-
formed to analyze cell apoptosis, discriminating viable,
dead, early apoptotic and late apoptotic cells, by detecting
the Annexin-V and propidium iodide (PI) staining and
comparing the percentages with the numbers determined
for the control group.

Immunofluorescence staining
C2C12 cells cultured under normoxic or hypoxic con-

ditions until confluence were subsequently maintained in
differentiation medium for 3 days to promote myoblast
fusion. The cells were then fixed with 4% paraformalde-
hyde for 15min at 4 °C, permeabilized with 0.2% Triton
X-100 in PBS for 10 min and blocked in 5% normal goat
serum for 30 min. For immunofluorescence staining,
C2C12 cells were incubated with Myosin (R&D system,
1:100, Minneapolis, MN, USA, MAB4470) or LC3I/II
(Cell signal, 1:100, 12741) primary antibodies overnight at
4 °C. Subsequently, they were incubated with Cy3-/FITC-
secondary antibody for 1 h at room temperature accord-
ing to the manufacturer’s instructions.

qRT-PCR analysis
Total mRNA isolated from C2C12 cells using TRIzol

(Invitrogen, Carlsbad, CA, USA) according to the manu-
facturer’s instructions was reverse-transcribed into cDNA.
Real-time PCR detection was carried out using Prime-
scriptTM RT master mix (Takara Bio Inc., Otsu, Japan),
SYBR Premix Ex TaqTMII (Takara Bio Inc.), and the
CFX96 Trademark Real-time PCR detection system (Bio-
Rad, California, USA). The expression levels of MyoG,
MyoD, HDAC1-11, LC3, Beclin1, Atg7, Axin2, and
CCND1 were examined with the primers (Sangon Bio-
tech, China) listed in Supplementary Table 1. GAPDH
served as a housekeeping gene. Experiments were per-
formed in triplicate.

Western blotting analysis
C2C12 cells were harvested in RIPA lysis buffer

(Beyotime Institute of Biotechnology, Shanghai, China).
Whole-cell protein extracts were quantified using the
BCA assay, separated by SDS-PAGE 8–12%, and then
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transferred to PVDF membranes (Millipore, Billerica, MA,
USA). Antibodies included Myogenin (Abcam, 1:1000,
ab124800, Cambridge, MA, USA), MyoD (Santa Cruz,
1:200, sc-377460), HDAC9 (Abcam, 1:1000, ab59718),
HIF1α (Abcam, 1:1000, ab179483), HIF2α (Abcam,
1:1000, ab179825), H3K9 (Abcam, 1:1000, ab32129),
H3K14, H3K18, H4K16 (Cell Signaling, 1:1000), LC3I/II
(Cell Signal, 1:1000, 12741), Beclin1 (Cell Signal, 1:1000,
3738), Atg5 (Cell Signal, 1:1000, 12994), Atg7 (Cell Signal,
1:1000, 8558), Atg12 (Cell Signal, 1:1000, 4180), p62 (Cell
Signaling, 1:1000, 23214), p-GSK3β Ser9 (Cell Signal,
1:1000, 9323), GSK3β (Cell Signal, 1:1000, 12456), and
active-β-catenin (Millipore, 1:800, 05–665). Stripped
membranes were reprobed with GAPDH (Abcam, 1:4000,
ab181602) as a loading control. Signal detection was
performed using the ECL Kit (Beyotime Institute of Bio-
technology) after incubation with an anti-rabbit or anti-
mouse IgG secondary antibody (CoWin Bioscience Co.,
Beijing, China). Experiments were performed in triplicate.

Transfection assay
siRNA duplex oligonucleotides against mouse HDAC9

(Gene-Pharma Co, Shanghai, China), β-catenin (Gene-
Pharma Co, Shanghai, China), Beclin1 (Gene-Pharma Co),
or the negative control (Gene-Pharma Co) were trans-
fected into both normoxic and hypoxic C2C12 myoblasts
at a final concentration of 50 nM using siPORTNeoFX.
The medium was replaced 8 h later. Experiments were
performed in triplicate.

Small molecule administration
To examine the effect of sodium butyrate (NaB) on the

myogenesis of C2C12 cells, C2C12 cells were cultured
under hypoxia with or without NaB (200 μM, sigma, 156-
54-7). To examine the effect of NaB and Trichostatin A
(TSA) on autophagy of C2C12 cells, C2C12 cells were
cultured under normoxic conditions with or without NaB
(200 μM) and TSA (100 nM, Sigma, 58880-19-6). Rapa-
mycin (100 nM, Sigma, 53123-88-9), NaB (200 μM), 3-
MA (5mM, Sigma, 5142-23-4), and recombinant mouse
DKK-1 (100 ng/ml, BioLegend, San Diego, CA, USA,
759604) were added to C2C12 cells cultured under nor-
moxic or hypoxic conditions to examine the relationship
between autophagy and the signaling pathways. All the
cell samples for qRT-PCR and western blotting were
collected according to the manufactures’ instructions.

Transmission electron microscope (TEM) analysis
C2C12 cells were collected with trypsin, washed with

serum-free PBS and primarily fixed in 4% glutaraldehyde
and 4% paraformaldehyde (Sigma, pH 7.2) overnight.
After washing with PBS, the cells were progressively
dehydrated in a graduated series of ethanol solutions (50,
70, 95, and 100%), and then embedded in situ in LX-812

resin (Ladd Research Industries Inc., USA). Subsequently,
ultrathin sections (60 nm) were stained with 1% uranyl
acetate (30 min) and lead citrate (10 min). The ultra-
structure of the cells was then observed using an FEI
Tecnai G12 Spirit BioTwin transmission electron micro-
scope (FEI Company, USA) with an accelerating voltage of
100 kV. Digital images were captured on a Veleta CCD
camera (Olympus-SIS, Germany).

Chromatin immunoprecipitation
We used a Chromatin immunoprecipitation (ChIP)

assay kit (Merck Millipore, Billerica, MA, USA, 17–371)
to confirm the binding between proteins and gene pro-
moters according to the manufacturer’s protocol. Anti-
bodies against HDAC9 (Abcam, ab59718) and polyclonal
anti-Histone H3 (acetyl K9) (Abcam, ab10812) were used
as detection antibodies, and normal rabbit IgG (Merck
Millipore) was used as a negative control. All precipitated
DNA samples were analyzed by qRT-PCR, and the results
were normalized to the input value. The primers spanning
the H3K9-/HDAC9-binding sites at the Atg7, Beclin1,
LC3a, and LC3b promoter (Sangon biotech, China) are
listed in Supplementary Table 2.

Hind limb ischemia model
Male 4-month mice were purchased from the Animal

Center of Fourth Military Medical University, Xi’an,
China. Sixteen mice were randomly and evenly divided
into two groups (eight in each group) to receive either
sham or femoral artery ligation surgery. Briefly, femoral
artery was ligated at the proximal region just under the
inguinal ligament and distally above the profunda femoris
branch. A cut was then made between the ligation sites.
All of the procedures that involved animals were approved
by the Animal use and care committee of the Fourth
Military Medical University (license number: SYXK 2012-
0023).

Human subjects
Two arteriosclerosis obliteran patients (male), aged 48

and 53 years respectively were conducted by the Affiliated
Hospital of Fourth Military Medical University because of
their arteriosclerosis obliterans. Health human muscle
samples were collected from two bone fracture patients
caused by car accident aged 46 and 50 (male).
The clinical study was approved by the Ethics Com-

mittee of the Affiliated Hospital of Fourth Military Med-
ical University, and written informed consent was
obtained from all participants prior to sample collection.

Statistics
The data are presented as the mean ± s.d. Unpaired two-

tailed Student’s t-tests were applied for comparisons
between two groups, and one-way analysis of variance
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(ANOVA) with a Bonferroni post-test was used for mul-
tiple comparisons. All experiments were repeated more
than three times, and representative experiments are
shown. P values <0.05 were considered significant.
*P < 0.05, **P < 0.01. Analytic tests were undertaken using
SPSS17.0 software.
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