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Mast cells (MCs) are innate immune cells of hematopoietic origin localized in the

mucosal tissues of the body and are broadly implicated in the pathogenesis of

allergic inflammation. Transcription factors have a pivotal role in the development

and differentiation of mast cells in response to various microenvironmental signals

encountered in the resident tissues. Understanding the regulation of mast cells by

transcription factors is therefore vital for mechanistic insights into allergic diseases. In

this review we summarize advances in defining the transcription factors that impact the

development of mast cells throughout the body and in specific tissues, and factors that

are involved in responding to the extracellular milieu. We will further describe the complex

networks of transcription factors that impact mast cell physiology and expansion during

allergic inflammation and functions from degranulation to cytokine secretion. As our

understanding of the heterogeneity of mast cells becomesmore detailed, the contribution

of specific transcription factors in mast cell-dependent functions will potentially offer new

pathways for therapeutic targeting.
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INTRODUCTION

Mast cells are a crucial component of the innate immune system, that originate from the pluripotent
progenitor cells (Hematopoietic Stem Cells) of the bone marrow and remain in the blood before
populating in the resident vascular tissues (1–3). In the tissue microenvironment, stem cell factor
(also known as c-kit ligand and mast cell growth factor) and cytokines such as interleukin-3
(IL-3) direct the maturation of progenitor mast cells to perform specialized functions (4, 5). Mast
cells are located throughout the body and are most abundant in the tissues that are directly in
contact with the external environment such as skin, airways, conjunctiva, and mucosal tissues in
the gastrointestinal tract where they regulate a wide variety of pathophysiological functions (6).
Mature mast cells act as the first line of defense against pathogens and foreign proteins including
allergens (3). Discovered by Paul Ehrlich in 1879, mast cells are recognized for their versatile role
in a range of immunological responses in health and disease (7). Mast cells are rich in secretory
granules containing prostaglandins and histamine, and this distinguishes them from other immune
cell types (8). Differentiation and phenotypic characterization of mast cells is dependent on several
factors including environmental stimuli, cytokines, and transcription factors (9) that control gene
expression and influence the phenotypic and functional identity of cells.

Mast cells respond to a multitude of extracellular signals through activation of receptors that
regulate their functions and survival in tissue microenvironments (10, 11). First described in 1970,

https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/journals/allergy#editorial-board
https://www.frontiersin.org/journals/allergy#editorial-board
https://www.frontiersin.org/journals/allergy#editorial-board
https://www.frontiersin.org/journals/allergy#editorial-board
https://doi.org/10.3389/falgy.2021.679121
http://crossmark.crossref.org/dialog/?doi=10.3389/falgy.2021.679121&domain=pdf&date_stamp=2021-06-07
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org
https://www.frontiersin.org/journals/allergy#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mkaplan2@iupui.edu
https://doi.org/10.3389/falgy.2021.679121
https://www.frontiersin.org/articles/10.3389/falgy.2021.679121/full


Srivastava and Kaplan Transcription Factors in Mast Cells

high affinity IgE crosslinking is the most widely understood
mechanism of mast cell activation during allergic response and
anaphylaxis (12–15). Studies have demonstrated three subunits
in FcεRI receptor: α subunit that binds to IgE, β subunit, and
a dimer of disulfide-linked γ subunits (16). Activation of mast
cells occurs after monomeric IgE bound to FcεRI via the Fc
region (CH3 domain) interacts with the antigen through the Fab
region, crosslinking FcεRI subunits and initiating downstream
signal transduction (17, 18). The downstream signaling cascade
results in biphasic responses from mast cells (19, 20). In the
first phase there is rapid degranulation and release of mediators
such as histamine, while in the second phase there is release
of inflammatory mediators such as cytokines, chemokines,
prostaglandins and leukotrienes (21) and proteases such as
chymase and tryptase from cytoplasmic granules (10, 11). Recent
studies have shown that suppressing IgE- FcεRI crosslinking
by blocking translation of FcεRI β-subunit or modulating
splicing events and inducing exon skipping could be a potential
therapeutic strategy as tested in a mouse model of allergic
dermatitis (22).

In addition to FcεRI, mast cells also express Toll-like receptors
(TLRs) that interact with pattern-associated molecular patterns
(PAMPs) and have a notable contribution in mast cell activation.
There are 10 TLR family receptors that include both cell surface
receptors (TLR 1–2, 4–6) and endosomal receptors (TLR3, 7–9)
(23). Previous studies demonstrated that mast cells respond to
TLR ligands such as lipopolysaccharide (LPS) and peptidoglycan
(PGN) that in turn can provoke mast cell degranulation via
TLR2 and TLR4 after IL12 induction via activation of PI3K/Akt
signaling cascade (23, 24). It has also been shown that TLR
ligands can cause synergistic activation of mast cells via FcεRI,
thus augmenting the response to antigenic stimulation (23).
Response to individual TLR ligands differentially activates mast
cells and results in secretion of distinct cytokines. For example,
TLR2 activation results in the production of IL-4, IL-5, IL-
6, and TNFa, while TLR4 activation induces secretion of IL-
1b, IL-6, IL-13, and TNFa (23, 25). Interestingly, IgE induced
mast cell response via FcεRI crosslinking was reduced following
pre-exposure to dual TLR2/7 ligands; however, simultaneous
exposure to both TLR ligands and FcεRI stimulation enhanced
the cytokine secretion from mast cells (26–28).

A vast array of chemokines and cytokines have also been
found to have profound impact on mast cell activation and
response to stimuli. Growing evidence shows that mast cells
express a range of chemokine receptors including CCR1, CCR3-
5, CXCR1-4, and CX3CR1 (29). Response to chemokines
by these receptors induces mast cell migration to tissue
microenvironment for maturation and allergic functions (30).
Cytokines such as IL-33 have been shown to provoke mast

Abbreviations: CBMC, Cord Blood–derived Mast Cells; CCR1, Chemokine
Receptor type 1; CREB3l1, CAMP Responsive Element Binding Protein 3 Like 1;
CRTC3, CREB Regulated Transcription Coactivator 3; CXCR1, C-X-C Chemokine
Receptor type 1; EGR2, Early Growth Response 2; Ehf, Ets Homologous Factor;
mMC-CPA, Mouse Mast Cell- Carboxypeptidase A; NFATC2, Nuclear Factor of
Activated T-cells, Cytoplasmic 2; PIAS3, Protein Inhibitor of Activated STAT3;
PKCI, Protein Kinase C Interacting; RUNX1, Runt-related Transcription Factor 1;
TOX2, TOX High Mobility Group Box Family Member 2.

cell activation leading to degranulation and secretion of
chemokines and cytokines that contribute to allergic responses
(31, 32). Previous studies report that IL-33 mediates bronchial
constriction in mice through secretion of serotonin from mast
cells, thus indicating a possible mechanism of mast cell activation
(33). The response to physiological stimulus and the effector
function of mast cells requires the activity of several transcription
factors such as GATA1 & 2, MITF, PU.1, STAT5, and BATF
(34, 35). TFs like AP-1 are immediately induced following
IgE-Ag stimulation leading to degranulation from cytoplasmic
secretory granules (36). Other critical transcription factors like
Ets homologous factor (Ehf) and Interferon regulatory factor-8
(IRF8) are associated with mast cell development and functional
identity. These transcription factors regulate mast cell genes
crucial for development of allergic responses.

In this review we discuss recent insights on the transcription
factors that play a crucial role in the development as well
as differentiation of mast cells localized across tissues. We
also shed light on the intricate network of transcription
factors that impact the functions of mast cells during allergic
inflammation. Since transcription factors play several regulatory
roles in the physiological function of mast cells, they constitute
major targets for therapeutic applications. Thus, a thorough
understanding of the transcriptional regulation of mast cells
will pave potential directions for clinical targeting in mast cell
mediated allergic diseases.

TRANSCRIPTION FACTORS REGULATING
MAST CELL DEVELOPMENT

Transcription factors play critical roles both in the development
of mast cells and the regulation of genes within mature mast cells.
Table 1 summarizes the key transcription factors and the impact
of their deficiency on mast cell phenotypes. In the following
sections we focus on specific transcription factor families and
detail how they contribute to mast cell development.

GATA Family
The GATA transcription factors are a family of zinc finger
proteins that are named for their recognition and binding of
the consensus DNA sequence (T/A)GATA(A/G) (47, 48). GATA
TFs have a common zinc finger DNA binding domain which is
required for recognition and binding to the consensus sequence
and that stabilizes the complex by interaction with other proteins
(49–51). However, these transcription factors show variation
in their N and C terminal regions that are responsible for
transcriptional activation (52, 53). The GATA factors have the
ability to bind both DNA and proteins and form a transcriptional
complex by recruiting chromatic remodeling proteins to facilitate
the transcriptional regulation of their target gene (54, 55). Based
on their sequence homology, GATA proteins are divided into
two major subfamilies, GATA 1–3 expressed in hematopoietic
stem cells and GATA 4–6 expressed in mesoderm and endoderm
derived tissues (35, 48, 56).

Mast cells express GATA-1 and GATA-2, and both
transcription factors are required for mast cell differentiation
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TABLE 1 | Mast cell phenotypes in transcription factor mutant models.

Transcription

factor

Mutant model Effect on mast cell phenotype Reference

GATA1 GATA1low mutant mice (lacking the first enhancer (DNA

hypersensitive site I) and the distal promoter)

Morphological abnormality in mast cells from peritoneal lavage and

connective tissue

(37)

GATA2 BMMCs with deletion of the GATA2 DNA binding domain from

GATA2flox/flox mice (GATA21CF)

Loss of mast cell identity marked by downregulation of mast

cell-specific genes (c-kit) and upregulation of myeloid genes

(38)

Ehf BMMCs transfected with retroviral vector encoding FLAG-tagged

mouse Ehf Ets homologous factor (Ehf)

Significant suppression of FcεRI and c-Kit expression induced by

TGF-β1 in mast cells

(39)

PU.1 siRNA mediated knock down of PU.1 in BMMCs Diminished IgE-mediated activation of mast cells, and significant

reduction of the the Syk and FcεRIβ mRNA levels

(40)

MITF MITFwh/wh mice with two copies of the MITF gene with a single

amino acid mutation at the basic domain (DNA binding domain)

MITF mutant mast cells switched to “basophil-like” cells and lost

c-Kit and IL-4 receptor α chain expression

(41)

BATF BATF germline knock out mice Defect in OVA-specific IgE and IL-3 levels and mast cell

development

(42)

STAT5 Stat5 knock out BMMC with IgE plus antigen stimulation Mast cells exhibited significant reduction in IgE-mediated

degranulation and cytokine secretion, due to decreased cytokine

mRNA stability.

(43)

IRF8 IRF8 knockout mice Loss of mast cell progenitors and inability to efficiently differentiate

into mast cells

(44)

ATF3 ATF3 knockout mice diminished proliferation and maturation with enhanced apoptosis

of mast cells

(45)

STAT6 STAT6 knockout mice No effect on IL-4 production in mast cells (46)

and development (57). GATA1low mutant mice (that lacks
the first DNase hypersensitivity site/enhancer and the distal
promoter of the GATA-1 gene) exhibited morphologically
abnormal mast cells in peritoneal lavage and connective tissue
indicating abnormal mast cell development (37). Importantly,
siRNA mediated knockdown of GATA1 did not affect GATA2
expression in cultured mast cell line (P815 cells) and BMMCs,
indicating a lack of cross-regulation between both transcription
factors (58). However, ChIP assays revealed that both GATA
factors bound to conserved GATA sites in BMMCs (58).
Interestingly, studies on BMMCs from mice lacking the GATA2
DNA binding domain (GATA21CF), showed loss of mast cell
identity marked by downregulation of mast cell-enriched genes,
including c-kit. This study also found that GATA2-deficient
BMMCs exhibited characteristics of immature myeloid-like
cells. Thus, GATA2 exerts a fundamental regulatory role in
differentiated mast cells (38).

GATA2 also acts more broadly in mast cell gene regulation
and a recent study illustrated that GATA2 regulated many mast
cell genes by promoting chromatin accessibility at super enhancer
region of these genes, thereby maintaining cellular identity (59).
A study on human airway mast cells from patients with asthma
and chronic rhinosinusitis with nasal polyposis (CRSwNP)
provides evidence for distinct inflammation driven transcription
factor phenotypes using single cell RNA-sequencing (60). The
study identified GATA2 as a highly enriched transcript in
the nasal polyp MCs. A recent study has shed light on the
role of GATA2 in the regulation of E-cadherin expression in
mast cell and basophils using publicly available GATA2 ChIP-
sequencing data. The study recognized a highly enriched site of
GATA2 in the promoter of E-cadherin in BMMCs, indicating a
potential regulatory role of GATA2 on E-cadherin mediated mast

cell differentiation (61). Notably, GATA-2–mediated E-cadherin
expression is recognized as a signature for early progenitor
cells that are primed to become mast cell and basophil lineages
during hematopoiesis.

Contrary to the function of GATA1 and GATA2 the GATA3
transcription factor suppresses the activation of mast cells in
an airway rhinitis mouse model (62). This study also found
that microRNA-135a (miR-135a) binds to GATA3 and higher
expression of this miRNA negatively regulates mRNA and
protein levels of GATA3. However, a mechanistic understanding
of miR-135a through GATA3 is required to identify its
therapeutic potential in allergic rhinitis.

Ets Family: Ehf and PU.1
Ets (E26) proteins are a family of transcription factors
that are named after v-ets oncogene originally found in
avian retrovirus (63). Ets factors are characterized by the
presence of conserved DNA-binding domain, the Ets-domain
that specifically recognizes sequences that have “GGA” core
trinucleotide (64). The Ets domain also facilitates interactionwith
other co-factors such as CBP/p300 histone acetyltransferases and
the Sp1 transcription factor that cooperatively regulate functions
of Ets proteins (65–68). Around 30 Ets family proteins have been
identified ranging from flies to humans (69, 70).

Previous studies showed that TGF-β/Smad signaling in mouse
BMMCs upregulated Ets homologous factor (Ehf) expression
(39). The study also demonstrated that overexpression of Ehf in
BMMCs caused transcriptional repression of mast cell genes such
as FcεRIα, FcεRIβ, and c-Kit leading to suppressed degranulation
and cytokine secretion from these cells. Authors further provided
evidence that stable expression of Ehf in BMMCs reduced
mRNA levels of key transcription factor such as GATA1, GATA2,
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and STAT5B suggesting an intricate network of TFs regulating
mast cell functions. The findings further indicate that decreased
expression of STAT5B may be an important contributing factor
to the suppression of cytokine production by BMMCs.

PU.1, another member of the Ets transcription factor family,
is essential for the development of mast cells (35, 71, 72). PU.1
is indispensable for mast cell homeostasis and differentiation
evident by failure of PU.1 knock out fetal liver cells to
differentiate into mast cells in the presence of SCF and IL3 (73).
In a study involving PU.1 siRNA knock down in BMMCs, a
significant reduction in the IgE mediated mast cell activation was
accompanied with suppression of Syk and FcεRIβ mRNA levels
(40). Studies involving siRNA mediated downregulation PU.1,
GATA1, and GATA2 in the human mast cell line LAD2 showed a
significant reduction in the expression of FcεRI which was further
supported by suppressed degranulation from LAD2 cells (74).
ChIP assays from the same study illustrated an enriched binding
of all three transcription factors on the promoter region of FcεRI,
suggesting a crucial role of these TFs in mast cell activation.
These findings strongly indicate an indispensable role of these
TFs in the transcriptional regulation and promoter binding of
FcεRI gene.

MITF
MITF (Microphthalmia transcription factor) is a helix-loop-
helix (HLH) domain containing factor with a basic and leucine
zipper domain essential for mast cell development as evident
by severely reduced mast cell numbers in MITF mutant mice
(75–77). High expression of MITF is crucial for differentiation
of common basophil/mast cell committed progenitors (BMCPs)
into mast cells while a loss of MITF leads to basophil lineage (78).
Recently, RNA-sequencing from LPS stimulated BMMCs has also
demonstrated high expression of MITF transcription factor (79).
MultipleMITF isoforms have been identified in various cell types,
however mast cells predominantly expressed MITF-a, MITF-e,
and MITF-mc (80, 81). Presence of multiple isoforms in mast
cells have been linked to diverse biological functions including
restoring granular morphology, mast cell differentiation and
migration (81).

A recent review summarized the positive and negative
regulators of MITF in mast cells and their impact on mast cell
biology (82). MITF is a pleiotropic transcription factor as MITF-
mutant mice displayed a number of phenotypic defects such as
retinal degeneration, hearing loss, osteopetrosis and abnormal
pigmentation (82). Parallel to defects in mast cell development,
MITF-deficient mice also have defects in osteoclasts and
melanocytes (75). Studies examining MITF-interacting proteins
identified protein kinase C interacting (PKCI) protein 1 and
protein inhibitor of activated STAT3 (PIAS3) as inhibitors of
MITF activity in mast cells (75, 83, 84). A recent study on human
cord blood–derived MCs (CBMC), evaluated IL-4 regulation of
the polyp mast cell transcriptome. This study found that IL-
4 stimulation downregulated MITF transcript levels, suggesting
that IL-4 might be a critical cytokine that exerts transcriptional
regulation on MITF in the cord blood derived MCs (60).

MITF regulates several mast cell genes that play an important
role during differentiation and cell activation. Some of the

key genes include granzyme B (GrB) that acts as the key
cytotoxic mediator and tryptophan hydroxylase (TPH), the rate
limiting enzyme that catalyzes tryptophan to serotonin, required
for mast cell mediated immune response (85, 86). MITF also
regulates expression of several mast cell proteases (mMCP-
2,−4,−6, and−9), cathepsin G and c-kit through a locus control
region (82, 87). Studies on transformed mast cells show that c-kit
signaling upregulates MITF protein expression without affecting
its mRNA levels (88). Two miRNAs including miR-539 and miR-
381 were found to repress MITF expression in a mastocytosis
cell line. Further, studies in this direction are required to identify
potential MITF regulators that could be used as therapeutic
targets to modulate mast cell functions.

BATF
BATF (basic leucine zipper transcription factor, ATF-like),
belongs to the AP-1 family of transcription factors and is
shown to be predominantly expressed in cells of hematopoietic
origin (89). BATF is characterized by a basic leucine zipper
and regulates differentiation and function in several lymphocyte
lineages including class switch recombination in B cells (90–92).
BATF also contributes to the Th2- and Th9-dependent responses
in mouse models of asthma (42, 89). In the context of mast cell
function, BATF knockout mice have a deficit in OVA-specific
IgE levels, IL-3 secretion, and mast cell development (42). BATF
knockout mice sensitized with Ova had significantly reduced
numbers of lung mast cells expressing the IL-3 receptor α-chain
(93). Similar observations were found in BMMCs, suggesting
that BATF plays an important role in mast cell development
in the lungs. Recently, an IL-4-BATF axis was identified in
the regulation of IL-9 producing mucosal mast cell (MMC9)
function during IgE mediated food allergic reactions (94). Using
RNA-seq analysis, the study identified 410 gene transcripts that
were regulated by IL-4 signaling, including IL-9 and BATF in
MMC9. The results suggest a key role of BATF in modulating the
transcriptional program in mucosal mast cells.

STAT5
Signal transducer and activators of transcription (STAT) are
a seven-member family of proteins that are evolutionarily
conserved and regulate gene expression downstream of activated
cytokine and hormone receptors (95–97). STAT proteins are
widely recognized as critical mediators of the JAK-STAT pathway
that regulate gene expression involving complex interaction
with several transcriptional activators, repressors and chromatin
modifying proteins following their nuclear phosphorylation
(98). Among all members, two closely related factors STAT5A
and STAT5B are of particular interest because of their
functional involvement in various cellular processes including
but not limited to cell differentiation, survival, proliferation
and oncogenesis in cell type specific manner (99). STAT5A
and STAT5B share 96% amino acid sequence similarity (100).
However, differences in both factors are reported in their
extreme 5′ and the 3′ exons, specifically in STAT5B two
additional 5′ exons that code for alternative promoters have
been identified (100). Several studies have shown that STAT5
proteins are critical regulators of mast cell development, function
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and survival (43, 101, 102). Both factors have been recognized
as critical factors that regulate mast cell development and
survival (103). In mast cells, IL-3 and c-kit receptor stimulation
activated STAT5 (104). In addition to these receptors, IgE-
crosslinking induces rapid activation of STAT5 protein that
in turn regulated mast cell functions (43). These findings
were further confirmed with STAT5-deficient (STAT5KO) MC,
that demonstrate a reduction in IgE-mediated degranulation,
and subsequent cytokine secretion and leukotriene production
compared to wild type cells. Notably, it was observed that
STAT5KO MC induced normal levels of cytokine mRNA
following IgE crosslinking, however, a rapid degradation of these
mRNAwas observed over time, indicating that STAT5 is a critical
factor in mRNA stability (43).

The same research group also demonstrated that STAT5B
knockout cells exhibited decreased sensitivity to IgE mediated
systemic anaphylaxis response marked by decreased production
of IL-6 and IL-13 compared to wild type cells (105). The
study also found that STAT5B phosphorylation on serine
residues occurs via a Src-independent pathway that requires PI3-
kinase function. These results provide insights into the role of
STAT5B factor duringmast cell mediated inflammatory response.
Therefore, further understanding the mechanism of STAT5B
phosphorylation could facilitate development of new targets for
combating mast cell disorders.

STAT5 tyrosine phosphorylation was shown to be rapidly
and transiently induced by activation of the high affinity
IgE receptor, FcεRI on mast cells (106). Using antigen-
stimulated mast cells, the study showed that STAT5 co-localizes
with FcεRI accompanied by depletion of cholesterol from
the cell membrane, that in turn reduced STAT5 tyrosine
phosphorylation. More mechanistic insights into STAT5
mediated mast cell functions were provided from this study
using pharmacological inhibitors and knock out models. It was
shown that Fyn kinase induced IgE-mediated STAT5 activation
independent of other kinases including PI3K, Akt, Bruton’s
tyrosine kinase, Syk, and JAK2 (102, 107). Together these studies
illustrate distinct role of STAT5A and STAT5B in mast cell
mediated inflammatory functions.

AP-1
AP-1 (activating protein-1) are dimeric DNA binding complexes
of Fos, Jun or ATF2 subunits that dimerize through leucine
zippers and bind to AP-1 binding site defined as TGA(C/G)TCA
(34, 108–111). As discussed above, BATF also forms complexes
with AP-1 family members. Studies on AP-1 gene knockout
mice suggest that members of AP-1 family may regulate distinct
genes and therefore exert a variety of biological outcomes (112–
114). Members of AP-1 family have been widely recognized for
their role in cell proliferation, survival and apoptotic functions
(111, 115–117).

Previous studies demonstrated that mast cell IL-3 but not IL-
4 induced DNA binding activity of AP-1, indicating differential
involvement of AP-1 in the cytokine mediated response of
mast cells (118). Stem cell factor (SCF), a critical regulator
of mast cell growth and functions has been shown to induce
AP-1-dependent production of IL-6 via interaction with IL-6

promoter via MAPK kinase 3 activity (119). Earlier reports on
IgE-Ag stimulated murine fetal-liver-derived mast cells showed
that protein kinase C (PKC) enzymatic activity enhanced the
accumulation of c-Fos mRNA and protein but only the protein
of c-Jun, defining a PKC dependent regulation of AP-1 activity
in mast cells (120). In human intestinal mast cells there is rapid
induction of c-Fos and c-Jun components of AP-1 following
FcεRI crosslinking (121). Activation of AP-1 regulates the
expression of cytokine genes which further amplifies mast cell
response to IgE receptor activation.

Additional Transcription Factors That
Regulate Mast Cell Functions
In addition to the transcription factors described above, several
other factors have been implicated in mast cell development
and function. Studies have shown that interferon regulatory
factor-8 (IRF8), a transcription factor crucial for development of
myeloid cells also impacts the activity of mast cells (44, 122). IRF8
knock out mice have a severe loss of mast cell progenitors and
Irf8−/− granulocyte progenitors failed to efficiently differentiate
into mast cells (44). The study also found that GATA2 which is
also essential for mast cell differentiation, is a downstream target
of IRF8.

A recent study identified enhancers regulating the expression
of IL-13 gene in response to IgE receptor crosslinking in mast
cells (123). This study identified potential enhancers on mouse
IL-13 gene using histone modification marks (H3K4me3) ChIP-
seq. Interestingly, a cluster of transcription factors including
the NFATC2, STAT5, GATA2, AP1, and RUNX1 were found to
have binding sites at the proximal Il13 enhancer. Another cluster
consisting of EGR2 binding sites was identified at the distal Il13
enhancer. Binding of these transcription factors to the Il13 gene
locus played a prominent role in responding to signals triggered
by antigenic stimulation. Mutations in the individual TF binding
site revealed that GATA2, AP1, and RUNX1 binding sites were
critical for mediating the response to IgE crosslinking.

RNA-sequencing of peritoneal mast cells in a recent study
demonstrated high expression of several transcription factors
that have not yet been associated to mast cell development. These
factors included Runx1, Runx3, stress-induced transcription
factor CREB3l1, TOX2 (TOX High Mobility Group Box Family
Member 2), Crtc3 (CREB-regulated transcription activator 3),
Atf7ip (activating transcription factor 7-interacting protein 1
and Tal1 (basic helix-loop-helix transcription factor. Another
study that examined the factors required for induction of IL-9
producing MMC9 cells in a food allergy model illustrated the
essential requirement for STAT6 in the development of these
cells, although STAT6 is not required for mast cell development
in general (124, 125). A study using STAT6 knock out mice
revealed that STAT6 is not essential for mast cell IL-4 production
(46). Furthermore, a mast cell specific isoform of STAT6 has been
described that acts as transcriptional repressor of IL-4, which
could act as a negative feedbackmechanism to provide protection
from IL-4 mediated inflammation in mast cells. Further studies
are required to establish the role of these transcription factors in
mast cell functions and allergic response.
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TRANSCRIPTION FACTOR NETWORK IN
MAST CELLS

As suggested from our summary of a number of the factors
above, there is interplay among the transcription factors in the
form of hierarchical expression and cooperativity in regulation of
specific genes. Mast cell development has been linked to several
transcription factors and interplay between these factors has been
documented in several studies (34, 35). PU.1 and GATA2 have
exhibited a cooperativity in regulating transcription of mMC-
CPA (mouse mast cell- Carboxypeptidase A) gene, an early
marker of mast cell lineage cells. Similar combinatorial regulation
was observed by both factors on the IL-4 gene enhancer,
indicating that cooperative regulation by these transcription
factors is essential for promoting several mast cell functions
(126). It is worth noting that, unlike the antagonistic effect
of PU.1 and GATA2 seen during erythroid and monocyte
development, these factors show cooperativity for mast cell
lineage development (127, 128). ChIP analysis revealed a shared
region between GATA2 and PU.1 at a +10.4 kbp region
downstream of Ms4a2 gene locus that encodes for β chain of
the high-affinity IgE receptor (FcεRI), while a −60 bp region
exclusively occupied by GATA2. The study also elucidated that
ablation of PU.1 interfered with the binding of GATA2 to both
the regions (129). Thus, the coregulation of these TFs plays a
central role in the modulating the expression of mast cell genes
by binding to common regulatory regions.

A recent study examined the role of GATA1 and GATA2
in the regulation of mucosal mast cell specific protease genes
Mcpt1 and Mcpt2 and demonstrated that suppression of GATA1
and GATA2 significantly reduced the mRNA levels of protease
genes in BMMCs (130). The study also elaborated that TGF-
b stimulation upregulated Mcpt1 and Mcpt2 genes in BMMCs,
while suppression of the transcription factors SMAD2 and
SMAD4 by siRNA markedly reduced the expression of both
genes. To define this effect, the authors further examined the
association between GATA2 and SMAD providing evidence
that acetylation of histone H4 of the conserved GATA-SMAD
motif localized on the Mcpt1 and Mcpt2 genes and GATA2
recruitment were increased by TGF-b stimulation. Importantly
reporter assays from the study demonstrated GATA-SMAD
motif dependent upregulation of GATA2 transactivation. GATA2
expression is shown to be regulated by other transcription factors
such as IRF8 to induce development of mast cells and basophils
(44, 122). Interestingly, a STAT5-GATA2 axis was previously
demonstrated in pre-BMPs (Basophil mast cell progenitors),
where STAT5 directly targeted and induced the expression of
GATA2. This cooperativity between STAT5 and GATA2 further
induced two downstream transcription factors, C/EBPα which
is critical for development of basophil lineage and MITF, which
is essential for mast cell lineage (131). Another study used
genome wide gene expression profiling to provide evidence for
antagonistic regulation between C/EBPα andMITF transcription
factors, revealing that C/EBPα represses mast cell development
by directly suppressing MITF transcription (41).

The underlying mechanism of this transcription factor
cooperation has been described in previous reviews (34, 35).

Studies show transcriptional hierarchy in which PU.1 and
GATA2 synergistically bind to the GATA1 gene regulatory
element to activate its expression in mast cells (71, 126).
Cooperative regulation between PU.1 and GATA2 on physically
distinct regulatory regions of the IL-4 enhancer has also been
shown previously (132). Cooperative regulation by GATA2 was
observed in a study that used BMMCs lacking DNA binding
domain of GATA2 (GATA21CF) (38). ChIP assay from this
study revealed that GATA2 directly targeted the+37 kb region of
the C/EBPα gene and impedes the binding of RUNX1 and PU.1
to the neighboring region, thus modulating mast cell response.
These cross regulatory networks of transcription factors play a
prominent role in defining the mast cell lineage (Figure 1A). The
cross talk between these factors regulates several key genes such
asMcpt1,Ms4a2, and Cebpa (Figure 1B).

AP-1 proteins crosstalk with other critical transcription
factors in mast cells to exert a synergistic response during
allergy and inflammation. NFAT and AP1 transcription factors
synergistically activate TNFα transcription inmast cells following
IgE plus antigen stimulation independent of phosphoinositol-3-
kinase signaling (133). Another group demonstrated that IL-33
stimulation of mast cells synergistically activates AP-1 and NFAT
that together enhance cytokine production from stimulated cells
(134). Masuda et al. demonstrated direct interaction of AP-1
with GATA-1 and GATA-2 proteins that results in enhanced
binding of AP-1 to IL-13 promoter region causing a surge
in IL-13 production in mast cells (135). ATF3, a member
of ATF/CREB (cyclic AMP response element-binding) family
transcription factors, binds to the components of AP-1 family
and its activity differs with the binding partners (136). For
instance, heterodimerization of ATF3 and c-jun activates their
target genes but a separate set of genes is activated by dimerizing
with JunB (137). ATF3 has been described as an important
regulator of mast cell functions. BMMC derived from ATF3-
deficient mice exhibited a lack of response to IL-3–induced
maturation signals, resulting in diminished proliferation marked
with enhanced apoptosis and impaired activation of the Akt
kinase (45). These studies suggest that a network of AP-1 with
other vital transcription factors intricately regulates activation
and pro-allergic response of mast cells. Further dissecting the
transcriptional network and mast cell genes targeted by these
transcription factors would provide an important resource
toward development of targeted gene therapies for mast cell
driven allergic diseases.

REGULATION OF MAST CELL GENES

Proteases
Proteases secreted from mast cells, enhance tissue permeability
to enable infiltration of other immune cells to amplify allergic
responses (138). Notably, 30–50% of the total secretory protein in
mast cells is constituted by proteases (139). In humans, activation
of mast cells significantly increases the secretion of β-tryptase
during degranulation (140). Because of their involvement in
allergic and inflammatory disorders, regulation of mast cell
tryptases by transcription factors have been extensively studied
(52). Previous reports suggest that transcription of tryptase genes

Frontiers in Allergy | www.frontiersin.org 6 June 2021 | Volume 2 | Article 679121

https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org
https://www.frontiersin.org/journals/allergy#articles


Srivastava and Kaplan Transcription Factors in Mast Cells

FIGURE 1 | Cross regulatory interplay between transcription factors. (A) GATA2 expression in pre-BMPs is induced by STAT5 that in turn regulates expression of

C/EBP and MITF that give rise to basophil and mast cells. IRF8 and PU.1 act synergistically with GATA2 to regulate the expression of mast cell genes. (B) GATA2

binds to +37 kb region on C/EBPα gene and ablates binding of RUNX1 and PU.1 thereby repressing its expression. Cooperative regulation of GATA2 with SMAD4

and PU.1 induces expression of mast cell protease (Mcpt1 and 2) and Ms4a2 respectively in mast cells.

is regulated by MITF transcription factor (141). The study used
mutant constructs of tryptase promoter to show that two E-box
(CANNTG) motifs between−817 to−715 and−421 to−202 on
tryptase locus contribute to the transactivation of tryptase gene
via MITF transcription factor (141).

GATA factors also contribute to mast cell-specific tryptase
gene regulation. A recent study showed that siRNA Targeting
of either GATA1 or GATA2 into bone marrow derived mast
cells contributes to a significant loss of mast cell tryptase gene
expression (Tpsb2 and Tpsg1) (142). ChIP assay from the same
study revealed a 500 kb region in the 5′ end of the tryptase
loci referred to as “region A” that contains binding sites for
both GATA1 and GATA2 (−72.8, −63.4, and −1.1 kb regions)
(Figure 2). A recent study investigating the role of GATA1 and
GATA2 in regulation of tryptase gene expression in BMMCs
hypothesized that the coordinated activity of both GATA1 and
GATA2 could contribute to synergistic regulation on the tryptase
gene locus (142). The study emphasized that GATA1 and not
GATA2 plays a prominent role in tryptase gene regulation, and
that GATA1 could have a role in GATA2 mediated activation of
the tryptase gene locus at a−72.8 kb region.

Transcriptional regulation of the mucosal mast cell proteases
Mcpt1 and Mcpt2 genes after TGF-β stimulation was examined
recently. Authors found a suppression of both Mcpt1 and Mcpt2
gene expression upon siRNA targeting SMAD2 or SMAD4
transcription factors, while a moderate reduction in presence of
SMAD3 siRNA in BMMCs (130). Similar to SMAD transcription

factors, knockdown of GATA proteins (GATA1 and GATA2) also
diminished the expression ofMcpt1 andMcpt2 in BMMCs in the
same study. Specifically, the distal regions of both genes harbored
the conserved GATA-SMAD motifs and binding of TFs to these
regions was enhanced by TGF-β stimulation (130).

Cytokines
Stimulation of mast cells via their high affinity IgE receptor
(FcεRI), results in the release of inflammatory mediators and
cytokines including IL-4, IL-5, IL-13, and TNF-α that mediate a
variety of allergic functions (143, 144). Due to their critical role in
modulating mast cell functions, the transcriptional network that
controls mast cell cytokine genes has been extensively studied.

Interleukin 4 (IL-4) was the first secreted cytokine identified
in mast cells (145). Several studies have shown that induction
of high affinity IgE receptor (FcεRI) stimulated IL-4 secretion,
which then augmented the capacity of mast cells to secrete
other cytokines such as IL-5 and IL-13 (146–148). IL-33 and
lectins also stimulated IL-4 secretion from mast cells (31, 149,
150). Importantly, it was shown that mast cells produce IL-4
independent of STAT6 (124). Furthermore, a study describes
an isoform of STAT6 expressed in mast cells that represses IL-
4 transcription. STAT6-mediated repression is anticipated to
protect tissues from IL-4 mediated inflammation caused by mast
cell stimulation during an infection (46).

It is worth noting that, distinct from IL-4 regulation in T cells,
several transcription factors such as GATA1/2, NFAT2, PU.1,
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FIGURE 2 | Binding sites of transcription factors on mast cell genes (Tryptase, Tpsb2, Mcpt1, Mcpt2, and IL-9). MITF binds on two locations upstream of tryptase

gene promoter (−817–715 and −421–202) on E-box motif (CACCTG). GATA1 and GATA2 bind three locations upstream of Tpsb2 gene (−72.8, −63.4, and,1.1 kb).

GATA2-SMAD4 occupy a region at >-3 kb upstream of Mcpt1/Mcpt2 promoter. GATA1-STAT5 bind to a CNS-25 regulatory region at IL-9 gene loci.

and Ikaros (zinc finger transcription factor) have been identified
to bind at the gene locus and induce IL-4 production by mast
cells (132, 151, 152). Similar to IL-4 gene regulation, several
studies have examined transcription factors that regulate IL-13
transcription. One of the studies identified the role of NFAT1 as
the major transcriptional regulator of IL-13 expression in mast
cells (153). Although, NFAT2 is also expressed in mast cells, it is
less likely to exert transcriptional control on the IL-13 gene than
NFAT1. Importantly, it was found that the differential regulation
between NFAT1 and NFAT2 was attributed to a synergistic
interaction of NFAT1 with GATA factors at the IL-13 promoter
to stabilize NFAT1 binding (153). In contrast, another report
provided evidence for NFAT1 and NFAT2 mediated induction of
TNF-α and IL-13 promoters irrespective of which NFAT family
member was expressed (154).

IL-9 is a pleiotropic cytokine implicated in mast cell
development and an important mediator of allergic diseases
(125, 155, 156). It was first characterized as a T-cell and mast
cell growth factor and was termed as P40 due to its molecular

weight (157). It was previously observed that IL-9 along with
activated c-kit and FcεRI enhances expression of proteases and
other inflammatory cytokines in mast cells (158).

Involvement of IL-9 inmast cell mediated diseases has spurred
interest in various groups to explore its transcriptional regulation
in allergic mouse models where it is expressed in several cell types
including mast cells. A recent study from our group has analyzed
IL-9 gene regulatory element (IL-9 CNS-25) in mast cells and
basophils. The CNS-25 enhancer was found to be a potent
regulator of transcriptional and epigenetic modification at the
IL-9 gene locus (159). The study further elaborated preferential
binding of STAT5 andGATA1 to the CNS-25 enhancer compared
to the IL-9 promoter in mast cells and a requirement for GATA1
in IL-9 production (Figure 2). Thus, both STAT5 and GATA1
contribute to IL-9 production in mast cells.

A review on IL-9 regulation from our group elaborates the
various transcription factors that activate IL-9 gene in mast
cells and T cells (160). LPS and IL-1 stimulation markedly
induced IL-9 production from mast cells. Notably, the IL-9
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TABLE 2 | Structural features and biochemical functions of transcription factors.

Transcription

factor

Structural features Consensus DNA binding

sequence

Biochemical functions Reference

GATA

family

Zinc finger DNA binding proteins (T/A)GATA(A/G) proliferation and maintenance of

hematopoietic and mast cells

(47)

Ets family winged-helix-turn-helix motif

containing protein

purine rich “GGA” core trinucleotide regulate cell growth, apoptosis,

development, differentiation and

oncogenic transformation

(63, 64)

MITF helix-loop-helix (HLH)domain

containing protein

M-boxes (5′-TCATGTGCT-3′) differentiation of common

basophil/mast cell committed

progenitors (BMCPs) into mast cells

(164)

BATF basic leucine zipper transcription

factor

TGA(C/G)TCA) or (CRE:

TGACGTCA)

differentiation of lymphocyte lineage

cells (B cells, Th cells and mast

cells)

(165)

STAT5 member of JAK-STAT pathway TTCN3GAA on Bcl-x promoter cell differentiation, lymphocyte and

mast cell development

(166–168)

AP-1 basic leucine zipper (bZIP) proteins TGAG/CTCA differentiation, proliferation, and

apoptosis

(112)

promoter harbored binding sites for key transcription factors
such as NF-κB and GATA1 via p38 MAP kinase dependent
pathway (161–163). The transcription factors regulatingmast cell
cytokine genes are only beginning to be explored and require
more in depth understanding of mechanistic pathways that
contribute to their functional roles. Therefore, further advances
in defining the role and targets of various transcription factors
will promote clarity in the regulation of key genes associated to
mast cell functions.

CONCLUDING REMARKS

Transcription factors play a critical role inmast cell development,
survival, and function during physiological and pathological
conditions. Considerable progress has been made to understand
the activity and impact of these factors on mast cell-dependent
allergic functions. Table 1 summarizes the key transcription
factors and the impact of their deficiency on mast cell
phenotypes. Several of these factors work in a cooperative
manner along with other transcription factors and chromatin
modifying proteins to control their target gene expression.

Table 2 summarizes the structural features and biochemical
functions of key transcription factors that regulate maturation
and function of mast cells. How chromatin in mast cells differs
among various tissue sites and how that compares to other cells
types has still not been extensively examined. This might yield
further insights into the specialization of tissue-specific mast cell
functions. Additional efforts to define these protein partners will
facilitate identification of novel targets and clinical approaches
for mast cell pathologies. Further areas of investigation to study
the mechanism regulating the network of these transcription
factors in mast cells will lead to better understanding of the
pro-allergic functions of mast cells.
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