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Simple Summary: Cutaneous squamous cell carcinoma (CSCC) is the second most frequent cancer
in humans. The therapeutic landscape of CSCC has change in recent years, after the approval of
immune checkpoint inhibitors (ICI) in advanced CSCC. However, not all patients will respond to ICI,
and those who respond may develop resistance over time. Understanding the predictors of response
to immunotherapy and the mechanisms underlying primary and acquired resistance to ICIs may
help identify which patients could best benefit from these therapies. Many treatment strategies are
under development to overcome resistance to immunotherapy, such as immune checkpoint inhibitors
plus vaccines, oncolytic virus, radiotherapy, chemotherapy, or tumor microenvironment modulators.

Abstract: Cutaneous squamous cell carcinoma (CSCC) is the second most frequent cancer in humans,
and is now responsible for as many deaths as melanoma. Immunotherapy has changed the therapeu-
tic landscape of advanced CSCC after the FDA approval of anti-PD1 molecules for the treatment of
locally advanced and metastatic CSCC. However, roughly 50% of patients will not respond to this
systemic treatment and even those who do respond can develop resistance over time. The etiologies
of primary and secondary resistance to immunotherapy involve changes in the neoplastic cells and
the tumor microenvironment. Indirect modulation of immune system activation with new therapies,
such as vaccines, oncolytic viruses, and new immunotherapeutic agents, and direct modulation of
tumor immunogenicity using other systemic treatments or radiotherapy are now under evaluation
in combined regimens. The identification of predictors of response is an important area of research.
In this review, we focus on the features associated with the response to immunotherapy, and the
evaluation of combination treatments and new molecules, a more thorough knowledge of which is
likely to improve the survival of patients with advanced CSCC.

Keywords: cutaneous squamous cell carcinoma; immunotherapy; anti-PD1; biomarkers; predictive
medicine; personalized medicine; cancer; immune system
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1. Introduction

Cutaneous squamous cell carcinoma (CSCC) is the second most frequent cancer in
humans, with an estimated annual incidence of one million cases in the US and the cause of
as many as 9000 deaths each year [1,2]. Its incidence is increasing by 3–8% per year in most
countries [3] and, by 2030, the rate in Europe is expected to have doubled [4]. Although
CSCC generally exhibits a benign clinical behavior, some cases may entail a poor prognosis.
Local recurrence is estimated to occur in 5% of patients, lymph node metastasis in 3.7 to
5.8% and disease-specific death in 1.5 to 2.1% of cases [5,6]. CSCC is already a public health
concern worldwide, and as life expectancy lengthens in general, it will become an even
greater health problem.

CSCC is especially common in elderly fair-skin men. It is associated with chronic sun
exposure, and immunosuppression represents a major risk factor. Actinic keratosis is the
most significant independent risk factor for CSCC development. Human papillomavirus
infection [7], long-term scars, and inflammatory skin conditions are other well-known risk
factors [8].

Ultraviolet exposure induces P53 mutations and genomic instability. Consequently,
mutations occur in tumor suppressor genes (such as CDKN2A and NOTCH) and oncogenes
(such as RAS). The accumulation of mutations causes deregulation of relevant oncogenic
pathways (EGFR overexpression and activation of MAPK and PI3K/mTOR pathways),
which results in CSCC development. Epigenetic factors, such as the methylation status
and the role of miRNAs, also contribute to CSCC development [9,10]. CSCC is the solid
tumor with the highest mutational burden [11], which is part of the rationale that led
to immunotherapy.

Immunotherapy has changed the therapeutic landscape of CSCC in recent years.
Patients with locally advanced or metastatic CSCC who would not benefit from surgery are
now candidates for immune checkpoint inhibitors (only two anti-PD1 drugs are currently
FDA-approved) [12]. However, not all patients respond to immunotherapy, and some
begin to respond but develop resistance over time. Reasons underlying this primary
and acquired resistance to immunotherapy are a matter of intensive research [13,14]. It
is also important to identify which patients would most benefit from these treatments,
which is why research on biomarker signatures has become a priority. Finally, novel
therapies to overcome resistance to immunotherapy and to increase the response rate
and maintain remission once it has been achieved are being evaluated. Combinations of
immune checkpoint inhibitors (ICIs) and of ICIs with other therapies (such as radiotherapy,
chemotherapy and targeted therapy), together with cancer vaccines and oncolytic viruses
make up the new treatment options under evaluation in clinical trials, many of which are
yielding promising results [15].

In this review, we first describe the current evidence about immunotherapy in CSCC.
We then summarize the predictors of response to immunotherapy. Finally, we discuss the
state-of-the-art of the known mechanisms of resistance to immunotherapy and several
therapies for overcoming resistance that are under investigation, paying particular attention
to novel therapies in CSCC.

2. Immunotherapy in Cutaneous Squamous Cell Carcinoma
2.1. Immune Checkpoint Inhibitors in Cutaneous Squamous Cell Carcinoma
2.1.1. Cancer Immunotherapy and Tumor Immunology

Immunotherapy has become an established mainstream treatment for in cancer and
has improved the prognosis and survival of many patients, including those with hema-
tological dyscrasias and solid malignances. Tumor cells produce neoantigens that are
recognized and targeted by the immune system as foreign molecules, thereby prevent-
ing carcinogenesis.

Antigen-presenting cells (APCs) offer tumor neoantigens to the T-cell receptor (TCR)
in naïve T cells through the major histocompatibility complex (MHC) (human leucocyte
antigen, HLA). To complete T-cell activation, other co-stimulatory molecules are necessary.
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CD28 and B7 (CD80/CD86) are two such molecules that are required for full T-cell acti-
vation. However, co-inhibitory molecules that act as immune checkpoints are important
for avoiding hyperstimulation and autoimmunity. For example, the CTLA-4 receptor is
expressed in activated and regulatory T cells and competes with CD28 for B7, thereby
preventing T-cell hyperactivation [16–18]. PD-1 also acts as a co-inhibitory receptor. It is
expressed in T cells and binds to its ligand PD-L1, which is mainly expressed in tumor
cells, thus preventing T-cell activation and inducing immunological exhaustion [19–21]
(Figure 1).

Figure 1. Scheme of co-stimulatory and co-inhibitory receptors implicated in the immune response.
Created using BioRender.

In this context, the immune system can recognize the tumor and fight against it
(immunosurveillance). However, if this process is not successful, tumor cells may enter
into an equilibrium phase, with incomplete tumor destruction and finally, the tumor may
escape to immune control. This dynamic process is known as immunoediting. The cancer
immunoediting hypothesis postulates a dual role of the immune system: first, it protects the
host by eliminating tumor cells, and second, it promotes tumor development by selecting
tumor variants with reduced immunogenicity [22,23].

One of the ways in which tumor cells actively evade their destruction by the im-
mune system is expressing these molecules that inhibit T-cell activation and response. The
study of these mechanisms has allowed important advances to develop antibodies against
CTLA-4, PD-1 and PD-L1, which have revolutionized oncology in recent years. Seven
immune checkpoints inhibitors have so far received FDA approval for use with different
types of cancer: one CTLA-4 inhibitor (ipilimumab), three PD-1 inhibitors (nivolumab,
pembrolizumab, and cemiplimab) and three PD-L1 inhibitors (atezolizumab, durvalumab,
and avelumab). However, many molecules (e.g., 4-1BB, OX40, LAG3, ICOS) are involved
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in T-cell activation [24] (Figure 1), and other drugs against them are being evaluated
and developed.

2.1.2. Immunotherapy in CSCC

CSCC exhibits the greatest tumor mutational burden, which results in higher levels of
tumor neoantigens that may be targeted by the immune system [11]. Immunocompromised
patients have a higher risk of developing CSCC because their immune system is less efficient
detecting and destroying cancer cells [8]. Both these factors underpin the rationale for
testing immunotherapy for CSCC.

The FDA (2018) and EMA (2019) approved cemiplimab (Libtayo) as the first im-
munotherapeutic drug for the treatment of locally advanced or metastatic CSCC in patients
who are not candidates for curative surgery or radiotherapy [25,26]. Cemiplimab is a
high-affinity human monoclonal antibody directed against PD-1. The robust responsive-
ness of CSCCs to cemiplimab was demonstrated in expanded phase 1 and phase 2 trials
(NCT02383212 and NCT02760498). In these clinical trials, the response rates were between
41% and 53% and the rates of durable disease control were between 57% and 65%. The
efficacy of the treatment of metastatic and of locally advanced cutaneous squamous cell
carcinoma was similar [27–30]. The second anti-PD-1 approved by the FDA, in 2020, is
pembrolizumab (Keytruda). This drug has been accepted for use in patients with recurrent
or metastatic CSCC that cannot be cured with surgery or radiation [31]. Its antitumor activ-
ity and durable response were established in the KEYNOTE-629 and CARSKIN clinical
trials (NCT03284424 and NCT02883556) in which the response rates were 34.3% and 42%
and the disease control rates were 52.4% and 60%, respectively [32,33].

The other ICIs, such as nivolumab and ipilimumab, have also been studied in clinical
trials and have proved their efficacy in monotherapy in some case reports [34–36]. The
greatest advantages of immune checkpoint blockers have been impressive durable response
rates and manageable treatment-related adverse events compared with conventional thera-
pies [37].

2.2. Predictors of Response to Immunotherapy

About 50% of cancers will not respond to immunotherapy, so identifying predictors
of response for checkpoint blockade-based immunotherapy has become a research priority.
This will identify the patients who would respond best to the treatment, and thereby help
maximize the therapeutic benefit. In recent years, numerous response predictors based on
the gene expression status of the tumor (PD-L1 and IFN-γ expression), genomic changes
(tumor mutational burden, T cell receptor clonality, neoantigen load and tumor aneuploidy)
and immune cell infiltration have been found [38]. Biomarkers in peripheral blood are also
being explored as non-invasive techniques (Table 1 and Figure 2).

2.2.1. Tumor-Associated Markers
PD-L1 Status

High levels of PD-L1, detected by immunohistochemistry, are associated with the
response to immunotherapy in melanoma, non-small cell lung carcinoma (NSCLC), renal
cell carcinoma, colorectal carcinoma, and castration-resistant prostate cancer [39–42]. How-
ever, some studies have shown that the association with response varies over time and
with the tumor type, and a sizable proportion of responses occur in PD-L1-low/negative
tumors [43]. In CSCC, response to cemiplimab is independent of PD-L1 status, and durable
disease control is similar in patients with <1% of PD-L1 expression and those with >50%
PD-L1 expression [30]. Expression levels of PD-L1 are intratumorally heterogeneous and
dynamic. The variety of antibody clones and platforms used the multiple scoring criteria
and the variations in methodology make it difficult to interpret PD-L1 levels [44].
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Table 1. Predictors of response to immunotherapy.

Category Predictors Correlation Advantages (and Approved Tests by FDA) Disadvantages References

Tumor-associated
markers

PD-L1 status High levels of PD-L1 are correlated with response
to anti-PD-L1/PD-1 inhibitors

Immunohistochemistry detection is easy, cheap and automated
Approved in NSCLC to treat with pembrolizumab, cemiplimab,

atezolizumab or nivolumab in combination with ipilimumab
Approved in urothelial carcinoma to treat with pembrolizumab,

cemiplimab or atezolizumab
Approved in triple-negative breast cancer to treat with

pembrolizumab, cemiplimab, or atezolizumab
Approved in gastric carcinoma, cervical cancer, HNSCC and

ESCC to treat with pembrolizumab or cemiplimab

PD-L1-negative tumors also respond
to anti-PD-L1 therapy

PD-L1 expression is intratumorally
heterogeneous and dynamic

Different antibody clones and
platforms used Multiple score criteria

Methodological variabilities

[39–45]

IFN-y expression High levels of IFN-y expression are correlated with
response to anti-PD-1 therapies

Higher capacity to detect patients who will respond to
immunotherapy than PD-L1 immunohistochemistry

No standardized commercially
available gene panel

Expensive
[46–50]

Tumor mutational
burden

High levels of TMB are correlated with response to anti-CTLA-4
and anti PD-1/PD-L1 therapy (except glioma)

Applicable to most solid tumors and anti-CTLA4,
anti-PD-L1 and anti-PD-1 therapies

Approved for treating high-TMB solid
tumors with pembrolizumab

Low-TMB tumors also respond
to immunotherapy

Whole-exome sequencing or sequencing
of 300–400 genes panels is expensive

Difficult to establish a threshold for all
types of cancer

[51–63]

Neoantigen load High levels of neoantigen load are correlated with
response to immunotherapy

Knowledge of the landscape of neoantigens to
use a precision medicine approach

Complex technology
High mutation load is not always

correlated with response
[64–67]

Tumor-infiltrating
lymphocytes

High levels of CD8+ T cells, high ratio of CD8+/CD4+ T cells
and high levels of CD8+/PD-L1+/CTLA-4+ lymphocytes are
correlated with response to pembrolizumab and nivolumab

Easily detected by immunohistochemistry
or hematoxylin-eosin staining

Inter- and intra-observer variability
in hematoxylin-eosin and

immunohistochemistry samples
Score criteria not validated

[68–72]

Liquid biopsy
markers

Immunophenotypic
profile

High levels of CD4+ and CD8+ T lymphocytes and low levels of
neutrophils, myeloid and monocyte precursor and Treg/FoxP3+

lymphocytes are correlated with response to ipilimumab
High levels of eosinophils and high total lymphocyte count are

correlated with response to pembrolizumab
Low levels of LDH are correlated with response to

ipilimumab and pembrolizumab

Ease of sample collection, non-invasive
Possibility of collecting samples at different

times during treatment
Cheap

Not validated in clinical practice [73–78]

Cytokines and
chemokines

High levels of IL-6 reduce the probability of responding to ipilimumab
Early decrease in IL-8 is associated with best response to nivolumab

or pembrolizumab

Ease of sample collection, non-invasive
Possibility of collecting samples at different

times during treatment
Cheap

Not validated in clinical practice [79–82]

Circulating tumor
DNA and circulating

tumor cells

Low basal levels of ctDNA are correlated with good prognosis
and best clinical response to immunotherapy

High blood-based TMB measured in circulating tumor DNA
are correlated with response to ICIs

A reduction of circulating tumor cells improves progression-free
survival during pembrolizumab or ipilimumab treatment

Patients with CTCs/PD-L1+ have better progression-free survival
when receiving pembrolizumab

Ease of sample collection, non-invasive
Possibility of collecting samples at different

times during treatment
Cheap

Test approved to measure TMB in liquid biopsy samples

Not validated in clinical practice [45,83–90]

Soluble markers Higher sPD-L1 plasma level is associated with poor prognosis
and lower nivolumab efficacy

Ease of sample collection, non-invasive
Possibility of collecting samples at different

times during treatment
Cheap

Not validated in clinical practice [91,92]
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PD-L1 is one of the biomarkers currently approved for clinical use, but only to identify
PD-L1 tumor expression in certain tumor types, specifically in: NSCLC for treatment
with pembrolizumab, cemiplimab, atezolizumab or nivolumab in combination with ip-
ilimumab; urothelial carcinoma and triple-negative breast cancer (TNBC) for treatment
with pembrolizumab, cemiplimab or atezolizumab; and gastric adenocarcinoma, cervical
cancer, head and neck squamous cell carcinoma (HNSCC) and esophageal squamous cell
carcinoma for treatment with pembrolizumab or cemiplimab [45].

Interferon-Gamma Expression

PD-L1 expression may be upregulated via interferon-gamma (IFN-γ). IFN-γ produced
from CD8+ T cells drives IL-12 production by tumor-infiltrating dendritic cells, which are
necessary to a successful anti-PD-1 therapy [46]. In NSCLC and melanoma, patients with
a high level of mRNA expression of IFNG (the gene that encodes IFN-γ) exhibit longer
progression-free and overall survival and have higher disease control rates with anti-PD-1
therapies [47]. In several solid tumors, responders and non-responders to pembrolizumab
can be distinguished on the basis of the different levels of expression of genes associated
with IFN-γ [48]. The 18-gene IFN-γ characterized by this group is better than PD-L1
immunohistochemistry at identifying patients who will respond to immunotherapy [48].
However, more experiments, currently being carried out [49,50], are needed to make clinical
implementation possible.

Tumor Mutational Burden

A high tumor mutational burden (TMB) is also associated with response to ICI and
improved overall survival in melanoma [51,52], NSCLC [53], urothelial carcinoma [54],
among other cancers [55,56]. CSCC displays the greatest tumor mutational burden, and
a large TMB has been linked to a good clinical response to immunotherapy [11,57,58].
Nevertheless, some patients with a large TMB may not respond to ICI therapy [30,59]. In
some tumors, such as glioma, TMB is associated with shorter overall survival [60,61]. One
advantage of TMB is that it can predict responses to CTLA-4 antibodies and PD-1/PD-1
inhibitors, but measuring TMB by whole exome sequencing or by sequencing 300–400-gene
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panels is an expensive and not routinely available option. Moreover, it is difficult to estab-
lish a threshold for all cancer types, hampering standardization of the technique [60,62].
Nonetheless, FDA approved FoundationOne CDx to identify patients with unresectable
or metastatic solid tumors with a high mutational burden (≥10 mutations/megabase) for
whom treatment with pembrolizumab may be appropriate [63].

Neoantigen Load

High TMB increases the capacity of the tumor to generate new neoantigens. Tumors
loaded with more neoantigens are more likely to respond to immunotherapy [64–66].
Knowledge of the neoantigen landscape, derived from proteomic experiments and com-
putational predictive algorithms [43,67], may enable us to adopt a precision-medicine
approach, although the technology required is complex.

Tumor-Infiltrating Lymphocytes

Tumor-infiltrating lymphocytes (TILs) play an important role in the response to
immunotherapy. TILs comprise primarily CD8+ cytotoxic T cells and CD4+ helper T cells,
including regulatory T cells (Tregs), which are exemplified by the expression of FOXP3 and
CD25. TILs also encompass a smaller proportion of B and natural killer cells. In melanoma,
preexisting CD8+ T cells at the invasive front (the edge of the tumor) are essential for tumor
regression following pembrolizumab therapy [68]. In melanoma, patients treated with
PD-1 antibodies have a response rate of 78.6% when pretreatment tumor biopsies contain
more than 20% of tumor-infiltrating CD8+ T cells that express high levels of PD-1 and
CTLA-4, in contrast to non-responders, who feature fewer than 20% of these cells and a 0%
response rate [69]. In metastatic NSCLC and melanoma treated with pembrolizumab or
nivolumab, the response rates are low (13.3 and 0%, respectively) when the pretreatment
CD8+/CD4+ TIL ratio is less than 2, whereas they are high (50.0 and 81.3%, respectively)
when the ratio is greater than 2 in NSCLC and greater than 2.7 in melanoma [70]. The
customary evaluation of TILs using hematoxylin-eosin and immunohistochemistry has
revealed notable inter- and intra-observer variability. New tools based on flow cytometry,
RNA-sequencing and digitalization of images are being developed to validate and promote
an immunoscore-based method [71,72].

2.2.2. Liquid Biopsy Markers

Most of the data on prediction of response to immunotherapy have focused on tumor
features. Nevertheless, tumors are sometimes less accessible, and the role of the host
immune system is a critical consideration. Determining the host immunological profile in
blood samples allows assessment of the tumor immunovigilance state, the risk of tumor
progression, and the response to treatment, which can help in establishing a panel of
biomarkers that predict response.

Immunophenotypic Profile

We currently know little about the immunological profile of patients receiving treat-
ment with cemiplimab and pembrolizumab in CSCC, and most of the information available
comes from studies in melanoma. In this disease, some baseline laboratory markers have
been linked to the response to ipilimumab (such as high levels of CD4+ and CD8+ T
lymphocytes [73], low levels of neutrophils and LDH [74], myeloid and monocyte precur-
sors [75]) and to the response to pembrolizumab (such as high eosinophil levels, low LDH
levels, and high total lymphocyte count [76]). Furthermore, changes in the immune profile
during treatment have implications for the prognosis of the disease, such as a reduction in
Treg/FoxP3+ lymphocyte levels and an increase in the overall lymphocyte count [77], or
an increase in the total lymphocyte and eosinophil counts [78].
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Cytokines and Chemokines

The profile of peripheral blood cytokines and chemokines, which is related to the
immune cell populations, offers an opportunity to define the prognosis of the disease. The
level of expression of certain cytokines is known to be associated with better responses [79].
In melanoma, high levels of IL-6 reduce the likelihood of response to ipilimumab [80].
In melanoma and NSCLC patients, an early decrease in IL-8 is associated with the best
response to nivolumab and pembrolizumab [81]. IL-8 is a powerful chemoattractant for
neutrophils and other immune-suppressive cells and elevated baseline levels of serum IL-8
correlate with reduced clinical benefit of ICI in different advancer cancer [82].

Circulating Tumor DNA and Circulating Tumor Cells

Circulating tumor DNA (ctDNA) is one of the most reliable biomarkers available
in liquid biopsy. Low basal levels of ctDNA are correlated with good prognosis and
best clinical response in melanoma [83,84] and other solid tumors [85]. The TMB can be
measured in ctDNA [86] and the FDA recently approved FoundationOne Liquid CDx and
Guardant360 CDx [45] for comprehensive tumor mutation profiling through liquid biopsy
sampling. Patients with high levels of blood-based TMB respond better to ICIs [87,88],
although this is not well established for all types of cancer; the concordance of blood-TMB
and tissue-TMB is currently being examined.

Circulating tumor cells (CTCs) also identify responders and non-responders. A re-
duction in CTC frequency during pembrolizumab or ipilimumab treatment improves
progression-free survival and high quantities of CTCs are related to a higher risk of re-
lapse [89]. In CTCs, PD-L1 expression can be determined and patients with CTCs/PD-L1+
have better progression-free survival than CTCs/PD-L1- patients when they receive pem-
brolizumab [90].

Soluble Markers

Soluble forms of many immune regulatory molecules, both co-stimulatory and co-
inhibitory molecules, including sCTLA4 and sPD-L1, are detected in plasma of cancer
patients. Higher sPD-L1 plasma levels are associated with poor prognosis in melanoma [91]
and with lower nivolumab efficacy in NSCLC [92].

The combination of biomarkers may have greater predictive power than the individual
markers [93,94]. A recent meta-analysis published reveals a model that combines 11 factors
to predict sensitization to ICI. The multivariable model includes clonal, frameshift inser-
tion/deletion and nonsense-mediated decay-escaping TMB, signatures associated with
tobacco, UV, APOBEC and T cell-related inflammation, sex, and gene expression values
for CD8A, CXCL9, and PD-L1, with better predictive value than one factor alone [95].
An integrated approach with new bioinformatic tools can help us stratify patients and
select the best treatment. This will tell us which patients will, or will not, respond to
ICI monotherapy. Some of those who do not respond may benefit from new therapies
that are being developed to overcome resistance to immunotherapy. We discuss these
therapies below.

3. Mechanisms of Resistance to Immunotherapy

Despite the success of immune checkpoint inhibitors, some patients treated with
ICIs do not benefit from treatment (primary resistance), and some of those who initially
do, become resistant over time (acquired resistance) (Table 2 and Figure 2). Primary and
acquired resistance are both a result of complex and constant interactions between cancer
cells and the tumor microenvironment. Understanding the mechanisms by which this
resistance occurs is essential for developing strategies to overcome resistance.
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Table 2. Mechanisms of resistance to immunotherapy.

Type of resistance Category Factor Relation References

Primary resistance
to immunotherapy

Patient-intrinsic
factor

Immunosenescence Aging limits immune response [96–100]

HLA genotype Homozygosity in at least one HLA-I locus
is associated with poor response to ICIs [101,102]

Host microbiome Changes in diversity and abundance of host
microbiome modify the response to ICIs [103–105]

Tumor cell-intrinsic
factor

Downregulation of HLA expression Loss of HLA-I expression reduces
T-cell response [106,107]

Alteration of oncological
signaling pathways

Abnormal expression of MAPK pathway,
loss of PTEN, constitutive

WNT/β-catenin expression, JAK1/2
mutations and loss of IFN-γ are involved

in resistance to ICIs

[108–115]

Tumor cell-extrinsic
factor

Inadequate T-cell infiltration Absence of T cells near the tumor reduces
T cell response [116]

Presence of immunosuppressive cells

High level of infiltration of Treg, MDSCs
and TAM suppress T-cell activation and is

correlated with poor prognosis and
resistance to ICIs

[117–125]

Acquired resistance
to immunotherapy

Tumor cell-intrinsic
factor

Changes in HLA expression Mutations in β2-microglobulin are
associated with acquired resistance to ICIs [126–131]

Defects of IFN-γ signaling
Escape mutations in IFN-γ pathway result

in loss of HLA-I and PD-L1 expression
and ICI resistance

[128,132]

Mutations in genes that
encode tumor neoantigens

Mutations in genes that encode tumor
neoantigens reduce tumor recognition by

immune system, leading to immune
evasion and clinical progression

[133,134]

Upregulation of other immune
checkpoint receptors Upregulation of TIM3 and LAG [135]

Alteration of oncological
signaling pathways

Loss of PTEN and increase in
WNT/β-catenin expression are

linked to acquired resistance
[136]

3.1. Primary Resistance to Immune Checkpoint Inhibitors

In primary resistance, patients do not respond at all to ICIs, facilitating the progress
of the disease. The response rate to single-agent immune checkpoint blockade ranges
from 40 to 70% in different types of cancer. Patient-intrinsic factors (such as age, HLA
genotype and gut microbiome), tumor cell-intrinsic factors (such as insufficient tumor
antigenicity, loss of HLA expression and alterations of several signaling pathways) and
tumor cell-extrinsic factors (such as changes in tumor-associated stroma) are involved in
primary resistance to immunotherapy [13,14,137].

3.1.1. Patient-Intrinsic Factors
Immunosenescence

As patients age, their immune system function becomes increasingly limited. This
process, known as immunosenescence, is characterized by significant effects upon innate
and adaptive immune responses.

With respect to innate immunity, aging produces changes in monocytes and macrophages
(reduced phagocytic activity, HLA II expression and ROS production), dendritic cells
(slower maturation and reduced antigen presentation, defective TLR expression and sig-
naling) and neutrophils (reduced chemotaxis and altered TLR expression).

The adaptive response is limited by a drop in the frequencies of naïve B and T cells
and a rise in those of senescent and exhausted T cells, Treg and myeloid-derived suppressor
cells (MDSCs) [96–98]. All these changes compromise clonal expansion and cytokine and
antibody production, weakening the immune response.
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The results of clinical trials in this area are variable. The elderly group is under-
represented because their co-morbidities are sometimes exclusion criteria. However, in
patients older than 75 years, resistance to anti-PD-1/anti-PD-L1 therapy has been observed
in squamous cell carcinoma and adenocarcinoma of the lung, renal cell carcinoma and
squamous cell carcinoma of the digestive tract. Nevertheless, two other studies in NSCLC
reported the same benefit in the elderly as that seen in younger individuals [99,100].

HLA Haplotypes

The human leukocyte antigen class I (HLA-I) genotype is linked to differential im-
mune responses, including different responses to ICIs. Homozygosity in at least one HLA-I
locus in patients treated with anti-CTLA-4, anti-PD-1, anti-PD-L1 or with a combination of
ICIs for different types of cancer (mostly melanoma and NSCLC) is associated with shorter
overall survival. Conversely, maximal heterozygosity at HLA-I loci with a high TMB is as-
sociated with extended survival after ICI treatment [101]. Moreover, HLA-I genotype with
two alleles with more divergent sequences, measured as HLA-I evolutionary divergence
(HED), enables presentation of more diverse immunopeptidomes and is correlated with
better survival after treatment with ICIs [102].

Host Microbiome

Links between the host microbiome and the response to ICIs have emerged in re-
cent years [103]. In melanoma, patients treated with anti-PD-1 with highly diverse and
abundant Faecalibacterium have enhanced systemic and anti-tumor responses mediated
by increased antigen presentation. In contrast, patients with low Bacteroidales diversity
have impaired anti-tumor immune responses mediated by limited intratumoral lymphoid
and myeloid infiltration and higher frequencies of Treg cells and MDSCs in blood [104].
Other bacterial species found to be more abundant in responders include Bifidobacterium
longum, Collinsella aerofaciens, and Enterococcus faecium [105].

3.1.2. Tumor-Associated Factors
Tumor Cell-Intrinsic Factors

Tumor cell-intrinsic factors are involved in primary resistance. The loss of HLA
expression, the alteration in antigen processing machinery, the lack of antigenic mutations,
the constitutive PD-L1 expression and the alteration in particular signaling pathways are
the most significant tumor-intrinsic factors [137].

Tumor cells can avoid being attacked by T cells by downregulating HLA expression.
An HLA-low phenotype has been observed in NSCLC, breast, prostate and colorectal
cancers, HNSCC, hepatocellular carcinoma and melanoma. Several genes, such as TAP1,
TAP2, B2M, TAPBPR, ERAP1, are involved in the synthesis, assembly, transport and surface
expression of HLA I molecules, and defects in the HLA I pathways may result in the loss
of 0 to 93% of HLA I expression in different types of cancer [106]. Losing HLA I antigen
presentation machinery makes CD8 T cells unable to identify tumor cells, thereby making
it possible for cancers to evade immune control. Loss of antigenicity is also associated with
a loss of immunogenicity, due to low tumor mutational burden [107].

Alternation in oncological signaling pathways may result in resistance to ICIs. Abnor-
mal expression of the mitogen-activated protein kinase (MAPK) pathway is associated with
impaired recruitment and function of tumor infiltrate lymphocytes through expression
of VEGF and other inhibitory cytokines [108,109]. In this context, it has been shown that
melanomas become resistant to immunotherapy when they have previously acquired
resistance to MAPK targeted therapy, in a process knowing as cross-resistance. It is due
to a reactivated MAPK pathway and the induction of an immunosuppressive tumor mi-
croenvironment that lacks functional CD103+ dendritic cells, precluding an effective T cell
response [110]. Similarly, loss of PTEN, which enhances PI3K signaling, is associated with
resistance to immune checkpoint therapy [111]. The resistance due to PTEN deficiency is
associated with high levels of VEGFA and STAT3 [112], stronger PD-L1 expression [113]
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and lower CD8+ T-cell density [112]. Constitutive WNT/β-catenin expression reduces
expression of the cytokine CCL4 necessary to recruit CD103+ dendritic cells, which are
involved in T-cell priming [114]. The occurrence of somatic JAK1/2 mutations in cancer
cells leads to loss of IFN-γ signaling, making it another mechanism producing primary
resistance to PD-1 blockade therapy [115].

Tumor Cell Extrinsic Factors

Tumor cells do not work alone but in conjunction with their environment, interacting
with the extracellular matrix within the stroma and with the immune cells of the tumor
microenvironment. The absence of T cells near the tumor, the presence of immunosup-
pressive cells and the expression of different inhibitory immune checkpoints have all been
implicated in primary resistance.

Inadequate T-cell infiltration may be due to a variety of factors such as poor immuno-
genicity, downregulation of chemokines required for T-cell recruitment (CXCR3, CXCL9,
CXCL10) by epigenetic silencing and upregulation of the endothelin B receptor or VEGF
overexpression [116]. T-cell function may be hindered by the presence of immunosup-
pressive cells in the tumor microenvironment. Tregs are known to suppress effector T-cell
responses by secreting certain inhibitory cytokines such as IL-10, IL-35 and TGF-B, or by
direct cell contact [117]. Greater infiltration of Tregs in the tumor is correlated with poor
prognosis [118] and primary resistance to anti-PD-1 therapy [119]. MDSCs, a group of
immature myeloid cells with suppressive competence in the tumor microenvironment,
have been implicated in angiogenesis, tumor cell invasion, and metastasis [120]. Accu-
mulation of circulating MDSCs is negatively associated with ICI efficacy [75,121,122] and
eradicating them could enhance clinical responses to immunotherapy. Tumor-associated
macrophages (TAMs) also suppress T-cell activation and promote angiogenesis, contribut-
ing to immunotherapy resistance by overexpressing PD-1/PD-L1, TGF-β, VEGF, EGF,
and MMP [123,124]. All these immune cells can express other co-inhibitors such as TIM-3,
CTLA-4 and TIGHT to mediate tumor immune resistance. Moreover, peritumoral fibroblast
that express TGFβ are also implicated in poor response and resistance to atezolizumab
prohibiting infiltration of effector CD8+ T cells into the tumor parenchyma [125].

3.2. Acquired Resistance to Immune Checkpoint Inhibitors

Numerous patients respond to immunotherapy but develop resistance over time. For
example, in melanoma patients treated with ipilimumab and nivolumab, 38% of those
who responded developed resistance [138]. In patients with NSCLC who were treated
with nivolumab, up to 65% of responders progressed after 4 years of follow-up [139].
Across tumor types, there is an inverse correlation between overall response rate to PD-1
blockade and the frequency of acquired resistance [140]. Mechanisms of acquired resistance
also lead to changes in HLA expression, altered IFN-γ signaling and poor neoantigen
recognition [140].

Defective HLA class I antigen processing due to mutations in β2-microglobulin (B2M),
which is required for HLA class I folding and transport to the cell surface [126,127], has
been observed in patients with melanoma [128,129], lung cancer [130] and mismatch repair-
deficient tumors [131] whose tumor initially regressed in response to ICIs but whose
disease progressed some years later. Alterations in the IFN-γ pathway have also been
implicated in the loss of HLA class I [128]. Defects in the IFN-γ pathway are produced by
inactivating mutations in Janus kinases (JAK1 or JAK2) or in interferon-gamma receptor 1
(IFNGR1) [128,132]. Lack of IFN responsiveness also results in the loss of PD-L1 expres-
sion [128]. Dysfunctional tumor antigen-presenting machinery reduces tumor visibility,
leading to acquired ICI resistance. Tumor recognition can also be hampered by the loss
of somatic mutations encoding tumor neoantigens through clonal selection, epigenetic
repression or copy-number loss, leading to immune evasion and clinical progression [133].
In NSCLC, tumors with acquired immunotherapy resistance show genomic changes in
genes encoding tumor neoantigens that can be recognized by T cells [134].
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Additional changes known to influence acquired resistance are the upregulation of
other T-cell checkpoints (TIM3 and LAG) [135], the loss of PTEN and the increase in WNT-
β-catenin activity, which is linked to the promotion of Treg and changes in the priming of
dendritic cells [136].

4. Overcoming Resistance to Immune Checkpoint Inhibitors

To overcome the resistance to ICIs, it is necessary to enhance the anti-tumor activity
of the immune system. Combined treatment regimens and new therapies based upon
synergistic effects of targeting different immune escape pathways are emerging (Figure 2).
The therapies to overcome immunotherapy resistance in CSCC currently being studied are
summarized in Table 3.

Table 3. Combination therapies to overcome resistance to immunotherapy in cutaneous squamous cell carcinoma.

Type of combination Drugs Condition NCT code

Combination of immune
checkpoint inhibitors

Ipilimumab + nivolumab In advanced CSCC prior
to surgery NCT04620200

Ipilimumab + nivolumab + tacrolimus Metastatic CSCC in treating
kidney recipients NCT03816332

Combination with
co-stimulatory molecules SL-279252 (binds to PD-L1 and OX-40) Advanced CSCC NCT03894618

Combination with
chemotherapy Currently not clinically trialed in CSCC

Combination with
radiotherapy

Pembrolizumab + radiotherapy
(IMRT 60–66 Gy)

High risk CSCC of the
head and neck NCT03057613

Pembrolizumab + quad-shot radiotherapy Stage III and IV CSCC of
the head and neck NCT04454489

Avelumab + radical radiotherapy Unresectable CSCC NCT03737721

Combination with
targeted therapies

Pembrolizumab + cetuximab Recurrent/metastatic CSCC NCT03082534

Pembrolizumab + cetuximab Advanced/metastatic CSCC NCT03666325

Avelumab + cetuximab Advanced/metastatic CSCC NCT03944941

Pembrolizumab/cemiplimab + ASP-1929
(EGFR antibody-dye conjugate)

Locally advanced or
metastatic CSCC NCT04305795

Atezolizumab + cobimetinib Metastatic CSCC NCT03108131

Combination with
oncolytic viruses

Nivolumab + talimogene laherparepvec Advanced or refractory CSCC NCT02978625

Cemiplimab + RP1 Locally advanced or
metastatic CSCC NCT04050436

Nivolumab + RP1 Locally advanced or
metastatic CSCC NCT03767348

Pembrolizumab + ONCR-177 Advanced and/or
refractory CSCC NCT04348916

Combination with
cancer vaccines

Nivolumab or
pembrolizumab + CIMAVax vaccine

Stage III and IV CSCC of
the head and neck NCT02955290

Pembrolizumab + Ad/MG1-MAGEA3 Previously treated CSCC NCT03773744

Other combinations

Pembrolizumab + abexinostat
(HDAC inhibitor)

Stage III and IV CSCC of
the head and neck NCT03590054

Pembrolizumab or
cemiplimab + cavrotolimod (TLR agonist) Advanced/metastatic CSCC NCT03684785

Pembrolizumab + IFX-1 (C5a antibody) Locally advanced or
metastatic CSCC NCT04812535

4.1. ICI Combinations

One of the first strategies used to bypass resistance is the use of a combination of
immune checkpoint inhibitors. Anti-CTLA-4 (ipilimumab) plus anti-PD-1 (nivolumab)
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treatments are combinations approved for the treatment of melanoma [141,142], renal cell
carcinoma [143,144], colorectal cancer [145], non-small cell lung cancer [146], hepatocellular
carcinoma [147] and pleural mesothelioma [148]. The regulatory roles of CTLA-4 and
PD-1 pathways are distinct, and simultaneously blocking the two receptors produces a
synergistic effect [149,150].

In CSCC, ipilimumab is currently being tested in combination with nivolumab in a
comparison with neo-adjuvant nivolumab monotherapy (NCT04620200), and combined
with nivolumab and tacrolimus in treating kidney transplant recipients with metastatic
CSCC (NCT03816332). However, combination therapy increases the incidence and severity
of side effects. The median time to onset of a fatal adverse event tends to be earlier for
a combination treatment than for monotherapy, and ICI-related deaths in combination
therapies are attributed to colitis and myocarditis [151,152].

Numerous co-inhibitory molecules on the T-cell surface have been characterized in the
context of T-cell activation [24]. LAG-3, TIM-3 and TIGIT are co-inhibitory molecules that
regulate T-cell response and promote T-cell inhibition [153,154]. Resistance to PD-1 block-
ade has sometimes been associated with upregulation of these molecules [135], which has
led to antibodies towards these molecules being developed and combined with traditional
ICIs [155–157]. The combination of the anti-LAG-3 BMS-986016 (relatlimab) plus nivolumab
strengthens the response in melanoma patients who are resistant to anti-PD-1/anti-PD-L1
therapy [158] (NCT01968109). Other anti-LAG3 agents, such as IMP-321 and LAG525,
are under evaluation in a variety of cancer types [155] (NCT02676869, NCT03625323 and
NCT03499899). Anti-Tim-3 and anti-TIGIT antibodies, in combination with anti-PD-1,
have shown their efficacy in advanced cancers in mouse models [156,157,159]. The efficacy
of these new drugs in CSCC has not yet been studied, but their combinations might be
attractive options for fighting anti-PD1 resistance in this tumor.

4.2. Combination with Co-Stimulatory Molecules of T-Cell Response

OX40, ICOS and CD27 are co-stimulatory receptors present in T cells and natural killer
cells that induce cellular activation. Specific agonist antibodies to these molecules have been
developed to boost the immune response [160]. Anti-OX40 monotherapy suppressed tumor
growth in preclinical models and enhanced anti-tumor T-cell activity when combined with
ICIs [161]. In CSCC, triggering OX40 with an agonist antibody overcame the suppression
exerted by Treg, increasing T-cell effector proliferation in vitro [162]. However, when the
agonist BMS-986178 has been evaluated in patients with advanced cancer in monotherapy
or in combination with nivolumab and/or ipilimumab (NCT02737475), no clear advantage
was observed [163]. SL-279252, a bi-functional fusion protein that binds simultaneously
to PD-L1 and OX-40 stimulating anti-tumor T-cell activity, is currently being tested in a
clinical trial in several types of solid cancer, including CSCC (NCT03894618).

4.3. Combination with Chemotherapy

Although cancer chemotherapy has customarily been considered immunosuppressive,
it is now accepted that certain cytotoxic agents can boost tumor immunity. Chemotherapy
induces immunogenic cell death and changes in the tumor microenvironment. On the one
hand, cytotoxic drugs attack cells, promoting their death. Dead cells release tumor antigens
that bind to their receptors, activating the effector lymphocytes. Moreover, cytotoxic drugs
abrogate Treg and MDSC activity, enhance dendritic cell activity, promote anti-tumor CD4+
T-cell phenotype and cell recognition [164]. FDA approved pembrolizumab in combina-
tion with chemotherapy (carboplatin and either paclitaxel or nab-paclitaxel) for treating
metastatic squamous NSCLC [165] and nivolumab plus ipilimumab and chemotherapy
(platinum) for metastatic NSCLC with no EGFR or ALK aberrations [166]. Recently, pem-
brolizumab plus paclitaxel or pembrolizumab plus gemcitabine and carboplatin have been
approved for the treatment of recurrent inoperable or metastatic triple-negative breast
cancer [167], and in HNSCC pembrolizumab in combination with platinum and 5-FU [168]
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(NCT02358031). However, these combinations have not yet been explored in the context
of CSCC.

4.4. Combination with Radiotherapy

Radiotherapy is thought to function similarly to chemotherapy, inducing immuno-
genic cell death and increasing tumor antigens and damage-associated molecular patterns
(DAMPs), which prompt antigen presentation activity and T-cell priming. Radiotherapy
also enhances infiltration of CD4+, CD8+ T cells and cytotoxic NK into the tumor mi-
croenvironment [169]. The combination of radiotherapy and ICIs is being evaluated in
different tumors types and stages, in preclinical settings and in clinical trials [170–172]. In
CSCC, a case report showed complete remission in a patient treated concurrently with
radiotherapy and pembrolizumab [173]. A clinical trial in patients with high-risk CSCC
of the head and neck (NCT03057613), and another employing quad-shot palliative radio-
therapy (NCT04454489), are underway. In the UNSCARRed study, avelumab, and radical
radiotherapy are combined to treat unresectable CSCC (NCT03737721). When combining
radiotherapy and immunotherapy, radiotherapy doses must be optimized. Otherwise, the
radiation has an immunosuppressive effect [169].

4.5. Combination with Targeted Therapies

Combining anti-PD-L1/PD1 immunotherapy with targeted therapy could improve
therapeutic outcomes. MYC overexpression, EGFR and KRAS mutations, PTEN deletions
and MEK/ERK alterations are known to induce PD-L1 expression [174]. In melanoma,
the combination of vemurafenib (BRAF inhibitor), cobimetinib (MEK inhibitor), and ate-
zolizumab showed an objective response rate of 71.8% [175] and longer median progression-
free survival [176]. In CSCC, EGFR overexpression is associated with poor prognosis [177].
The combinations of cetuximab, an EGFR inhibitor, with pembrolizumab (NCT03082534
and NCT03666325), and with avelumab (NCT03944941), other anti-PD-L1, are currently
under evaluation. ASP-1929, an antibody conjugate of cetuximab and IRDye 700DX that
can be photoactivated, is being combined with pembrolizumab or cemiplimab to treat recur-
rent/metastatic head and neck squamous cell carcinoma and locally advanced/metastatic
CSCC with EGFR overexpression (NCT04305795). Cobimetinib, in combination with
atezolizumab, is also being tested in CSCC (NCT03108131).

4.6. Combination with Oncolytic Viruses and Cancer Vaccines

Oncolytic viruses (OVs) are emerging as important biological agents in cancer treat-
ment. Native or genetically modified, they have the ability to kill cancer cells and induce
systemic anti-tumor immunity, transforming “cold” into “hot” tumors [178,179]. To date,
one OV therapy has been approved by the FDA for treating advanced melanoma: tal-
imogene laherparepvec (T-VEC), a modified herpes simplex virus (HSV) that includes
a gene that codes for granulocyte macrophage colony-stimulating factor (GM-CSF) to
enhance durable systemic anti-tumor immune responses [180,181]. Intralesional T-VEC
has been associated with an increase in melanoma-specific CD8 T cells and a correspond-
ing decrease in suppressive immune cells, such as CD4+ FoxP3+ regulatory T cells and
MDSCs within the tumor microenvironment [182]. The combination of T-VEC with ipili-
mumab [183,184] or pembrolizumab [185] has been explored in melanoma too, revealing a
response rate double that achieved with ICI monotherapy. In CSCC, T-VEC is currently
tested in monotherapy (NCT03714828), in combination with nivolumab (NCT02978625)
and with panitumumab, an EGFR antibody (NCT04163952). RP1 is another modified
HSV, which encodes a fusogenic glycoprotein derived from gibbon ape leukemia virus
(GALV-GP-R) protein and GM-CSF. The efficacy of RP1 is being tested in the context of
CSCC in adult hepatic and renal transplant recipients delivered by intratumoral injection
(NCT04349436) and in combination with cemiplimab or nivolumab in immunocompe-
tent patients (NCT04050436 and NCT03767348). Two other modified HSV-1s have been
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tested in CSCC: HF10 (NCT01017185) and ONCR-177, alone and in combination with
pembrolizumab (NCT04348916).

A wide range of viruses has been investigated to determine their potential value
as cancer therapeutic agents. In addition to those of herpesvirus, modifications of aden-
oviruses, vaccinia viruses, measles viruses, coxsackieviruses, polioviruses, retroviruses,
reoviruses, parvoviruses and vesicular stomatitis viruses have been examined and some
are currently the subject of clinical trials [178,179,186].

Immune responses may also be boosted by methods involving cancer vaccines that
are designed to induce or amplify pre-existing cellular and humoral immune responses
against target tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs). TAAs
are self-antigens that are preferentially or abnormally expressed in tumor cells, although
they may also be expressed in normal cells. TSAs comprise antigens expressed by on-
coviruses and neoantigens encoded by cancer mutations and are characterized by high
immunogenicity. The majority of neoantigens are unique to individual patients and can
be detected by computational algorithms for the purpose of designing personalized ther-
apies [187–189]. Several therapeutic vaccine strategies have been developed, including
whole tumor cell-based vaccines, protein- and peptide-based vaccines, RNA and DNA
vaccines, viral vectors engineered to express tumor antigens and dendritic cell-based
vaccines [187,190]. In 2010, the FDA approved the clinical use of Sipuleucel-T, the first
cancer vaccine for treating castration-resistant prostate cancer based on enriched ex vivo
dendritic cells of each patient [191]. IFx Hu2.0, a whole-cell cancer vaccine, is currently
under trial in monotherapy in Merkel cell carcinoma and CSCC (NCT04160065). CIMAvax,
a recombinant human EGF-rP64K/montanide ISA 51 vaccine, is being tested in advanced
CSCC of the head and neck and NSCLC in combination with nivolumab or pembrolizumab
(NCT02955290). In CSCC and metastatic melanoma, Ad/MG1-MAGEA3 is currently being
assayed alone or in combination with pembrolizumab (NCT03773744). This is an innova-
tive strategy that combines cancer vaccination with oncolytic virotherapy. It involves two
viruses —a replication-deficient adenovirus type 5 (Ad) and a modified Maraba virus as an
oncolytic rhabdovirus (MG1)—expressing the same TMA (Melanoma-associated antigen 3,
MAGEA3) [192].

4.7. Other Combinations

Supplementing immunotherapy with epigenetic modulators, such as histone deacety-
lase inhibitors (HDACis), may decrease tumor progression [193,194]. HDACis reduce
the expression of various inflammatory cytokines (IL-6, IL-2, IL-10 and IFN-γ), enhance
infiltration of immune cells, increase central and effector T-cell memory and reduce pro-
tumorigenic M2 macrophages [195,196]. Currently, in CSCC, pembrolizumab is combined
with abexinostat, an HDACi (NCT03590054).

Toll-like receptors (TLRs) are a family of molecules capable of recognizing pathogen-
associated molecular patterns (PAMPs) and of inducing adaptive immune responses [197].
TLR agonists and antagonists have been designed to enhance immunity and are currently
being clinically trialed in monotherapy and in combination with anti-PD-1 therapy [198].
The TLR9 agonist cavrotolimod (AST-008) is being tested in combination with pem-
brolizumab or cemiplimab in Merkel cell carcinoma, CSCC and melanoma (NCT03684785).

Indoleamine-2,3-dioxygenase (IDO) is an enzyme that lowers the level of tryptophan,
induces cell-cycle arrest and effector T-cell apoptosis, and promotes Treg activity [199]. The
presence of IDO in the tumor microenvironment is considered a possible mechanism of
resistance to immunotherapy and IDO inhibitors (epacadostat and indoximod) have been
combined with ipilimumab, nivolumab, or pembrolizumab in melanoma [200], but not so
far in CSCC.

Levels of TAM and MDSCs can be reduced using colony-stimulating factor 1 receptor
(CSF1R) inhibitors. For example, CSF1R blockade combined with anti-PD-1 or anti-CTLA-1
treatment is associated with enhanced tumor regression in a mouse model of pancreatic
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ductal adenocarcinoma [201]. In melanoma, numerous clinical trials are underway that
combine antagonists of CSF1R or M-CSF, or GM-CSF agonists with ICI [202].

C5a is a potent anaphylatoxin that modulates inflammation, tumor formation and
progression by suppressing the anti-tumor CD8+T-cell-mediated response and immuno-
suppression by recruiting MDSCs [203]. C5a antibody (vilobelimab/IFX-1) is currently
tested alone or in combination with pembrolizumab in locally advanced or metastatic
CSCC (NCT04812535).

Finally, since the gut microbiome has been implicated in resistance to ICIs, combined
therapies with bacteria plus immunotherapy have been developed. In mice with melanoma,
a combination regimen of orally administered Bifidobacterium and anti-PD-L1 therapy
abolishes tumor outgrowth [204]. Bifidobacterium species, being immunomodulators of
the immune response, increase the infiltration of CD8+ effector T cells and enhance the
production of IFN-γ. Moreover, the microbiota composition could predict the efficacy
of immunotherapy agents (see above) [205]. A better understanding of the role of the
microbiome will open up new avenues for developing new therapies [206].

5. Conclusions

The therapeutic landscape of cutaneous squamous cell carcinoma has changed since
the approval of anti-PD-1 therapies. However, not all patients respond, and those who do
can develop resistance over time. Therefore, it is important to develop good predictors of
response to immunotherapy to be able to identify which patients could benefit from it, and
to investigate new treatment regimens for overcoming immunotherapy resistance.
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