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Abstract: Hypertension is a key risk factor for cardiovascular disease and it is a growing public health
problem worldwide. The pathophysiological mechanisms of vascular smooth muscle (VSM) contrac-
tion contribute to the development of hypertension. Calcium (Ca2+)-dependent and -independent
signaling mechanisms regulate the balance of the myosin light chain kinase and myosin light chain
phosphatase to induce myosin phosphorylation, which activates VSM contraction to control blood
pressure (BP). Here, we discuss the mechanism of the contractile machinery in VSM, especially
RhoA/Rho kinase and PKC/CPI-17 of Ca2+ sensitization pathway in hypertension. The two signal-
ing pathways affect BP in physiological and pathophysiological conditions and are highlighted in
pulmonary, pregnancy, and salt-sensitive hypertension.
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1. Introduction

Three types of muscle tissues are found in vertebrates: skeletal muscle, cardiac muscle,
and smooth muscle [1]. Muscle contraction depends on the ATP-driven sliding of highly
organized arrays of actin filaments against arrays of myosin II filaments [2]. In smooth
muscle, phosphorylation at Thr18/Ser19 of the myosin regulatory light chain results in
myosin ATPase enzymatic activity that induces actin and myosin attachment to regulate
smooth muscle contraction [3,4]. This process can be regulated by Ca2+-dependent and
Ca2+-independent mechanisms [1,5–7]. The Ca2+-dependent signaling pathway acts mainly
in combination with calmodulin (CaM) to form a complex that activates myosin light chain
kinase (MLCK). In contrast, the Ca2+-independent signaling pathway acts mainly through
the attenuation of myosin light chain phosphatase (MLCP) activity, i.e., Ca2+ sensitization.
This review focuses on the two signaling pathways in vascular smooth muscle (VSM)
contraction and the role of the Ca2+ sensitization pathway in hypertension.

2. Vascular Smooth Muscle Contractile Machinery

2.1. Ca2+/Calmodulin/Myosin Light Chain Kinase

The intracellular free Ca2+ concentration ([Ca2+]i) is necessary to maintain basal
vascular tone [8]. Increases in [Ca2+]i initiates VSM contraction [9]. The [Ca2+]i can be
increased by triggering the Ca2+ influx. Depolarization of the cell membrane through
voltage-dependent L-type Ca2+ channels (LTCCs), such as the opening of Cav1.2 chan-
nels in murine arterial myocytes or Cav1.3 channels in the canine basilar artery, is the
primary means of Ca2+ entry into arterial smooth muscle [10–12]. Ca2+ leaks through
non-specific Ca2+ movement across the plasma membrane; increases in intravascular pres-
sure through stretch-activated Ca2+ channels could also activate voltage-dependent Ca2+

channels [13]. The opening of the Ca2+-activated chloride channels (CaCCs) can also lead to
the depolarization of the membrane, followed by the opening of voltage-gated Ca2+ chan-
nels. Additionally, vasoconstrictor agonists enhance Ca2+ influx through transient receptor
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potential channels (TRPs), store-operated Ca2+ channels (SOCs) and receptor-operated
nonselective cation channels (ROCs) [10,14–18].

The [Ca2+]i can also be increased from intracellular stores through ryanodine receptors
(RyRs) and inositol-1, 4, 5-trisphosphate receptors (IP3Rs) in the sarcoplasmic reticulum
(SR) [19]. The precise regulation of the [Ca2+]i is crucial for proper physiological VSM
function (Figure 1). In VSM, calcium performs most of its functions by interacting with
specific Ca2+-binding proteins [20]. Calmodulin (CaM) is a critical Ca2+ sensor that activates
the kinase of the myosin light chain (MLC), leading to MLC phosphorylation, actin-myosin
interaction and VSM contraction [20,21]. These Ca2+-dependent signaling pathways are
central regulators of differential VSM contractile functions and vascular disorders [22].
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Figure 1. The calcium/calmodulin/myosin light chain kinase signaling pathway-induced vascular smooth muscle con-
traction. VSM contraction is increased by the intracellular levels of Ca2+. Activated G protein-coupled receptors (GPCRs)
stimulate the plasma membrane-bound phospholipase C-β (PLC-β) via a G protein. Phosphatidylinositol 4, 5-bisphosphate
(PI4,5)P2 is hydrolyzed by activated PLC-β to produce inositol 1, 4, 5-trisphsphate (IP3) and diacylglycerol (DAG). IP3
diffuses through the cytosol and releases Ca2+ from the sarcoplasmic reticulum (SR) by binding to and opening IP3-gated
Ca2+ release channels (IP3Rs). The SR also contains regulated Ca2+ channels ryanodine receptors (RyRs) to increase the
Ca2+ level in the cytosol. Ca2+ can also be influxed via voltage-gated Ca2+ channel (LTCC), store-operated Ca2+ channels
(SOCs), receptor-operated Ca2+ channels (ROCs), Ca2+-activated chloride channels (CaCCs), and transient receptor potential
channels (TRPs). The increased Ca2+ binds calmodulin (CaM), then binds myosin light chain kinase (MLCK), which
phosphorylates myosin light chain, stimulating myosin activity to combine actin to induce contraction.

2.2. Ca2+ Sensitization

The regulation of MLCP activity is considered to be the most important mechanism un-
derlying the regulation of the Ca2+ sensitivity of VSM contractile machinery [23]. MLCP is
a holoenzyme composed of three subunits—a 38-kDa catalytic subunit (type 1 phosphatase;
PP1Cδ), a 20-kDa functionally unknown subunit, and a large 110–130-kDa regulatory
protein subunit (myosin phosphatase target subunit; MYPT) [24]. Various isoforms of
MYPT exist, and the MYPT1 isoform is present in smooth muscle [25]. The phosphory-
lation of MYPT1, conformational changes in MLCP, and phosphorylation of a smooth
muscle-specific inhibitor protein, i.e., protein kinase C (PKC)-dependent phosphatase in-
hibitor of 17-kDa (CPI-17), are three major mechanisms for the inhibitory regulation of
MLCP [26]. In addition, the phosphorylation of MYPT1 at T696 and T852 by Rho-kinase,
endogenous kinase, integrin-linked kinase, p21-activated protein kinase, zip-like kinase,
zip kinase, myotonic dystrophy protein kinase and raf-1 to mediate the inhibition of the
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MLCP activity [26]. A crystallographic study revealed that dissociation of the regulatory
subunits PP1Cδ from MLCP or the subtle perturbation of the interaction among three
subunits could decrease MLCP activity and potentiate the Ca2+ sensitivity of the contractile
apparatus [26]. The 17-kDa protein phosphatase-1 inhibitor protein, CPI-17, selectively
inhibits MLCP. The phosphorylation of CPI-17 at Thr38 inhibits the MLCP complex with
a half maximal inhibitory concentration value lower than 1 nM; CPI-17 can be phospho-
rylated by PKC, rho-kinase, integrin-linked kinase, p21-activated protein kinase, protein
kinase N and zip-like kinase [27] (Figure 2). Another, caldesmon, should be mentioned,
which is functionally analogous to the troponin complex. It crosslinks actin and myosin
to impair crossbridge cycling by inhibiting myosin ATPase/actomyosin ATPase activity.
The phosphorylation of caldesmon at Ser789 by extracellular regulated kinase (ERK) could
reverse the caldesmon-mediated inhibition to induce VSM contraction. PKC-dependent
activation of mitogen extracellular kinase could result in the activation of extracellular
regulated kinase ERK [9].
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Figure 2. Ca2+ sensitization signaling-induced vascular smooth muscle contraction. VSM contraction was increased by
inhibiting the activity of myosin phosphatase (MLCP). Activated G protein-coupled receptors (GPCRs) stimulate the
plasma membrane-bound phospholipase C-β (PLC-β) via a G protein. Phosphatidylinositol 4, 5-bisphosphate (PI4, 5) 2
is hydrolyzed by activated PLC-β to produce inositol 1, 4, 5-trisphsphate (IP3) and diacylglycerol (DAG). DAG, together
with phosphatidylserine (not shown) with or without Ca2+, activates protein kinase C (PKCs) to phosphorylate CPI-17 and
inhibit the catalytic subunit of MLCP and PP1cδ activity. CPI-17 can also be phosphorylated by ROCK, zip-like protein
kinase (ZIPK) and integrin-linked kinase (ILK). Activated GPCRs activate monomeric Rho-protein, RhoA via guanine
nucleotide exchange factors (GEFs). The activated RhoA (RhoA-GTP) then regulates ROCK to phosphorylated CPI-17 or
phosphorylate the regulatory subunit of MLCP, MYPT1 at Thr696 or Thr852 to inhibit MLCP activity to induce contraction.
MYPT1 can also be phosphorylated by ILK, ZIPK, p-21-activated protein kinase (p21) and raf-1 to inhibit MLCP activity,
which leads to the dephosphorylate of p-MLC to induce relaxation.

2.3. Resistance Arteries

The peripheral vascular system includes all of the blood vessels. It is classified as
follows: the arterioles, the capillaries, and the venules and veins [28]. Arteries carry blood
away from the heart, and can be categorized as large or small arteries. Large arteries
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receive the highest pressure of blood flow. Smaller arteries, such as arterioles, have more
smooth muscle, which contracts or relaxes to regulate blood flow to specific portions of
the body [29]. A resistance artery is a small-diameter blood vessel in the microcirculation
that contributes significantly to the creation of the resistance to flow and to the regulation
of blood flow. Thickening and narrowing of resistance arteries are key elements in the
control of the cardiovascular system [30]. The myogenic response of resistance arteries
to intravascular pressure elevation is a fundamental physiological mechanism of crucial
importance for BP regulation and organ-specific control of blood flow [31]. Abnormalities
of the structure, differentiation, mechanical stress, and contractile machinery of resistance
arteries may induce hypertension [32,33]. An elevated media-to-lumen ratio of resistance
arteries amplifies responses to vasoconstrictors [34]. The [Ca2+]i and Ca2+ sensitivity of the
contractile process are often connected with vasoconstrictors to regulate resistance arteries
to induce myogenic constriction [35–38]. In rat skeletal muscle resistance arteries, Ca2+

sensitization involving Rho-associated, coiled-coil-containing kinase, (ROCK)-dependent
phosphorylation of MYPT and ROCK- and PKC-evoked actin polymerization contribute to
the myogenic response but not to the phosphorylation of CPI-17 [31]. In rat middle cerebral
arteries, ROCK-dependent phosphorylation of MYPT T855 contributes to myogenic control
of the arterial diameter, but not to CPI-17 and MYPT T697 [38]. However, in rat splanchnic
resistance arteries or small mesenteric arteries, the phosphorylation of CPI-17 mediates
α1-adrenergic receptor-induced rapid contraction and is critical in the orthostatic recovery
of BP [39]. To explain these discrepancies, more information is needed on the effects of
resistance arteries in the Ca2+ sensitization signaling pathway.

3. Ca2+ Sensitization in Normal Blood Pressure

Normal BP means the mean pressure over the whole heart cycle. In humans, nor-
mal BP is maintained at approximately 100 mmHg. The nervous system (baroreceptors,
chemoreceptors, central nervous system and sympathetic nervous system) and renin–
angiotensin system control and regulate vasomotor tone and BP [9]. The BP is related to
the cardiac output and systemic vascular resistance [9]. The cardiac output is defined as
the amount of blood pumped by the heart in 1 min, and it is determined by the heart rate,
contractility, preload and afterload. The afterload is largely dependent on the arterial BP
vascular tone [40]. Changes in vascular tone resistance are related to changes in systemic
vascular resistance and BP [9]. Multicellular regulation of arterial contractility is essen-
tial for BP control. Numerous vasoconstrictors and vasodilators stimulate or attenuate
arterial contraction to control vascular tone and BP [41]. Understanding the mechanisms
of VSM cell activation appears to be crucial for understanding of the complete scope
of BP regulation [42]. Arterioles/resistance vessel contraction is mediated by enhanced
cytosolic levels of calcium and/or augmented calcium sensitization [41,43,44]. The mecha-
nisms of Ca2+ sensitization have already been described before, mainly as contributions
of RhoA/Rho kinase/MYPT and PKC/CPI-17 to myogenic response. RhoA/ROCK also
plays a role in regulating various cellular functions, such as apoptosis, growth, migration
and metabolism. Other reviews have described the detailed structures and functions of
RhoA/ROCK/MYPT and CPI-17 [25,27,45–48]. In vivo studies of rats, the microinjection
of a specific Rho-kinase inhibitor, Y-27632, in the nucleus tractus solitarii of the brain
stem, decreased blood pressure, heart rate and the renal sympathetic nerve and, further,
adenovirus-mediated vector encoding dominant-negative Rho-kinase also decreased blood
pressure, which indicate that the Rho/Rho-kinase pathway contributes to basal arterial
blood pressure regulation via the sympathetic nervous system [49]. Phosphorylation of
MYPT1 could inhibit MLCP to induce VSM contraction. However, MYPT1 knock-out mice
showed permanent hypertension and enhanced contractile responses of mesenteric vas-
cular smooth muscle to depolarization- and agonist-induced contractions. The increased
contractile responses suggested a contribution of CPI-17 phosphorylation by ROCK in
regulating PP1cδ activity [50]. As before introduced, CPI-17 could be phosphorylated by
PKC. The PKC family contains multiple isozymes [51]. PKCα phosphorylates CPI-17 and
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inhibits MLCP, reducing MLC phosphorylation resulting in increased contraction. PKC
α-deficiency caused hypotension and reduced vascular contractile responses to agonists,
which suggesting the role of CPI-17 in the maintenance of BP [52]. Yang et al.’s group, by
using CPI-17 knock-out and T38-dominant negative knock in mice, from the non-invading
tail cuff and invading radiotelemetry method, showed systolic BP and mean BP were lower
than wild-type mice, which directly demonstrated that CPI-17, especially the T38 site, is
essential for maintaining normal BP [53]. Interestingly, J. Sun et al.’s group showed normal
systolic BP between CPI-17 knock-out and wild-type mice, but systolic BP was elevated
in high-fat diet-fed wild-type mice, while keeping normotensive BP in CPI-17-deficient
mice [54]. The discrepancy may be caused by the different species of mice.

4. Ca2+ Sensitization in Hypertension

Overview
Hypertension is defined as a systolic BP (SBP) ≥ 140 mmHg and/or diastolic BP

(DBP) ≥ 90 mmHg in humans [9], and 45% of cardiovascular mortality may be attributed to
hypertension. Although the mechanisms underlying the development of hypertension have
not yet been well established, one critical feature observed in most cases of hypertension
is an increased peripheral resistance, which suggests an enhanced constriction of the
relevant vessels. Several excellent reviews have discussed VSM contraction mechanisms
and hypertension [9,55].

The purpose of this chapter is to highlight the role of the Ca2+ sensitization signaling
pathway in VSM contraction in hypertension with an emphasis on recent discoveries and
their relevance to vascular disease in pulmonary hypertension (PH), pregnancy hyperten-
sion, and salt-sensitive hypertension.

4.1. Ca2+ Sensitization in Pulmonary Hypertension

PH is defined as an increase in the mean pulmonary arterial pressure ≥ 25 mmHg at
rest [56]. According to the values of pulmonary wedge pressure, pre-capillary (pulmonary
wedge pressure ≤ 15 mmHg) and post-capillary (pulmonary wedge pressure > 15 mmHg),
PH was classified. Clinical subgroups of pulmonary arterial hypertension (PAH), PH
due to chronic lung disease or hypoxia, chronic thromboembolic PH (CTEPH), and PH
with an unclear and/or multifactorial mechanism belong to pre-capillary PH. PH due to
left-sided heart disease, such as heart failure, belongs to post-capillary PH [57,58]. Vascular
remodeling, distensibility, and neural and humoral factors contribute to the development
of PH [56,57], in addition to hypoxic, genetic and environmental factors [59]. Injection of
monocrotaline, the use of chronic hypoxia, and the combination of the vascular endothelial
growth factor receptor (VEGFR) blockade with SUGEN5416 and chronic hypoxia exposure
animal models are widely established animal models to understand the pathophysiological
mechanisms of the progression of PAH [60]. Pulmonary artery vasoconstriction and vascu-
lar remodeling contribute to a sustained elevation of pulmonary vascular resistance and
pressure in patients with PAH [61]. Pulmonary vasoconstriction is caused by a variety of
factors, including serotonin, endothelin-1, angiotensin II, and prostaglandins [59]. Nitric ox-
ide (NO), prostanoids, endothelin receptor antagonists and phosphodiesterase 5 inhibitors
are often used to treat PAH [60]. Drugs targeting pulmonary vasodilatation are also a poten-
tial treatment for PH [62]. In fetal sheep, MLCP activity was downregulated with PH [63],
suggesting that the Ca2+ sensitization signaling pathway is associated with PH. The Rho-
ROCK pathway is involved in the vasoconstriction and remodeling in PAH. Upregulated
RhoA/ROCK activity was found in chronic hypoxia or combined exposure to a VEGFR
blocker-induced progressive PH in rats [64]. An in vivo study indicated that long-term oral
treatment to the blockade of Rho-kinase with fasudil, a ROCK inhibitor, notably ameliorates
monocrotaline, induced PH and pulmonary vascular lesions in rats [65]. Mean pulmonary
artery pressure or systolic pulmonary artery pressure were decreased after receiving intra-
venous or inhaled fasudil treatment in patients with high-altitude PAH, congenital heart
diseases or connective tissue diseases associated with PAH [66]. In addition to the inhibition
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of RhoA-ROCK directly by fasudil, there are many other potential approaches to inhibit the
RhoA-ROCK axis in PAH, such as the aminofurazan derivative drug, SB-772077-B, simvas-
tatin [64], resveratrol [67], Compound 3 (trans-6-((4-aminocyclohexyl)amino)-5-fluoro-2-
methoxynicotinamide) [68] and fasudil dichloroacetate [69]. The roles of RhoA/Rho-kinase
signaling in PH and treatment have been reviewed [60,64,70–73]. Recently, new findings
have also been established. In mice chronic hypoxic-induced PH, the RhoA/ROCK sig-
naling pathway mediated vasocontraction through the Ca2+-dependent mechanism via
the functional transient receptor potential canonical channels, which suggests a new path-
way regarding the role of RhoA/ROCK in PH [74]. The long noncoding RNA smooth
muscle-induced LncRNA modulates RhoA/ROCK signaling in PAH, suggesting that the
smooth muscle-induced LncRNA may be a promising and novel therapeutic target for
the treatment of PAH [75]. CPI-17, a PKC-phosphorylated protein, can also inhibit MLCP
activity to induce vasoconstriction [76]. PKC activity plays a role in hypoxia-associated PH
by affecting both Ca2+ influx and Ca2+ sensitization in pulmonary artery VSM [51,77]. For
instance, in fawn-hooded rat, PKC inhibits BKca channel activation and causes pulmonary
vasoconstriction in hypertensive pulmonary arterial smooth muscle [78]. Intermittent
hypoxia augments ET-1 induced pulmonary vasoconstrictor reactivity through a PKCβ-
dependent Ca2+ sensitization signaling pathway [79]. In newborn swine, phosphorylated
CPI-17, mainly activated by PKC, was increased in hypoxic pulmonary arteries to inhibit
MLCP activity associated with persistent PH, while the phosphorylation of MYPT at T696
and T850 was similar in hypoxic and normoxic conditions [80]. In human pulmonary
arteries, TNF-alpha, IL-6 and endothelin-1 treatment induced hyperreactivity and Ca2+

hypersensitivity accompanied with an increased phosphorylation of CPI-17, which can
be reversed by resolvinD1, resolvin E1, docosahexaenoic acid monoacylglyceride and
omega-hydroxylase [61,81–83]. Further need to point out is that in pulmonary endothe-
lium, PKC/CPI-17 regulates endothelial permeability and cytoskeletal organization to
inhibit MLCP activity to induce endothelial cell contraction rather than the regulation of
MYPT [84–86]. In a conclusion, the inhibition of pulmonary artery vasoconstriction, vas-
cular remodeling, and the amelioration of pulmonary endothelia cell dysfunction via the
Ca2+ sensitivity signaling pathway may contribute to the inhibition of sustained elevations
of pulmonary vascular resistance and pulmonary arterial pressure in patients.

4.2. Ca2+ Sensitization in Pregnancy Hypertension

Hypertensive disorders in pregnancy are a worldwide health problem for women
and their infants as they cause increased maternal and neonatal morbidity and mortal-
ity. In humans, hypertension in pregnancy is defined as an SBP ≥140 mmHg and or
DPB ≥90 mmHg. Hypertensive disorders in pregnancy include pre-existing hypertension,
gestational hypertension, preeclampsia–eclampsia and unclassified hypertension [87–89].
Normal pregnancy is associated with a marked vasodilation of the maternal uterine, renal
and systemic vessels and reductions in the mechanisms of vascular contraction [90,91].
Changes of vascular factors, such as an increased collagen deposition in the extracellular
matrix, decreased endothelium-dependent vascular relaxation and increased VSM contrac-
tion, result in increased vascular resistance and hypertension in pregnancy [91]. In a rat
model, the Ca2+ entry mechanisms for VSM contraction were enhanced in renal vascular
resistance associated with hypertension in pregnancy [92]. The RhoA protein and mRNA
expression was significantly higher in preeclampsia than in normal pregnancy [93]. In
pregnant mice, the inhibition of the RhoA/ROCK pathway with Fasudil could reduce the
high BP [94]. In women with preeclampsia, matrix metalloproteinase 1 activated the RhoA
kinase pathway to cause vasoconstriction, which may contribute to the development of
maternal hypertension [95]. Another important mechanism for hypertension is neutrophil
infiltration into the systemic vasculature, which releases reactive oxygen species that might
activate the RhoA/ROCK pathway, which in turn phosphorylates MYPT1 to enhance vas-
cular reactivity in preeclamptic women [96]. In pregnancy hypertension, MYPT1-isoform
switching is an adaptive response that reduces vascular resistance and maintains uter-
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ine blood flow [97]. Recently, a haplotype-base-control study, using a single nucleotide
polymorphism between normal pregnant women and hypertensive disorders pregnant
(HDP) women, showed that the disclosure polymorphism of the MYPT1 gene is an HDP
disease-susceptibility gene [98]. These research reveal that the Ca2+ sensitivity signaling
pathway through RhoA/ROCK/MYPT1 contributes to pregnancy hypertension.

During pregnancy, PKC activity is decreased for the decreased contractions in pregnant
uterine arteries in order to maintain a low basal uterine blood flow [51]. Uterine and
small mesenteric arteries from late pregnancy showed an attenuated vascular response to
thromboxane A2 (TXA2) via RhoA/Rho kinase and PKC, p38MAPK and ERK1/2 signaling
pathways [99]. The PKC inhibitor calphostin C attenuated the autoimmune activity of
immunoglobulin from preeclamptic patients to angiotensin AT1 receptor [100]. These
support a role of PKC in pregnancy hypertension. In sheep pregnant uterine artery,
phenylephrine induces the phosphorylation MYPT1 at T850 that precedes the contractions
by activation of ERK, while phosphorylation of CPI-17 at T38 concurrent with contractions
is not mediated by ERK. However, phorbol 12,13-dibutyrate, a PKC agonist, activates
PKC-α isozyme and induces a time-dependent increase in CPI-17 phosphorylation that
precedes the contractions. The results suggest that the phosphorylation of MYPT-1 at T850
and CPI-17 at T38 takes part in the regulation of agonist-mediated Ca2+ sensitivity in the
uterine artery [101]. Although until now, no papers have yet reported the role of CPI-17 in
pregnancy hypertension. The phosphorylation of CPI-17 by PKC is essential to maintain
BP and evolves in the mechanisms of VSM contraction in vascular disease [9,13,56]. These
indicate that in the Ca2+ sensitization signaling pathway, not only the RhoA/ROCK/MYPT,
but also the PKC/CPI-17 pathways are important in the regulation of vascular contraction
in pregnancy hypertension. The two signaling pathways also have a role in myometrium
contraction during pregnancy in animal models and humans [102–105].

4.3. Ca2+ Sensitization in Salt-Sensitive Hypertension

Salt-sensitive hypertension induces cardiovascular disease and mortality. Immunity,
endothelial dysfunction, ion transport and the renin–angiotensin–aldosterone system con-
tribute to the development of salt sensitivity [106]. The Dahl salt-sensitive rat strain is
a useful model for studies of salt-induced hypertension which exhibits renal damage
that is associated with sodium-sensitive hypertension [107,108]. Increased infiltration
of macrophages and T-lymphocytes into the kidneys acts on the kidney vasculature to
modulate hypertension [109]. A high salt intake and salt sensitivity are associated with an
impaired endothelial function that leads to the development of hypertension; in particular,
nitric oxide plays an important role in renal vasodilation and natriuresis [110]. The epithe-
lial sodium channel is a trimeric ion channel that plays a critical role in the regulation of
sodium reabsorption for the development of salt hypertension associated with the renin–
angiotensin–aldosterone system [111]. The activation of the renin–angiotensin–aldosterone
system also induces oxidative stress, such as superoxide anion formation, and angiotensin
II that both act as a vasoconstrictor which may contribute to the pathophysiological devel-
opment of salt sensitivity and hypertension [112]. There are some theories of initiation of
salt sensitivity and salt-induced hypertension. One is that salt-sensitive subjects have an
impaired renal ability to excrete a salt load. The retention of an abnormally large increase in
renal salt could cause abnormally large increases in the sodium balance, blood volume and
an abnormally large increase in cardiac output to the initiation of BP [113]; another is that
the subnormal decrease in systemic vascular resistance to a normal extent is the abnormal
initiation of salt-induced hypertension, since the cardiac output and sodium retention have
no difference between salt-sensitive and salt-resistant subjects, i.e., vasodysfunction. Many
systems and factors affect vascular resistance, such as the nitric oxide system, various ion
channels and cell signaling systems regulating MLC function [114].

The Ca2+ sensitization signaling pathway affects VSM contraction and thereby plays
a role in salt-sensitive hypertension. In Dahl salt-sensitive rats, fasudil-induced mean
artery pressure reduction was greater and Y-27632/fasudil elicited a greater attenuation of
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contractile responses to phenylephrine in femoral arteries than salt-resistant rats, which
suggests the RhoA/Rho kinase pathway enhanced in the maintenance of increased sys-
temic resistance and elevated BP [43]. However, the other group showed that long-term
fasudil treatment did not reduce the higher SBP in salt-sensitive rats and renal cortex tissue
mRNA levels of RhoA, RhoB, RhoC, Rho-kinaseα or Rho-kinase β did not changed, but
the RhoA/ROCK pathway was responsible for the pathogenesis of hypertensive glomeru-
losclerosis in Dahl salt-sensitive rats [115]. Y-27632, which acts on p160ROCK, inhibited
agonist-induced contraction and significantly reduced BP in renal and deoxycorticosterone
acetate (DOCA)–salt-hypertensive rats. These suggest that Rho/ROCK-mediated Ca2+

sensitization contributes to DOCA–salt-dependent hypertension [116]. Even more, using
smooth muscle-specific deficient Gq-G11 and G12–13 mice showed that Gq-G11, not G12–13 is
required for the maintenance of basal BP. However, in DOCA–salt-dependent hypertension,
both Gq-G11- and G12–13-mediated signaling are involved. Using Arhgef12 deficient mice,
further indicates that the G12–13-RhoGEF-Rho/Rho kinase-mediated signaling pathway is
a central mechanism of vascular smooth muscle tone regulation in DOCA–salt-dependent
hypertension [117], but not the Arhgef1-Rho signaling pathway which is a central mech-
anism in the development of angiotensin II-dependent hypertension [118]. In the rat
overconsumption of salt group, phenylephrine-induced contraction can only be reduced
by a higher concentration of Y-27632 and the phosphorylation of MYPT1 and RhoA in the
membrane fraction of the aorta were augmented [119]. With increasing age, increasing BP
is sensitive to dietary sodium intake. Recently, by using anti-aging factor Klotho knock-out
mice, research showed that aging-associated salt-sensitive hypertension happens through
the vascular activation of Wnt5a and p-MYPT1 signaling [120]. The role of Rho in salt-
sensitive hypertension has been reviewed [121]. PKC also plays an important role in the
regulation of Ca2+ sensitivity in the mesenteric arteries of Dahl salt-sensitive rats and
DOCA–salt-hypertensive rats [122,123]. In our lab, in preliminary studies, using CPI-17
genetically modified mice, we found that DOCA–salt could not induce hypertension in
CPI-17 KO mice, but it could induce hypertension in wild-type mice (manuscript in prepa-
ration). Although there has not been much research about the role of CPI-17 in salt-sensitive
hypertension, it is possible that Ca2+ sensitization signaling via both the RhoA/ROCK
and PKC/CPI-17 pathways to regulate MLCP activity, could play an important role in
regulating VSM contraction in the development of salt-sensitive hypertension.

4.4. Ca2+ Sensitization in Others Hypertension or Hypotension

To have a better understanding of the etiology, development and progression of
hypertension, various models of experimental hypertension have been developed. Genetic
hypertension, such as the spontaneous hypertensive rat (SHR), is an excellent model for
the researching of pathophysiology with essential hypertension in humans. SHR rats
increase in BP beginning at 6–7 weeks of age and reach a stable level of hypertension by
17–19 weeks of age. Dietary hypertension is known to have a long-term exposure to a
special diet (high salt, fat or sugar) [124]. Nitric oxide (NO), a potent vasodilator, plays
an important role in the regulation of BP. The oral administration of Nω-nitro-L-arginine
methyl ester (L-NAME), an inhibitor of NO synthase, could induce the NO-deficient
model to result in hypertension associated with intense peripheral vasoconstriction and
an increase in peripheral vascular resistance. Angiotensin II plays an important role in
the regulation of vascular tone and BP. Infusing angiotensin II chronically could lead to a
slowly developing hypertension [125].

Altered calcium sensitization participates in BP maintenance of SHRs. In the arterial
smooth muscle of young or adult SHR and Wistar–Kyoto (WKY) rats, fasudil-induced
dose-dependent BP reduction occurred in the young but not in the adults in both strains
of rats. The mRNA expression of ROCK1, ROCK2, ZIPK and CPI-17 increased with age.
However, the mRNA and protein expression levels of CPI-17 were lower in SHR than
WKY, as well as the mRNA expression of the main activators of RhoA, Arhgef1, Arhgef11
and Arhgef12. In this study, adult SHR showed an increased phosphorylation of CPI-17
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and active RhoA. The result suggests that in adult SHR with established hypertension,
the increased phosphorylation of CPI-17 is responsible for attenuated activity of MLCP to
enhanced calcium sensitization [126]. However, in stroke-prone SHRs, the active form of
RhoA and the phosphorylation of MYPT1 at T696 in vascular smooth muscle cells were
higher than in WKY rats. Valsartan, an angiotensin II type 1 receptor (AT1) antagonist, but
not prazosin, an α 1-adrenergic receptor antagonist, decreased the active form of RhoA in
VSMC from stroke-prone SHRs. There were no differences in the protein expression levels
of RhoA, ROCK, MYPT1, CPI-17 and MLCK. These results suggest that autocrine/paracrine
regulation by angiotensin II is the possible mechanism underlying RhoA activation in
VSMC from stroke-prone SHRs [127]. In SHRs, Sanoshashinto methanol extract or a
baicalin–berberine combination showed the vasorelaxant effects and decreased systolic
BP. Furthermore, pretreatment with calphostin C, a protein kinase C inhibitor, enhanced
the vasorelaxant effects, which indicated that the DAG/PKC/CPI-17 signal pathway is
involved in the vasorelaxant effects of Sanoshashinto methanol extract in SHRs [128,129].
The review of genetic targeting of RhoA signaling on hypertension is recommended [130].

In patients with hypercholesterolemia arteries, Sphingosylphosphorylcholine (SPC)-
induced contractions were significantly enhanced, and the contraction was inhibited by
Y27632. The result suggests that SPC-induced Ca2+ sensitization of VSM involves Rho-
kinase. Similar results were obtained from rabbits fed with a cholesterol-rich diet [131].
The ROCK inhibitor Fasudil also decreased mice arterial BP that were fed with a high-fat
diet (HFD) [132]. These suggest that the upregulation of ROCK activity is one mechanism
by HFD which leads to vascular dysfunction to induce hypertension. Additionally, in
Sprague Dawley rats, HFD induced the obesity condition, phosphorylation of CPI-17 and
MLCK was increased. Angiotensin II induced the phosphorylation of CPI-17, MYPT1 at
T853 and MLC were also higher in the HFD group [133]. In HFD-induced obese mice,
CPI-17, PKCα, PKCβI and PKCδ were upregulated; further studies using CPI-17 knock-out
mice demonstrated that CPI-17 mediates calcium-sensitized VSM contraction through a
GPCR/PKC/CPI-17/MLCP/RLC axis in obesity-related hypertension [54].

The infusion of angiotensin II in male C57BL6/J mice induced systemic arterial hyper-
tension accompanied with a significant upregulation of ROCK1, phosphorylation forms of
a signal transducer and activator of transcription 3, PKC and extracellular signal-regulated
kinase 1/2 through sphingosine-1-phosphatse signaling [134]. In L-NAME-treated hy-
pertensive rats VSM cells, as well as in DOCA–salt rats, renal hypertensive rats and
stroke-prone SHR rats, angiotensin II increased the active form of RhoA, phosphoryla-
tion of MYPT1 at T696 and CPI-17 T38. However, the expression of RhoA, ROCK1/2,
MYPT1, CPI-17 and MLCK in thoracic aortas experienced no changes compared with
the control normotensive rats. Further, Y-27632, the Rho-kinase inhibitor, normalized L-
NAME-induced hypertension [135]. Dexmedetomidine, a highly selective α-2 adrenoceptor
agonist, induced an increase in the phosphorylation of CPI-17 via the ROCK 2 and PKC
signaling pathway in rat aorta, which led to a transiently increased BP [136].

Lipopolysaccharide induces inflammatory conditions in mice mesenteric arteries and
downregulates CPI-17 associated with vascular hypocontractility and hypotension, but
with no change in RhoA and ROCK2 proteins [137]. In the rat head-down tail suspension
hindlimb unloading (HDU)-induced orthostatic hypotension model, the mesenteric artery
expression of actin, PKCa, CPI-17, RhoA, ROCK1, ROCK2 and PP1Cδ showed no differ-
ences between the HDU group and control ones. However, α1-agonist, the phenylephrine-
induced contraction was significantly smaller with the reduced phosphorylation of CPI-17,
which suggests that attenuation in CPI-17 phosphorylation signaling is associated with a
reduced VSM contraction in the HDU rat [39]. Taken all into consideration, the Ca2+ sensi-
tization signaling pathway, through the phosphorylation of CPI-17 and phosphorylation of
MYPT1 to inhibit MLPC activity, plays an important role in not only the maintenance of
normal blood pressure, but also in hypertension or hypotension conditions.

Animals are used in biomedical research for the reasons of feasibility, similarities
to humans and drug safety [125]. As before introduced, numerous experimental animal
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models have been developed for understanding the physiological and pathophysiological
role of Ca2+ sensitization in VSM contraction in normal BP and/or hypertension through
RhoA/ROCK or PKC/CPI-17 signaling. These results were summarized in Table 1.

Table 1. Blood pressure and hypertension-related findings of Ca2+ sensitization signaling pathway using animal models.

Type of Animal Models Phenotype Authors

Smooth muscle specific CPI-17 transgenic
mice

Increased BP
Upregulation of PKCα/δ, ROCK2, p-MYPT1 T853
No change of RhoA, ROCK1 protein expression

Su, W. et al. [138]

CPI-17 knock-out/CPI-17 T38A mutant
mice

Decreased BP
No change of RhoA, total MYPT1 Yang, Q. et al. [53]

Protein kinase Cα knock-out mice Decreased BP in normal and high salt-induced condition Wynne, B.M. et al. [52]

Smooth muscle specific MYPT1
knock-out mice

Increased BP
no changes of the total protein expression level of

MLCK, ROCKII, CPI-17, and PKGIα/β
Qiao, Y.N. et al. [50]

Stroke-prone spontaneously hypertensive
rats

Increased BP
Increased active form of RhoA and p-MYPT1 T696
No changes of the total protein expression level of

RhoA, ROCK, MYPT1, CPI-17 and MLCK

Moriki, N. et al. [127]

Spontaneously hypertensive rat

Increased BP
mRNA expression of ROCK1, ROCK2 and ZIPK

increased with age
mRNA and protein expression level of CPI-17 lower

than normal rats

Behuliak, M. et al. [126]

High-fat diet rats
Increased BP

Hyper-contractility
Higher level of p-CPI-17, p-MYPT1T853 and p-MLC

Kim, J.I. [133]

High-fat diet mice,
CPI-17 knock-out mice

Increased BP
Upregulation of CPI-17, PKCα, PKCβI and PKCδ Sun, J. et al. [54]

L-NAME-treated hypertensive
rats/DOCA–salt rats/renal hypertensive

rats

Increased BP
No changes of RhoA, ROCK1/2, MYPT1, CPI-17 and

MLCK-expression
Increased GTP-bound active form of RhoA

Seko, T. et al. [135]

Hypoxic-induced pulmonary
hypertension in newborn swine

Increased p-CPI-17
No change of p-MYPT696 and p-MYPT853

Dakshinamurti, S.L.
et al. [80].

Lipopolysaccharide-induced hypotensive
mice

Decreased BP
downregulates of CPI-17

No change of RhoA and ROCK2 proteins
Zhao, G. et al. [137]

Head-down tail suspension hindlimb
unloading-induced orthostatic

hypotension rats

Decreased BP
No changes of protein expression of actin, PKCa, CPI-17,

RhoA, ROCK1, ROCK2 and PP1Cδ
Kitazawa, T. et al. [39]

5. Conclusions

Depending on the animal model and methods used to research the role of RhoA/ROCK
and CPI-17, many discrepancies were seen. Further research is needed to determine which
is more important to maintain BP and for the development of hypertension. The Ca2+

sensitization signaling pathway plays an important role in VSM contraction and BP. The
pharmacological inhibition of ROCK with fasudil has been used clinically to regulate
vascular tone in hypertension. Specific inhibition of CPI-17 may be a new target for a novel
therapy in cardiovascular diseases.
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