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Earlier on, a conceptual design on the real-time clinical decision support system (rt-CDSS) with data streammining was proposed
and published.The new system is introduced that can analyze medical data streams and canmake real-time prediction.This system
is based on a streammining algorithm calledVFDT.TheVFDT is extendedwith the capability of using pointers to allow the decision
tree to remember themapping relationship between leaf nodes and the history records. In this paper, which is a sequel to the rt-CDSS
design, several popular machine learning algorithms are investigated for their suitability to be a candidate in the implementation
of classifier at the rt-CDSS. A classifier essentially needs to accurately map the events inputted to the system into one of the several
predefined classes of assessments, such that the rt-CDSS can follow up with the prescribed remedies being recommended to the
clinicians. For a real-time system like rt-CDSS, the major technological challenges lie in the capability of the classifier to process,
analyze and classify the dynamic input data, quickly and upmost reliably. An experimental comparison is conducted. This paper
contributes to the insight of choosing and embedding a streammining classifier into rt-CDSS with a case study of diabetes therapy.

1. Introduction

Clinical decision support system (CDSS) is a computer tool
which broadly covers autonomous or semiautonomous tasks
ranging amang symptoms diagnosis, analysis, classification,
and computer-aided reasoning on choosing some appropriate
medical care or treatment. Quoting from [1], a CDSS can
be defined as “a system that is designed to be a direct aid
to clinical decision-making in which the characteristics of
an individual patient are matched to a computerized clinical
knowledge base, and patient-specific assessments or recom-
mendations are then presented to the clinician(s) and/or
the patient for a decision.” As concise as this description
goes, the brain of a CDSS is an automatic classifier which
usually is a mathematically induced logic model. The model
should be capable of mapping the relations between input
events (usually are medical symptoms) and some predefined
verdicts in the forms of medical advices/treatments. In other
words, the classifier is delegated to predict or infer what

the medical consequence will be, given the emerging events
(sometimes medical interventions or prescriptions) as well
as historic data that have been collected over time and
induced into a classification model. The suggested medical
consequences or so-called assessments and advices by the
CDSS would be objectively recommended to a doctor for
subsequent actions.

Theunderlying logics associated at the classifier of aCDSS
are captures of knowledge or understanding between some
attribute variables and the conclusion classes. The logics are
represented either as some nonlinear mappings like numeric
weights in an artificial neural network (black-box approach)
or in some predicate-logic like IF-THEN-ELSE rules [2]
known as clinical pathways. Traditionally the underlying
logics are derived from a population of historic medical
records, hence the induced model is generalized, versus
which an individual new record can be tested for decision.
The historic data are accumulated over time into a sizable
volume for training the classification model. The records

http://dx.doi.org/10.1155/2013/274193


2 BioMed Research International

usually are digitized in electronic format and organized in
a database [3]. Every time when a new instance of record is
added, the classifier however needs to be rebuilt, in order to
refresh its underlying logics to include the recognition of the
new record. This learning approach is called “batch-mode”
which inherits from the old design of manymachine learning
algorithms like greedy-search or partition-based decision
tree: a model is trained by loading in the full set of data, and
the decision tree is built by iteratively partitioning the whole
data into hierarchical levels via some induction criteria. The
short-comings of batch-mode learning have been studied and
reported in [4], specifically its time latency in rebuilding the
classification model whenever an additional record arrives.

The batch-mode learning kind of classifiers may work
well with most of the CDSS when the updates over the
ever-increasing volume of the medical records can be set
periodic, and no urgency of a CDSS output is assumed. For
example, the update for the CDSS classifier can happen at
midnight when the workload of the computing environment
is relatively low, and allowing for delay in inclusion of the
latest records over 24 hours is acceptable for its use prior to
the update. Most of the CDSS designs function according
to this batch-mode approach (more details in Section 2)
for nonemergency and perhaps nontime-critical decision-
support applications, such as consultation by a general
practitioner, nutrient advisor, andnursing care [5]. In general,
CDSSs that adopt the batch-model learning while adequately
meet the usage demands are those characterized by data
that do not contain many fast-paced episodes and usually
do not carry severe impacts. So there is little difference
in its efficacy regardless the very latest records which are
included in the training of the classifier or not. Examples are
those decision applications over the data that evolve relatively
slowly, which include but are not limited to common diseases
that largely affect the world’s population, cancers of which
their treatments and damagesmay takemonths to years along
the clinical timespan to take effect. In these cases, traditional
CDSS with batch mode learning suffice their roles.

In contrast, a new type of CDSS called real-time clinical
decision support system (rt-CDSS), as its name suggests, is
able to analyze fast-changing medical data streams and can
predict in real-time based on the very latest input events.
Examples of fast-changing medical data are live feeds of vital
biosignals from monitoring machines, like EEG, ECG, and
EMG, aswell as respiratory rate and blood oxygen level which
are prone to change drastically in minutes or seconds. rt-
CDSS usually is dealingwith criticalmedical conditions, such
as ICU, surgery, A&E, or mobile onsite rescue, where a med-
ical practitioner opts for immediate decision-support by the
rt-CDSS instrument based only on the latestmeasurements of
his vital conditions.The information of vital conditions of the
patient evolves very quickly during the course of operation,
and it does matter of course in life and death.

As forementioned, a classifier is central to the design
of CDSS, and the traditional batch-mode learning method
obviously runs short for supporting a real-time CDSS due
to its model refresh latency. As it was already pointed out
in [6] the latency would increase probably exponentially as
the training data size grows to certain amount; it means

the classifier will become increasingly slow as fresh data
continue to stream in, because of the continually training. In
order to tackle with the drawback of batch-mode learning,
a new breed of data mining algorithms called data stream
mining has been recently invented [7] whose algorithms are
founded on incremental learning. In a nutshell, incremental
learning is able to process potentially infinite amount of data
very quickly; the model update is incremental such that the
underlying logics are refreshed reactively on the fly upon new
instances, without the need of scanning through the whole
dataset that embraces the new data repeatedly.

In the advent of incremental learning, new classifiers
started to bring impacts into the biomedical research com-
munity. Some unprecedented real-time CDSS designs are
made possible, in commercial prototype [8, 9] and in aca-
demic research [10–12]; even the developments are still in
progress. These designs are characterized by having a real-
time reasoning engine that is able to respond with fast and
accuracy to clinical recommendation.The real-time decision
generated by rt-CDSS is actually interpreted as a computer-
inferred prediction from the given current condition of the
patient that leads to further reasoning with an aid of a
knowledge base, rather than a final decision confirmed by
some authoritative human user. Generally there are two
phases in the design of rt-CDSS, as shown in Figure 1.

Live data feeds deliver real-time events to the classifier
which learns the new data incrementally and be able to
map the current situation to one of the predefined class
labels as predicted outcomes. The predicted outcomes by the
classifier are subsequently passed the reasoning engine that
connects to a knowledge base for generating medical advices
in real time, usually event driven. The reasoning engine
could be implemented in various ways such as case-based
reasoning or a novel approach [10] that embedded pointers
at the decision tree leaves of the classifier, leading to some
predefined guidelines of medical cure.

The focus of this paper however is on the real-time classi-
fier, while the reasoning part of the rt-CDSS has already been
discussed in [10]. The prediction by the real-time classifier
here in the medical context is defined as a quantitatively
guessed outcome that is likely to happen in the near future
given the information of the current condition and the recent
condition of the patients as well as the drug intake or clinical
intervention, if any. Based on the predicted outcome, the rt-
CDSS fetches the best option of cure correspondingly from a
given knowledge base.

In our previous paper, we proposed a framework of rt-
CDSS [10]; Very Fast Decision Tree (VFDT) was adopted
as a candidate of a real-time classifier in the system design,
because VFDT is classical and the most original type of
stream-based classifiers [11]. Successively there are other
variants modified from VFDT. Although VFDT is believed
to be able to fulfill the role of real-time classifier in rt-CDSS,
at least theoretically and conceptually, the performance has
not been validated yet. As real-time classifier is the core of
rt-CDSS, its performance must be able to fulfill the stringent
criteria such as very short latency, very high accuracy, and
very high consistency/reliability.This paper contributes to the
insight of selecting and embedding a streammining classifier
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Figure 1: Block diagram of a general rt-CDSS system.

into rt-CDSS with a case study of diabetes therapy that
represents a typical real-time decision-making application
scenario.

As a case study for comparative evaluation of classifiers
for rt-CDSS, a computer-aided therapy for insulin-dependent
diabetes mellitus patients is chosen to simulate a real-time
decision making process in a scenario of dynamic events.
The blood glucose level of diabetes patients often needs to
be closely monitored, and it remains as an open question
on how much the right dosage of insulin and the frequency
of the doses should be given to maintain an appropriate
level of blood glucose. This depends on many variables
including the patient’s body, lifestyle, food intake, and, of
course, the variety of insulin doses. Along with this causal
relationship between the predicted blood glucose levels and
many contributing factors, multiple episodes can happen that
may lead to different outcomes at any time. This is pertinent
for testing the responsiveness and accuracy of the stream
classifier considering that the episodes are the input values
which may spontaneously evolve over time; the prediction is
the guess work of the outcome based on the recent episodes.

The objective of this paper is twofold. We want to find
out the most suitable classifier for rt-CDSS, and therefore
we compared them in a diabetes therapy scenario. Also we
want to test the performance of the classifier candidate all-
rounded with a real-time case study, as a preliminary step
to validate the efficacy of the rt-CDSS as a whole. Hence the
study reported in this paper could serve as a future pathway
for real-time CDSS implementation. The rest of the paper is
structured as follow. An overview of classifiers that are used
in CDSS is introduced in Section 2. The experiment to be
conducted is described in details in Section 3. The second
phase of rt-CDSS namely the decision inference is given in
Section 4. Section 5 concludes the paper.

2. Related Work

In the literature there are quite a number of clinical decision
support systems being proposed for different uses. It is
cautious that the type of the classifier has a direct effect on
the real-time ability of CDSS. In this section, some related
work on different medical applications is reviewed with the
aim of pointing out the shortcomings of some legacy research
approaches pertaining to rt-CDSS.

A recent report [13] discusses the potential of CDSS
technology in breast cancer excerpted frommultidisciplinary
team meetings, as a synergy, by the National Health Service
(NHS), in the United Kingdom. The report essentially high-
lighted the importance of CDSS in structural and admin-
istrative aspects of cancer MDTs such as preparation, data
collection, presentation, and consistent documentation of
decisions. But at an advanced level, the services of a CDSS
should exceed beyond the use of clinical databases and
electronic patients’ records (EPRs), by actively supporting
patient-centred, evidence-based decision-making. In partic-
ular, a beta CDSS called multidisciplinary team assistant and
treatments elector MATE, is being developed and trialed
at the London Royal Free hospital. MATE is equipped
with functionalities of prognostication tools, decision panel
where system recommendations and eligible clinical trials are
highlighted in colors, and the evidential justification for each
recommended option.

In the report, it was stated like a wish list that an advanced
CDSS is able to evaluate all available patient data in real
time, including comorbidities, and offer prompts, reminders,
and suggestions for management in a transparent way. The
purpose of the report is to motivate further research along
the direction of advanced CDSS. Although it is unclear about
which classifier that is built into MATE, incremental type of
classifier would well be useful if it were to receive and analyze
real-time data streams with very quick responsiveness.

On the other hand, a classical algorithm, namely, artificial
neural network (ANN) has been widely used in CDSS. ANNs
apply complex nonlinear functions to pattern recognition
problems and generally yield good results. Szkoła et al. [14]
built CDSS for laryngopathies by extending ANN algorithms
that are based on the speech signal analysis to recurrent
neural networks (RNNs). RNNs can be used for pattern
recognition in time series data due to their ability of mem-
orizing some information from the past. The data that the
system deals with are speech signals of patients. Speeches are
usually spoken intermittently, and they are hardly continuous
data streams. In their case, rt-CDSS might not be applicable.
The other group, led by Walsh et al, proposed an ensemble
of neural networks for building a CDSS [15] for bronchiolitis
for infants and toddlers.They showed that using an ensemble
that works like a selection committee usually outperforms
single neural networks.
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There is another common type of conventional classifica-
tion algorithms based on decision rules, for deciding how an
unseen new instance is to be mapped to a class. Gerald et al.
developed a logistic regressionmodel showing those variables
that are most likely to predict a positive tuberculin skin test
in contacts of tuberculosis cases. Their paper [16] shows that
a decision tree is developed into a CDSS for assisting public
health workers in determining which contacts are most likely
to have a positive tuberculin skin test.Thedecision treemodel
is built by aggregating 292 consecutive cases and their 2,941
contacts seen by the Alabama Department of Public Health
over a period of 10 months in 1998.

Another similar decision-support system called MYCIN
[17] embeds decision rules into an expert system that provides
interactive consultation. The decision rules are built into a
simple inference engine, with a knowledge base of approxi-
mately 600 rules. MYCIN provided a list of possible culprit
bacteria ranked from high to low based on the probability of
each diagnosis, its confidence in each diagnosis’ probability,
the reasoning behind, and its recommended course of drug
treatment. In spite ofMYCIN’s success, there is a debate about
its classifier which essentially is an ad hoc sparked off. The
rules inMYCIN are established on an uncertainty framework
called “certainty factors.” However, some users are skeptical
about its performance for it could be affected by perturbations
in the uncertainty metrics associated with individual rules,
suggesting that the power in the system was coupled more to
its knowledge representation and reasoning scheme than to
the details of its numerical uncertainty model [18]. Classical
Bayesian statistics should have been used as suggested by
some doubters.

Iliad [19] which is a medical expert system software
implementing Bayesian network as classifier has been devel-
oped by the University of Utah, School of Medicines, Depart-
ment of Medical Informatics. In Iliad the posterior probabili-
ties of various diagnoses are calculated byBayesian reasoning.
It was designed mainly for diagnosis in internal medicine.
Currently it was used mainly as a classroom teaching tool for
medicate students. Its power especially the Bayesian network
classifier has not been leveraged for stream-based rt-CDSS.

Of all the well-known CDSS reviewed so far above,
there is no suggestion indicating that they are operating
on real-time live data feed; the data that they work on are
largely EPRs, both patient-specific and of propensity, and
perhaps coupled with clinical laboratory tests. Nevertheless,
architectures of rt-CDSS namely, BioStream, [20], Aurora
[21], and other monitoring devices [22] have been proposed
which are specifically designed for handling medical data
streams.

BioStream, byHP Laboratories Cambridge, is a real-time,
operator-based software solution for managing physiological
sensor streams. It is built on top of a general purpose stream
processing software architecture. The system processes data
using plug-in analysis components that can be easily com-
posed into any configuration for different medical domains.
Aurora, by MIT, however is claimed to be a new system for
managing data streams and for monitoring applications. The
new element is the part of the software system that processes
and reacts to continual inputs from many data sources of

monitoring sensors. Essentially Aurora is a new database
management system designed with a data model and system
architecture that embraces a detailed set of stream-oriented
operators.

From the literature review, it is apparent that research
endeavor has been geared towards the direction of analyzing
stream data, tapping the benefits of processing the phys-
iological signals in real-time, and architecting framework
of real-time stream-based software system. In 2012, Lin in
his book chapter [11] discussed the state of the art and
modern research trends of rt-CDSS; specifically he proposed
a web-based rt-CDSS with a full architecture showing all the
model-view-controller components. In-depth discussions are
reported from process scheduling, system integration, to a
full networked infrastructure. It is therefore evident that
real-time decision system is drawing attentions from both
industry and academia, although the details of the analyzer
component is still lacking. In [10] we advocated that the
main piece of an effective rt-CDSS is an incremental learning
model. By far there is no study dedicated to investigate the
classifiers for handling data streams in rt-CDSS, to the best
of the authors’ knowledge. This paper is intended to fill this
missing piece.

3. Predicting Future Cases: Problem Definition

As a case study of evaluating the performance of several types
of classifiers to be used in rt-CDSS, a diabetes therapy is used.
The basis of the diabetes therapy is to replace the lack of
insulin by regular exogenous insulin infusion with a right
dosage each time, for keeping the patients alive. However,
maintaining the blood glucose levels in check via exogenous
insulin injection is a tricky and challenging task. Despite the
fact that the reactions of human bodies to exogenous insulin
vary, the concentration of blood glucose can potentially
be influenced by many variables too [1]. These variables
include but are not limited to, BMI, mental conditions,
hormonal secretion, physical well-being, diets, and lifestyles.
Their effects make a synthetic glucose regulation process
in diabetic patients highly complex as the bodily reaction
to insulin and other factors differs from one person to
another. It is all about a matter of a right dosage and the
right timing of insulin administration, for regulating the
fluctuation of blood glucose concentration at a constant level.
Hyperglycemia can occur when the blood glucose level stays
chronic above 125mg/dL over a prolonged period of time.The
damages are on different parts of the body, such as stroke,
heart attack, erectile dysfunction, blurred vision, and skin
infections, just to name a few. At the other end, hypoglycemia
occurs when the content of glucose ever falls below 72mg/dL.
Even for a short period of time, hypoglycemia can develop
into unpleasant sensations like dysphoria and dizziness and
sometimes life-threatening situations like coma, seizures,
brain damage, or even death. The challenge now is to try to
adopt a classifier which incrementally learns the pattern of a
patient’s insulin intakes and predicts his blood glucose level
in the near future. Should there be any predicted outcome



BioMed Research International 5

that falls beyond the normal ranges, the rt-CDSS should give
a remedy recommendation.

3.1. Data Description. The data used in this experiment
are the empirical dataset from AAAI Spring Symposium
on Interpreting Clinical Data (http://www.aaai.org/Press/
Reports/Symposia/Spring/ss-94-01.php). This data repre-
sents a typical flow of measurement records that would be
found in any insulin therapy management. The live data feed
can serve as an input source for rt-CDSS for the sake of
forecasting the condition of the patient in the near future
as well as offering medical advice if necessary. The insulin-
dependent diabetes mellitus (IDDM) data are event-oriented
data because the data is a temporal series of events. Typically
there are three groups of events in an insulin therapy, blood
glucose measurement (both before/after meals and ad hoc),
insulin injections (of different types), and amount of physical
exercises. The events are time stamped. However, there is
no rigid regularity on how often each of these events would
happen. A rough cyclical pattern can be however observed
that goes by spacing the insulin injections, probably several
times over a day, and the corresponding cycle of blood
glucose fluctuation follows closely.These cycles loop over day
after day, without specifying the exact timing of each event.
One can approximately observe that an average of three or
four injections are being applied.

In Figure 2, a sample of these repetitive cycles of events
is shown for illustrating the synchronized events. Events of
insulin injections and blood glucose measurements are more
or less interleaved loosely periodically over time; exercises
and sometimes hypoglycemia occur occasionally. In the
example presented in Figure 2, two views are provided. The
4-months adaption of insulin injection shows a relatively
long-term pattern over time (Figure 2(a)); two exceptionally
high doses of insulin over units of 100 were given; more
importantly the insulin pattern is never periodically exact,
although some cycles are seen to be repeated [23].The overall
insulin intake looks increasing over time from the initial
month to the last month. Some events of hypoglycemia
have occurred too, sporadically, as represented by red dots
in the graph. Zoomed-in views are shown in Figures 2(b)
and 2(c), where the timing of the insulin injections are
clearly seen. Though the insulin injections are repeating over
time, the exact times of injections are seldom the same for
any two injections. Sometimes, neutral protamine Hagedorn
(NPH) and regular types of injections are taken at the same
time. Figure 3(a) shows a change of habit in blood glucose
measurements; the frequency has reduced across fifty days by
dropping the prelunch and presuppermeasurements. Figures
3(b) and 3(c) show the same but in time scales of 7 days
and 3 days, respectively. The graphs demonstrate a fact that
the patterns of timing and doses of insulin injections are
aperiodic that elicits substantial computational challenges in
testing the classifiers.

3.2. Prediction Assumptions. In order to engineer an effective
real-time clinical decision support system, we should use
a classification algorithm that can analyse data efficiently

and accurately. Traditional decision tree may be a good
choice; however, it cannot handle continuous rapid data. To
alleviate this problem, incremental classification algorithm,
such as VFDT, should be used. For easy illustration when
it comes to describing the system processes and workflows
throughout this paper, the term VFDT is used that gen-
eralized the category of incremental learning methods. In
fact, however, other algorithms can be exchanged. Differ-
ent incremental classifiers in the rt-CDSS model can be
adopted.

The prediction is rolling as time passes by. The initial
model construction takes about a small portion of the initial
data after which the classifier learns and predicts at the same
time. One can imagine that there is a time window of 24
hours; when new data rolls in, the old data are flushed out
from the memory of the classifier. This way, the classifier
can be adaptive to the most current situation and will keep
its effectiveness in real time all the time. Regardless of the
total size of the data which potentially amount to infinity,
the rt-CDSSwhich is empowered by the incremental learning
classifier will still work fine. So in our design, a changing
period of 24 hours would be covered for both events that
have already happened and will likely happen. Within this
period, the classifier continually analyses and remembers
the causal relationship between the happened events and
the future events. As a case study, the classifier is made
to predict future blood glucose level, given the events of
insulin injections, meals, and historical blood glucose levels
as they all carry certain effects predicting future blood glucose
level. The concept of the sliding time window is shown in
Figure 4.

As we know, a blood glucose measurement is taken; the
measured value is affected by a composite of events that
happened during the last several hours. The event may be a
meal, an exercise, or an insulin injection. In the design of our
experiment, we consider the events which happened during
the last 24 hours before the last prediction time point. There
are 3 kinds of insulin injections given in the dataset, they are
regular insulin, NPH insulin and Ultralente insulin. Regular
insulin has at most 6 hours duration effect, NPH has at most
14 hours duration effect, and Ultralente insulin has 24 hours
duration effect. Once the prediction point is passed, another
fresh set of 24-hours-long events series (24 hours before the
previous prediction time point) is loaded to the classifier.This
event series include two parts, one is happened event; this
part will be extracted from the collected data feed from the
monitoring device of the system. For example, assume now
that the time is 10:00 we want to predict the blood glucose
level at 17:00. Then the system will extract the events data
list from yesterday 19:00 to today 10:00 (now), and from the
averaged historic record patterns we infer what events the
patient would most like to part take in the next 7 hours (from
10:00 to 17:00), such as lunch, snack and exercise. This is
to emulate the lifestyle pattern taking into consideration the
causality relation between two consecutive days. Some events
like meal, exercise, and regular insulin injection only have
short effect duration; for these events we only consider the
case in the past 6 hours or 3 hours depending on the effect
duration of the insulin.

http://www.aaai.org/Press/Reports/Symposia/Spring/ss-94-01.php
http://www.aaai.org/Press/Reports/Symposia/Spring/ss-94-01.php
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Figure 2: Periodic patterns of IDDMevents, data taken from a subset of AAAI Spring Symposium on Interpreting Clinical Data. (a) Adaption
of insulin for 4 months. (b) Adaption of insulin injections for 7 days. (c) Adaption of insulin injections for 3 days.

3.3. Event List. The data source where the diabetes time-
series dataset to be used for our experiment is UCI
archive (http://www.ics.uci.edu/∼mlearn/) which is popular
for benchmarking machine learning algorithms. The events
in the diabetes dataset are indexed by numeric codes. Totally
there are 20 codes in code list, but not every code is relevant
to the blood glucose level which is our predicted target. Some

codes are measurements they can provide a blood glucose
value and they also represent an event. For example, code
58 represents the event of prebreakfast that means it will
happen soon, and it gives the blood glucose count before
the breakfast. Code 65 is hypoglycemia symptom that is
being measured. The event occurs whenever a measurement
of hypoglycemia is detected positive. And there are many

http://www.ics.uci.edu/~mlearn/
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Figure 3: Periodic patterns of blood glucose measurements, data taken from a subset of AAAI Spring Symposium on Interpreting Clinical
Data. (a) Time scale of 50 days. (b) Time scale of 7 days. (c) Time scale of 3 days.

different codes that may refer to the same event, such as code
57 and code 48. So we need to simplify the code list and retain
only valid events in this list.

FromFigure 5we can see that only four events have effects
on the blood glucose levels. The event meal includes several
codes, some of them represent a measurement before or after

a meal we consider them also representing the time of a meal.
For example, when code 58 (with value 100) appears at 9:00,
we can know that this person will eat breakfast at nearly
9:00, and the blood glucose before his breakfast is 100. So
after simplifying the code list, 4 valid events remain. Each
event may have several types. For instance, the event insulin



8 BioMed Research International

Glucose value
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Figure 4: Sliding window for incremental classifier.

dose has 3 types: regular insulin, NPH insulin, and Ultralente
insulin. Below is a short list of various types shared by the
events.

(i) Event insulin dose: regular insulin, NPH insulin, and
Ultralente insulin.

(ii) Event meal: breakfast, lunch, supper, snack, typical
meal, more than usual, less than usual.

(iii) Event exercise: typical, more than usual, less than
usual.

(iv) Event unspecified special event: exist and N/A.

3.4. The Structure of Training/Testing Instance. All classifiers
work on multivariate data which is formatted as an instance
of multi-attributed record 𝑥

𝑖
and it must be described by a set

of features (𝑎
1
, 𝑎

2
, . . . , 𝑎

𝑚
)

𝑖
and a corresponding class label 𝑦

𝑖
.

In this case of diabetes therapy, the data are in time series. A
preprocessing software is programmed to convert the events
over a time frame of 24 hours into a multiattributed records
of𝑚 dimensions in 𝑛 rows (instances).

As described in Section 3.3, the events are filtered so only
the relevant event types are used to compose the instances for
training and testing. The structure is shown in Figure 6.

According to the general structure specified in Figure 6,
a total of 16 attributes would be computed from the event list
as follow:

A0: measurement code
A1: how long ago regular dose
A2: how much regular dose
A3: how long ago NPH dose
A4: how much NPH dose
A5: how long ago Ultralente insulin dose
A6: how much Ultralente insulin dose
A7: the unspecified event in past 6 hours
A8: blood glucose level for the previous 3 days
A9: hypoglycemia in the past 24 hours
A10: last meal in past 6 hours
A11: how long ago the last meal in the past 3 hours
A12: how long ago the last exercise in the past 24 hours
𝐴13 : how much exercise
A14: Patient ID
A15: Blood glucose level (just for training instance).

Table 1: Seven possible target classes.

Target class BG range (mg/dL) Limosis Postprandial
Normal 70∼110 Yes N/A
Abnormal high >110 Yes N/A
Abnormal low 50∼70 Yes N/A
Normal 1 120∼200 No 1 hour
Abnormal 1 50∼120 and >200 No 1 hour
Normal 2 70∼140 No 2 hours
Abnormal 2 50∼70 and >140 No 2 hours

A8 is the reference blood glucose level (BGL), which is
very important for future blood glucose level prediction. It
depends on the BGL in the previous 3 days. From the data
analysis we found that there is an important relationship
between the current BGL and historical blood glucose level,
that exists in the same time period during the previous three
days. And we found that the BGL of just one day ago has the
most important effect, we call it the factor “1 day before,” “2
days before” has second most important effect, and last is “3
days before.” So weights of relative importance are arbitrarily
set for the 3 factors and 𝑤

1
= 0.5, 𝑤

2
= 0.3, 𝑤

3
= 0.2. 𝐹

1
= 1

day before, 𝐹
2
= 2 days before, and 𝐹

3
= 3 days before.

The simple formula that generates the reference BGL, 𝑅, is
𝑅 = ∑

3

𝑖=1
𝐹

𝑖
𝑊

𝑖
where 𝑓 is the factor and 𝑤 is the weight.

3.5. Target Classes. The target class is the prediction result
about blood glucose level. Instead of predicting a precise
numeric value, the classifier tries to map a new testing
instance to one of the 7 classes that describes basically
whether the BGL is normal or not. Table 1 shows a class table
that illustrates the seven possible normal/abnormal blood
glucose levels and their meanings.

As we all know that the blood glucose level will rise up
after meals, and it will return to normal level after about 3
hours. So we need to consider the event meal in only the
past 3 hours when we do the prediction. In normal situation,
one hour postprandial BGL is ranging from 120 to 200mg/dL
(Normal 1) and 2 hours postprandial BG level is ranging from
70 to 140mg/dL (Normal 2).

4. Experiment

4.1. Experimental Environment and Design. The software
system prototype of the rt-CDSS including the classi-
fier is built by Java programming language. The system
makes external application-interface calls to the classification
algorithms provided by Massive Online Analysis (MOA)
(http://moa.cms.waikato.ac.nz). The operating system is MS-
Windows 7, 64 bits edition, and the processor is Intel i7 2670
QM 2.20GHz.

There are 70 diabetes records in our dataset that are
collected from 70 different real patients. Each record covers
several weeks’ to months’ diabetes data. We divide every
record into two parts; one represents the historical medical
data for training and the other part represents future medical
data for testing. We use the first part to train the system

http://moa.cms.waikato.ac.nz
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Insulin dose

Meal

Exercise

Unspecified

The code field is deciphered as follows:
33= regular insulin dose
34 = NPH insulin dose
35= Ultralente insulin dose
48 = unspecified blood glucose measurement
57 = unspecified blood glucose measurement
58 = prebreakfast blood glucose measurement
59 = postbreakfast blood glucose measurement
60 = prelunch blood glucose measurement
61= postlunch blood glucose measurement
62 = presupper blood glucose measurement
63 = postsupper blood glucose measurement
64 = presnack blood glucose measurement
65 = hypoglycemic symptoms
66 = typical meal ingestion
67 = more-than-usual meal ingestion
68 = less-than-usual meal ingestion
69 = typical exercise activity
70 = more-than-usual exercise activity
71= less-than-usual exercise activity
72 = unspecified special event

Figure 5: An event list describing the events by codes.

Insulin Meal Exercise Unspecified event BG level
Testing instance

Training instance             

Figure 6: Data instance structure for training/testing a classifier.

with incremental classification algorithms, and we use the
second part to do the accuracy test. In reality, when using
the system to do a prediction for a new patient, the patient’s
historical medical record would be loaded in beforehand for
initial boot-up training. The historical medical record can be
of length of several days (or weeks) of diabetes events. In our
experiment, we save the first 1% records from each record as
the boot-up training data set.

Firstly, we will conduct the accuracy test for VFDT,
iOVFDT [24], Bayes [25], and Perceptron (which is a classical
implementation of ANN) [26], respectively. Default parame-
ters are assumed.Thenwewill analyses their accuracy perfor-
mance and from there we choose the qualified algorithms for
further consistency testes. Finally, we will determine which
algorithms work best in our rt-CDSS environment.

4.2. Accuracy Test. All the 70 original patients’ records that
are available from the dataset would be used for the accuracy
test. There are 70 independent accuracy tests. Every record
is tested individually using the candidate classifiers and their
accuracies are measured, by considering the past 24 hours
window of data as training instances, and the testing starts
from the first day of the data monitoring till the last. The 70
records are run in sequential manner for the classifiers. Since
each instance carries a predefined BGL label, after running
through the full course of prediction, the predicted results
could be compared with the actual results. By definition, the
accuracy is given as accuracy = (total number of correctly

classified instances/the total number of instances available
for this particular patient) × 100. The total accuracy is
therefore the average of the accuracies over 70 patients’ BGL
predictions during the course of diabetes therapy.The overall
statistics of the accuracy tests are shown in Table 2.

From Table 2, it is observed that the average accuracy for
all the candidate algorithms are acceptable except Perceptron.
For the algorithms that have acceptable accuracies such as
VFDT, iOVFDT, and Bayes, over 75% of the cases they
are predicting are at an accuracy higher than or equal
to 81%. That means in most situations the rt-CDSS with
these qualified algorithms are making useful predictions. For
Perceptron, however, during the prediction course of 75%
of the records its accuracy is lower than 53.814%, that is
just marginally better than random guesses. As a concluding
remark, Perceptron fails to adequately predict streaming data
when the initial training sample is just about 10%. Thus it
is not a suitable candidate algorithm to be used in rt-CDSS
when the incoming data stream is dynamic, complex, and
irregular.

Figure 7 is a boxplot diagram for comparing visually the
performances of the candidate algorithms. Boxplot diagram
is an important way to graphically depict groups of numerical
data through their quartiles. It is often used as a method
to show the quality of a dataset, where in this case the
performance results of it.

From the boxplot, we can see that the performances
between VFDT and iOVFDT are so close; their accuracy
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Table 2: Results of the accuracy test.

Accuracy VFDT iOVFDT Bayes Perceptron
Mean 87.4314% 86.4102% 82.6453% 25.4779%
Max 95.6810% 93.7930% 95.1720% 91.6670%
Min 78.8460% 79.3100% 25.3010% 0.0000%
Std. dev. 0.0403 0.0342 0.1184 0.3164
Quartiles 25 85.4633 84.4560 81.5950 0.0000
Quartiles 50 87.3395 86.1990 85.6170 11.4720
Quartiles 75 90.2530 89.0150 88.4955 53.8140
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Figure 7: Boxplot diagram of accuracy performances for the
classifiers.

distributions are very similar, and there is no outlier in their
distributions.Themaximum accuracy for iOVFDT is slightly
lower than that of VFDT, but iOVFDT has an overall consis-
tent accuracy performance and a higher minimum accuracy
compared to VFDT. That is because iOVFDT was designed
to achieve optimal balance of performance, where the result
may not be maximum but well balanced in consideration of
the overall performance.

For Bayes algorithm the accuracy is basically acceptable,
but there are 3 outliers. These extreme values are associated
with records 69, 25, and 66, where the accuracies fall below
50%. It means Bayes works well for most of the records, but
there also exist some situations where Bayes fails to predict
accurately. The worst performance as seen from the boxplots
is by Perceptron; in most cases, it predicts incorrectly.

The scatter plot as depicted in Figure 8 shows an inter-
esting phenomenon when the accuracy results are viewed
longitudinally across the whole course of prediction in rt-
CDSS. The qualified classifiers such as VFDT, iOVFDT and
Bayes are all able to start showing early high accuracies
especially for VFDT and iOVFDT. They are able to maintain
this high level of accuracies across the full course at over
>80%.The performance for Bayes is also quite stable starting
from the initial record to the end, except several outlier
points.
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Figure 8: Scatterplot diagram of accuracy performances for the
classifiers.

In contrast, Perceptron picked up the accuracy rate after
being trained with approximately 25 sets of patients’ records;
the accuracy trend increases gradually over the remaining
records and climbs up high on par with the other classifiers
near the end. In fact, its maximum accuracy rate is 91.667%,
while the other prediction accuracies for the other classifiers
range from 93.793% to 95.681%. And the accuracy for Per-
ceptron algorithm seems to be able to further increase should
the provision of training data be continued. This implies that
Perceptron algorithm is capable of delivering good prediction
accuracy, but under the condition that sufficient training data
must bemade available for inducing a stablemodel. However,
in scenario of real-time data stream in which rt-CDSS is
embracing, incremental learning algorithms have their edge
in performance.

Overall, with respect to accuracy, the best performers are
VFDT and iOVFDT.The performance for Bayes is acceptable
though outliers occur at times. Given the fact that Perceptron
is unable to achieve an acceptable level of accuracy in the
initial stage of incremental learning, it is dropped from
further tests in our rt-CDSS simulation experiment. The
remaining qualified algorithms are then subject to further
tests.

4.3. Consistency Test. Kappa statistics is used for testing the
consistency of accuracies achieved by each of the VFDT,
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Table 3: The Kappa statistics for the candidate classifiers.

Algorithm VFDT iOVFDT Bayes
Kappa statistics 0.587 0.605 0.678
Reference Remarks
0.0∼0.20 Slight
0.21∼0.40 Fair
0.41∼0.60 Moderate
0.61∼0.80 Substantial
0.81∼1 Almost perfect

iOVFDT, and Bayes classifiers. Kappa statistics is generally
used in data mining, statistical analysis, and even assessment
of medical diagnostic tests [27], as an indicator on how “reli-
able” a trained model is. It basically reflects how consistent
the evaluation results obtained from multiple interobservers
are and how well they are agreed upon. A full description of
the Kappa statistics can be found in [28]. Generally a Kappa
of 0 indicates that agreement is equivalent to chance, where
as a Kappa of 1 means perfect agreement. It loosely defines
here as a measure of consistency by saying a model that has
a high Kappa value is a consistent model that would expect
about the same level of performance (in this case, accuracy)
even when it is tested with datasets from other sources. The
Kappa statistics is computed from the 70 patients’ records
via a 10-fold cross-validation with each fold of different
combination of partitions (training and testing) as different
inter-observers, randomly picked from the whole dataset.

The definition of Kappa statistic is defined as 𝐾 = (𝑃𝑜 −
𝑃𝑐)/(1 − 𝑃𝑐), where 𝑃𝑜 is the observed agreement and 𝑃𝑐 is
chance agreement.The results of the Kappa statistics from the
candidate classifiers are tabulated in Table 3.

We can see from Table 3 that the Bayes classifier has
the highest consistency value relatively; it belongs to the
substantial group of Kappa statistics. The other 2 algorithms
are located in the moderate group. The result shows that
all the three algorithms have considerably moderate and
substantial consistency in rt-CDSS. Higher Kappa statistics
are yet to be obtained probably due to the irregularity of
events in the datasets and of the 70 patients the diabetes
therapy patterns vary a lot.

4.4. Test of ROC Curve and AUC. ROC is an acronym for
Receiver Operating Characteristic; it is an important means
to evaluate the performance of a binary classifier system. It
is created by plotting the fraction of true positives out of the
positives (TP = true positive rate) in 𝑥-axis and the fraction
of false positives out of the negatives (FP = false positive
rate) in 𝑦-axis. The terms positive and negative describe the
classifier’s prediction results, and the terms true and false
refer to whether the prediction results correspond to the fact
or not. The standard contingency table or confusion matrix
for binary classification is shown in Table 4.

In our rt-CDSS, the classifiers are multiclasses classifiers
rather than binary classifiers as they predict the future condi-
tions of the patients into one of the seven BGLs. So we need
a modification to extend the conventional ROC curve in our

evaluation experiment. By following the modification which
was reported in [29], a binary ROC curve is extended for
the use for multiclasses classifiers. The modified contingency
table is shown in Table 5.

The occurrences for TP and FP for each class are counted
respectively. A small assumption is made during the count-
ing: when counting for a class, an instance in this class is
counted as “yes” and the instances in other class are “no”,
just like binary classifier. Then by adding up all the TPs as
total TPmulti and all the FPs as total FPmulti, we compute
the TPmulti and FPmulti and derive a composite ROC by
calculating sensitivity and specificity as the 𝑦-axis and 𝑥-axis
of the ROC chart accordingly.

Sensitivity is named after TPmulti which is sometimes
called recall rate. It counts about the proportion of actual
positives which are identified correctly by the classifier. The
proportion here is the percentage of diabetes patients of
abnormal BGL who are correctly predicted as having the
abnormal condition in the rt-CDSS. Specificity which is
the FPmulti and sometimes known as the true negative rate
measures the proportion of negatives which are predicted
correctly as such.The proportion is the percentage of diabetes
patients with normal BGL who are correctly predicted as not
having the abnormal BGL.

Ideally a perfect classifier should be 100% sensitivity and
100% specificity, meaning it can predict that all patients
who will have abnormal BGL really will have the condition;
patients who will not have the abnormal BGL will actually
be free from it. So when plotting sensitivity and specificity
on a ROC plot, the curve should be the higher the better in
these two directions. Theoretically any classifier will display
certain trade-off between these two measures. For example,
in rt-CDSS in which the user is testing for extra precaution
for health assessment for the diabetes patient, the classifier
may be set to consider more thorough life events that may
be related to a sudden change in BGL, even though they are
minor ones (low specificity), and perhaps higher influential
factors are adjusted for these event variables that may directly
or indirectly trigger the change in BGL (high sensitivity).
This trade-off can be perceived graphically by the shape of
the ROC. The ROCs for the classifiers are shown in Figure 9.
The corresponding AUC numeric results of the ROCs are
tabulated in Table 6.

From the ROC curve and AUC (area under the curve)
as shown in Figure 9 and Table 6, we can see that the Bayes
classifier has the largest AUC, and the larger an AUC is the
better performance it gives. VFDT and iOVFDT have almost
the same AUCs. It means their performances in the rt-CDSS
model are very close. Perceptron has the smallest AUC in
this design, amounts to nearly 0.5; it means that the classifier
works almost randomly.

4.5. Test of Precision, Recall and F-Measure. In pattern recog-
nition and data mining, precision is the fraction of relevantly
retrieved instances. In the situation of rt-CDSS classifications,
precision is a measure of the accuracy provided that a specific
class has been predicted. It is calculated by this simple
formula: precision = TP/(TP + FP).
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Table 4: Contingency table and the remarks.

Actual class (observation)

Predicted class (expectation)

TP (true positive) FP (false positive)
Correct result Unexpected result

FN (false negative) TN (true negative)
Missing result Correct absence of result

Table 5: Contingency table for multiclasses classifiers.
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Figure 9: ROC and AUC performances of the classifiers.

Recall is defined as the fraction of relevantly retrieved
instances. We can infer that the same part of both precision
and recall is relevance, based on which they all make a
measurement. Usually, precision and recall scores are not
discussed in isolation, and the relationship between them is
inverse, indicating that one increases and the other decreases.
Recall is defined as recall = TP/(TP + FN).

In a classification task, recall is a criterion of the classifi-
cation ability of a predictionmodel to select labeled instances
from training and testing datasets. A precision with score 1.0
means that every instance with label belonging to the specific
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Figure 10: Performances of the classifiers in terms of precision,
recall, and 𝐹-measure.

class (predicted by the classifier) does indeed belong to that
class in fact. Whereas a recall of score 1.0 means that each
instance from that particular class is labeled to this class and
all are predicted correctly, none shall be left out.
𝐹-measure is the harmonic mean of precision and recall,

that is: 𝐹 measure = 2/((1/Precision) + (1/Recall)) = (2 ⋅
Precision ⋅ Recall)/(Precision + Recall). It is also known as
balanced 𝐹 score or 𝐹-measure in tradition, because recall
and precision are equally weighted. The general formula for
𝐹

𝛽
measure is 𝐹

𝛽
= (1 + 𝛽

2
)/((1/Precision) + (𝛽2/Recall)) =

((1 + 𝛽

2
) ⋅ Precision ⋅ Recall)/(𝛽2 ⋅ Precision + Recall).

As mentioned before, precision and recall scores should be
taken into account simultaneously because they have a strong
relation essentially. Consequentially, both are combined into
a single measure, which is 𝐹-measure, which is perceived as
a well-rounded performance evaluation, more highly valued
than the simple accuracy.

The performance results of precision, recall, and 𝐹-
measure are then tabulated in Table 7 and shown in bar-chart
in Figure 10.

With respect to precision value, we can see Bayes has the
highest. The precision values between VFDT and iOVFDT
are nearly identical. There is a strange observation that the
precision score for Perceptron is also quite high (0.827),
despite the fact that Perception was most down rated in
the accuracy test. This phenomenon can be explained that
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Table 6: Numeric results of AUCs of the classifiers.

Test result
Variable(s) Area Std. errora Asymptotic sig.b Asymptotic 95% confidence interval

Lower bound Upper bound
VFDT 0.752 0.007 0 0.739 0.765
iOVFDT 0.745 0.007 0 0.732 0.758
Bayes 0.847 0.005 0 0.836 0.858
Perceptron 0.508 0.007 0.228 0.495 0.521
The test result variable(s): VFDT, iOVFDT, Bayes, and Perceptron has at least one tie between the positive actual state group and the negative actual state group.
Statistics may be biased.
aUnder the nonparametric assumption.
bNull hypothesis: true area = 0.5.

Table 7: Numeric results of AUCs of the classifiers.

Classifier VFDT iOVFDT Bayes Perceptron
Precision 0.894 0.892 0.938∗ 0.827
Recall 0.991∗ 0.985 0.953 0.245
𝐹-measure 0.940 0.936 0.945∗ 0.436
∗Refers to a winning classifier that has the highest performance.

Perceptron rarely makes a positive decision; from the his-
togram above in Figure 10we can easily see that the total sums
of TP and FP for perceptron is much less than the others. But
out of these rare predictions, Perceptron has a relatively high
rate in precision.

When it comes to recall criterion, VFDT has the best
score, iOVFDT and Bayes both have good Recall values
(>0.95).We can see quite clearly that Perceptronmade a lot of
false negative prediction, as its Recall value is only 0.245.This
is an immature sign of its underlying model is under-trained
with insufficient training samples.

For the final composite scores, 𝐹-measures, as shown
in Table 7, Bayes outperforms the rest of the others. The
candidate that has the second highest 𝐹-measure is VFDT
whose difference ismerely 0.005. In summary, Bayes classifier
can be a good candidate for implementing rt-CDSS given
the fact that it overall outperforms the rest in Precision, 𝐹-
measure, AUC and Kappa statistics. However one drawback
is the outlier predictions that can occur at Bayes classifier
though seldom in the course of prediction. In medical
applications, such anomaly in performance can lead to grave
consequences. The underperformance of Bayes may be due
to a large amount of conflicting conditions in the dataset
where a particular class out of the seven classes is highly
unbalanced (biased). As shown in Figure 11, the class called
Abnormal Postprandial 1 has an unusually high number of
instances (10,443) compared to the rest of the classes.

By comparing the confusion matrices of Bayes and
OVFDT, as shown in Figures 12 and 13, respectively, one
can observe the reason behind the shortcoming of Bayes
prediction. In the biased class which dominates most of the
training instances, Bayes incorrectly classified 1,077 instances
pertaining to Abnormal Postprandial 1 compared to OVFDT
which classified wrongly of 121 for the same class. This
particular inaccuracy at the biased class rated down the
performance of Bayes as a whole given its somewhat rigid
probabilistic network. On the other hand, decision tree type

26 35
24

2372

10443

12 34

Normal Limosis
Abnormal Limosis high
Abnormal Limosis low
Normal Postprandial 1

Abnormal Postprandial 1
Normal Postprandial 2
Abnormal Postprandial 2

Figure 11: Distribution of the instances among the target classes.

of classifiers such as OVFDT and iOVFDT are about to
grow extra decision paths to relieve this specific inaccuracy
hotspot.

iOVFDT is the second best in Kappa statistics, and
provides reasonably well performance in the other measures
(though not the highest). It could be an appropriate choice in
rt-CDSS given its stable performance considering all aspects
of evaluation. Perception is unsuitable for classifying data
stream.
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=== Confusion matrix ===

a b c d e f
19 3 2 0 0 1
6 26 0 0 0 0
4 7 12 0 0 1
0 0 0 1291 1077 2
0 0 0 65 10369 4
1 2 0 0 0 6
2 2 0 0 0 6

g < — classified as
1 a = Normal_Limosis
3 b = Abnormal_Limosis_high
0 c = Abnormal_Limosis_low
2 d = Normal_Postprandial_l
5 e = Abnormal_Postprandial_l
3

24
f = Normal_Postprandia1_2
g = Abnormal_Postprandial_2|

|

|

|

|

|

|

Figure 12: Confusion matrix of Bayes classifier.

=— Confusion matrix ===

a b c d e f
21 3 2 0 0 0
3 31 1 0 0 0
2 2 2 0 0 0
0 0 0 2251 121 0
0 0 0 0 10442 0
0 0 0 0 0 7
0 1 0 0 0 0
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0
g

a = Normal_Limosis
0 b = Abnormal_Limosis_high
0
0

c = Abnormal_Limosis_low
d = Normal_Postprandial_l

1 e = Abnormal_Postprandial_l
5 f = Normal_Postprandial_2
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Figure 13: Confusion matrix of OVFDT classifier.

5. Conclusion and Future Works

Clinical decision support system (CDSS) has drawn consider-
ate attentions from researchers from information technology
discipline as well as medical practitioners. This is a sequel
paper which follows a new novel design of real-time clinical
decision support system (rt-CDSS) with data streammining.
In our previous paper, a conceptual framework has been
proposed. However, one important internal process which is
the core of thewhole system is the classifierwhich is supposed
to predict the future condition of a patient based on his past
historic events aswell as other generalizedmedical propensity
information. Once a prediction is made, the leaf pointers of
the class nodes of the decision tree will fetch the relevant
prescribed medical guidelines for recommendation. It can
be understood that such classifier inside the rt-CDSS would
need to possess the following capabilities: (1) handling data
stream such as live feeds of biosignals monitoring devices,
other instant measurements of vital signs, and physiological
reactions/responses to drugs treatments; (2) a very short time
delay in model updates when new data arrives; and perhaps
most importantly (3) accurate and consistent prediction
performance.

Traditional classifiers which have been widely used in
CDSS and whose designs based on structured electronic
patients’ records (instead of stream data) are known to
come short of satisfying the three requirements. The main
distinction between traditional CDSS and rt-CDSS is the
reaction time required; CDSS is centered on disease that has
certain length of onset time and rt-CDSS is for emergency
medical situations; hence timely and accurate decisions are
very crucial. It was already studied in the other papers that

traditional classifiers require a complete scanning of a full
training dataset every time a new piece of data is added
on. Such batch-based learning is not efficient enough to
learn and adapt to fast moving data stream in real-time. rt-
CDSS is a new breed of decision support tools. To the best
of the authors’ knowledge, none of the related works has
investigated the issue of finding a suitable classifier for rt-
CDSS. This paper contributes to a performance evaluation
of several incremental learning algorithms together with
an artificial neural network algorithm that has been used
extensively for traditional CDSS. A case study of diabetes
therapy with real patents’ data was used in the evaluation
experiment which simulates a therapeutic decision-support
scenario where real-time blood glucose level is predicted
based on various insulin intakes and life-time events.

Our results show that classifier of artificial neural network
gives unsatisfactory performance under a rolling sequence of
event data. A neural network usually needs to be sufficiently
trained by the full volume of dataset which may not be
available in data streaming environment. Bayes algorithm is
found to be having the highest consistency in terms of Kappa
statistics and few other performance scores; its prediction is
stained with some outliers (sudden accuracy degradations)
in the course of prediction. VFDT on the other hand has
the highest accuracy, but its accuracy for one dataset may
not always be as consistent as that for another dataset, when
compared to iOVFDT whose performance is rather stable.

As future works, the authors are inclined to test a
wider range of stream mining algorithms that are available
in the literature. The same performance testing would be
repeated while the classifiers are to be integrated with the
other components of the rt-CDSS and be tested as a whole
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system. Scenario and dataset of higher complexity should
be tested with the classifiers too, for example, ICU data
where multiple data feeds (ECG, respiratory measures, blood
pressure, oxygen in blood, etc.) are streaming into the rt-
CDSS in real time.
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