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Background: Inflammatory bowel disease (IBD) is characterized by both acute and

chronic phase inflammation of the gastro-intestinal (GI) tract that affect a large and

growing number of people worldwide with little to no effective treatments. This is in part

due to the lack of understanding of the disease pathogenesis and also the currently poorly

described involvement of other systems such as the lymphatics. During DSS induced

colitis, mice also develop a severe inflammation of terminal ileum with many features

similar to IBD. As well as inflammation within the ileum we have previously demonstrated

lymphatic remodeling within the mesentery and mesenteric lymph nodes of DSS-treated

mice. The lymphatic remodeling includes lymphangiogenesis, lymphatic vessel dilation

and leakiness, as well as cellular infiltration into the surrounding tissue and peripheral

draining lymph nodes.

Methods: Intestinal inflammation was induced in C57BL/6 mice by administration of

2.5% DSS in drinking water for 7 days. Mice were treated with TLR4 blocker C34 or

Polymyxin-B (PMXB) daily from days 3 to 7 of DSS treatment via I.P. injection, and their

therapeutic effects on disease activity and lymphatic function were examined. TLR activity

and subsequent effect on lymphangiogenesis, lymphadenopathy, and mesenteric lymph

node cellular composition were assessed.

Results: DSS Mice treated with TLR4 inhibitor, C34, had a significantly improved

disease phenotype characterized by reduced ileal and colonic insult. The change

correlated with significant reduction in colonic and mesenteric inflammation, resolved

mesenteric lymphangiectasia, and CD103+ DC migration similar to that of healthy

control. PMXB treatment however did not resolve inflammation within the colon or

associated mesenteric lymphatic dysfunction but did however prevent lymphadenopathy

within the MLN through alteration of CCL21 gradients and CD103+ DC migration.
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Conclusions: TLR4 appears to mediate several changes within the mesenteric

lymphatics, more specifically it is shown to have different outcomes whether stimulation

occurs through pathogen derived factors such as LPS or tissue derived DAMPs, a

novel phenomenon.
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INTRODUCTION

IBD constitutes of two major phenotypes of gastrointestinal
diseases, Ulcerative colitis and Crohn’s disease. Both diseases
have an inflammatory component which results in impaired
nutrient absorption, cell recruitment, and chronic inflammation.
During the pathogenesis of IBD, a major alteration occurring
within the hosts GI tract is focused upon the lymphatics.

Severe lymphatic remodeling has been observed within the
intestinal wall of IBD patients, at the stage of the initial (lacteal)
lymphatics, through to the collecting mesenteric lymphatics,
and mesenteric lymph nodes (1–5). However, what effect these
alterations are having upon disease progression is still not fully
understood. The expansion of the lymphatic network, also known
as lymphangiogenesis, is mediated through the binding of the
lymphatic vascular endothelial selective growth factors VEGF-C
and VEGF-D to VEGFR3, and is a common feature in Crohn’s
disease (6–8). Blockade of lymphangiogenesis through anti-
VEGFR3 antibodies do not provide any therapeutic benefit but
rather exacerbates submucosal oedema in animal models of IBD
(9, 10), while stimulation of lymphatic functions with VEGF-
C ameliorates experimental IBD (10). Therefore, it presents the
idea that lymphangiogenesis may in fact be a reparative measure
in response to inflammation and pro-lymphangiogenic factors,
such as VEGF-C, may provide novel strategies for the treatment
of chronic inflammatory diseases. Lymphangiectasia, the dilation
of lymphatic vessels, is a common sign of collecting lymphatic
vessel disruption. It has been shown to be associated in case
of inflammation, and intestinal inflammation in particular, with
increase permeability of the lymphatics (3, 4). This can result in
oedema, hypoproteinaemia, lymphocytopenia, and immunologic
anomalies. Another great concern associated with the leakage is
lipid absorption issues resulting in weight loss and fat deposition
within the mesothelium. To what extent the fat contributes to
inflammation, and the effect it has on resident cells, is still not
fully elucidated however has been suggested that lymphatic-
associated fat can be a source of inflammatory material and may
play a greater role in disease pathogenesis than first expected (11–
13).

Toll-like receptors (TLRs) play a key role in mucosal innate
immunity and may be involved in the pathogenesis of IBD (14).
An evolutionarily conserved family of transmembrane pattern
recognition receptors, TLRs recognize pathogen-associated
molecular patterns (PAMPs) conserved between microbes (15).
Activation of TLRs results in the induction of cytokines,
chemokines, and antimicrobial molecules, all important factors
in the initial innate response aiding in priming the adaptive
immune system (16, 17). TLR4 binds the gram-negative bacterial

cell wall component lipopolysaccharide (LPS) and through co-
receptor MD-2, interaction triggers both MyD88-dependent
and independent pathway leading to the translocation of NF-
κB and subsequent production of inflammatory cytokines and
proteins (18, 19). TLR4-mediated signaling is important for
the recruitment of immune cells to the site of inflammation
promoting reparative mechanisms, but can be described as a
double-edged sword, as aberrant stimulation can induce chronic
inflammation (20).

The lymphatic system is a complex network of specialized
vessels involved in tissue fluid homeostasis. Lymphatic vessels
drain fluid from tissues and associated organs, and propel it
unidirectionally as nutrient- and cell-rich “lymph” back into
peripheral blood circulation. Initial lymphatic vessels comprised
of closed-end, lymphatic capillaries, which branch into tissue
then amalgamate to form larger collecting vessels, which,
through the presence of smooth muscle cells surrounding the
endothelium wall, propel lymph via peristaltic-like contractions
toward the draining lymph node. Formation of lymph is believed
to occur through the swelling of the interstitium, respiration,
arterial pulsations and skeletal movement. Increased interstitial
pressure opens the initial lymphatic vessels through small
anchoring filaments attaching endothelial cells to the extra-
cellular matrix. During inflammatory diseases such as IBD,
increased localized swelling within a tissue creates an increased
burden upon the draining lymphatics. Within IBD, disruptions
in the mesenteric lymphatic architecture has been correlated
to worsened disease progression, putting the changes under
scrutiny for their potential contribution to pathogenesis (21, 22).

We aimed to determine whether lymphatic disruption in
the mouse model of DSS-induced ileitis/colitis, was in portion
driven by TLR4. In order to block TLR4 activity directly and
indirectly, two drugs were used. The first, Polymyxin-B, inhibits
TLR4 recognition of LPS by binding the lipid-A component
of LPS preventing recognition by the receptor. The other, C34,
is a direct chemical inhibitor of TLR4 binding to the receptor
in an antagonistic and competitive manner. Identified by Neal
and colleagues, C34 was a potent TLR4 blocker in enterocytes
and macrophages in vitro, and reduced systemic inflammation
in mouse models of endotoxemia and necrotizing enterocolitis
(23). These treatments allowed us to differentiate between the
activation of TLR4 by LPS or by TLR4-directed agonists of
another source.

MATERIALS AND METHODS

Mice
All mice used were housed at constant temperature (22◦C) on
a 12:12-h light-dark cycle, with food and water ad libitum.
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The animal handling and experiments were approved by the
University of Calgary Animal Care and Ethics Committee and
conformed to the guidelines established by the Canadian Council
on Animal Care.

Cell Culture
HEK293 (TLR4/MD2/CD14) dual reporter cells (Invivogen, USA
Cat. No HKD-mTLR4ni) were maintained in supplemented
DMEM (High Glucose) 10% FCS with Normocin, Hygromycin
Gold, and Zeocin as per manufacturers instruction. Cells were
passaged every 3–5 days at 80% confluency and maintained in a
37◦C incubator, 5% CO2 atmosphere. All cells were used between
passages 3–8 and experiments were performed on 3 or more
distinct passages of cells.

Induction of Colitis and Administration
of Treatments
Acute DSS
Six-week-old C57BL/6 mice were obtained from Jackson
Laboratories. Colitis was induced in these mice by administration
of 2.5% (weight/vol) dextran sulfate sodium (DSS; Affymetrix,
Cleveland, Ohio, USA) in drinking water for 7 days. Sham mice
were given normal drinking water. I.P. injections of C34 (50
mg/kg) (Tocris, USA, Cat. No 5373) or Polymyxin-B (50 mg/kg)
(Sigma Aldrich, USA, Cas. No 1405-20-5) were administered
from days 3 to 7 diluted to 200 µl total in saline, control
mice received saline only. Mice were euthanized by exposure to
isoflurane and cervical dislocation.

Disease Evaluation
In order to assess the severity of DSS-induced inflammation
a multi-parameter approach was used in order to quantify
inflammation by region. Colon shortening, a common
sign of inflammation-driven fibrosis, was measured as a
marker of colonic inflammation. Differences in weight were
calculated as the percentage weight loss pre- and post-treatment
(SHAM/DSS/DSS + treatment). Additionally, fecal matter
consistency and visual blood presence were assessed. All of these
factors were evaluated, and using the scoring system detailed
in Table 3, the disease activity score (DAI) was calculated (see
Table 1) [adapted from (24)].

Alterations in Lymphatics
Lymphangiectasia
Lymphatic vessels were identified as initials by positive staining
with CCL21 (R&D systems, USA, Cat. No AF457) and as
collectors by staining with αSMA (Sigma-Aldrich, USA, Cat.
No C6198) in whole-mount mesenteric preparations. Vessel
diameters were measured in 3–5 vessels per sample at 3 random
sites along each vessel.

Lymphadenopathy
Mesenteric lymph nodes (MLNs) were isolated from the mouse,
cleaned of fat and connective tissue and measured for both size
(lengthways) and weight.

TABLE 1 | Disease activity index scoring.

Symptom/score Characteristic

BODY WEIGHT LOSS

0 No negative change in weight

1 1–5% loss of body weight

2 5–10% loss of body weight

3 10–20% loss of body weight

4 >20% loss of body weight

STOOL CONSISTENCY

0 Normal

1 Loose consistency

2 Watery

3 Slimy diarrhea

4 Severe diarrhea

BLOOD PRESENCE IN STOOL

0 No blood

2 Red feces

4 Visible bleeding

Lymphangiogenesis
Lymphangiogenesis was measured via CCL21 staining of
mesenteric whole-mounts. Vessel branch points and numbers
were determined in a fixed area of interest kept uniform
between samples.

Whole Mount Immunofluorescence
Whole mount mesenteries were fixed on sylgard coated dishes
and fixed with 4% PFA for 1 h at room temperature. Tissues
were washed, permeabilized in PBST (PBS + 0.03% Triton X-
100) and blocked with 2–3% BSA in PBST. Primary antibodies
incubation occurred for 24 h at 4◦C. Samples were washed three
times in PBST (PBS + 0.01% Triton X-100) for 10 minutes
per wash and then incubated with secondary antibodies (in 2%
BSA containing 0.01% Triton X-100) for 1–2 h. Samples were
washed as previously described before preparation for optical
clearing. Fat-clearing was obtained by serial ethanol dehydration
followed by methyl salicylate (MeS) immersion for 15min.
Immediately after clearing, samples were mounted with DAPI
containing mounting medium and installed with a coverslip for
imaging. The imaging occurred within 2 h of clearing due to
fluorescent diminishment. Vessel diameter and branching was
quantified using the LASX software attached to a Leica SP8
confocal microscope.

Quantitative Real-Time Polymerase Chain
Reaction (qPCR)
The total RNA isolated from given samples was purified using
the QIAGEN RNA total cleanup kits as per manufacturers
instruction. One hundred nanogram of the RNA was converted
using EvaGreen RT conversion kit in a gradient thermocycler as
per manufacturers description. One nanogram per microliter of
the converted cDNA samples was added to EvaGreen SYBR qPCR
master-mix and qPCR analysis was performed in an ABI StepOne
Plus PCR system. Annealing temperatures were kept at 60◦C, and

Frontiers in Immunology | www.frontiersin.org 3 March 2019 | Volume 10 | Article 557

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Stephens et al. TLR4 Driven Mesenteric Lymphatic Alterations

TABLE 2 | RT-PCR primer sequences.

Gene Sense primer (5′-3′) Antisense primer (5′-3′) Product size (bp) References

TLR2 AAGAGGAAGCCCAAGAAAGC CGATGGAATCGATGATGTTG 199 (25)

TLR3 CACAGGCTGAGCAGTTTGAA TTTCGGCTTCTTTTGATGCT 190 (25)

TLR4 ACCTGGCTGGTTTACACGTC CTGCCAGAGACATTGCAGAA 201 (25)

TLR5 AAGTTCCGGGGAATCTGTTT GCATAGCTGAGCCTGTTTC 201 (25)

TLR7 AATCCACAGGCTCACCCATA CAGGTACCAAGGGATGTCCT 142 (25)

TLR8 GACATGGCCCCTAATTTCCT GACCCAGAAGTCCTCATGGA 195 (25)

TLR9 ACTGAGCACCCCTGCTTCTA AGATTAGTAGCGGCAGGAA 198 (25)

VEGFR3 TCTGCTACAGCTTCCAGGTGG GCAGCCAGGTCTCTGTGGAT 200 (26)

VEGFC TGTGCTTCTTGTCTCTGGCG CCTTCAAAAGCCTTGACCTCG 148 N/A

CCL21 GGTTCTGGCCTTTGGCATC AGGCAACAGTCCTGAGCCC 262 (27)

GAPDH CTCATGACCACAGTCCATGC CACATTGGGGGTAGGAACAC 201 (25)

qPCR primer sets used for the amplification of genes of interest.

TABLE 3 | TLR4 mRNA expression changes in murine mesentery during DSS

treatment.

Fold change sham DSS P-value

TLR2 2.359 ± 1.313 >0.9999

TLR3 0.3314 ± 0.185 >0.9999

TLR4 221.7 ± 80.93 <0.0001

TLR5 99.15 ± 24.27 0.0324

TLR7 2.565 ± 0.6062 >0.9999

TLR8 5.123 ± 1.245 >0.9999

TLR9 4.959 ± 1.44 >0.9999

DSS induces expression of TLR4 within the mesentery. Mesenteric lymphatic samples

from SHAM and DSS treated mice (2.5% 7d) were analyzed for TLR expression using

qPCR. Unpaired Mann-Whitney test, two-tailed.

40 cycles of amplification were performed to produce a sufficient
read. Sequences of primers used are detailed in Table 2.

Total LPS Isolation From Murine Feces
Samples were homogenized in PBS and subsequently filtered in
order to remove non-soluble components. Protein content of
the fecal homogenate was determined through the Precision Red
Protein Quantification assay (Cytoskeleton, Inc., USA Cat. No
ADV02). The concentration of samples was then equilibrated to 1
mg/ml through addition of supplemented DMEM, before being
assayed for endotoxin content using the chromogenic-Limulus
amebocyte lysate (LAL) assay (ThermoFisher, USA, Cat. No
88282). Equal volumes (3.5ml) of quantified fecal homogenate
was then passed through a high capacity endotoxin removal
spin column (Pierce, USA. Cat No 88274) reducing LPS content
from an average of 87.67 EU/mg/ml (±7.36) to <1.71 EU/mg/ml
(±0.39). The bound LPS was removed for later studies.

HEK-TLR4 Cell Stimulation
Cells were maintained in Normocin, Hygromycin Gold, Zeocin
DMEM-high glucose media as per manufacturers instruction.
During stimulation Hygromycin Gold and Zeocin were not
present in the media. “Endotoxin-low” samples isolated using the

PMXB columns were added to HEK293 (TLR4/MD2/CD14) dual
reporter cells (Invivogen, USA Cat. No HKD-mTLR4ni) in order
to assess the stimulatory capacity of the material through TLR4.
Samples were diluted 1:10 in supplemented DMEM to remove
toxic effects of salt exchange which occurred during the LPS
removal process reducing endotoxin levels to below threshold
(<0.1EU/ml) a value at which comparable LPS concentrations do
not activate the cells.

Statistics
Data are expressed as the mean± one standard error of the mean
(SEM). Sample size varies from 3 to 9 as indicated, performed
as a minimum experimental triplicate. Statistical significance was
assessed through the use of two-tailed unpaired Student’s t-test
for parametric data, while theMann-Whitney test was performed
for non-parametric data. Multiple analyses were performed using
a one-way Anova with post-hoc Tukey test where indicated.
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001.

RESULTS

DSS Alters TLR mRNA Expression Within
the Mesentery
Previous findings have demonstrated DSS directly impacting on
the expression of TLRs within the inflamed colon mimicking
that found in the patient cohort (28–31). We wanted to ascertain
whether there the same was true for the murine mesentery. In
order to do so, qPCR screening of all known murine TLRs,
was assessed. Total RNA from the mesentery of sham-control
mice, DSS, and other treatments were isolated and converted
to cDNA before analysis via SYBR-green qPCR. Of the 14-
known murine TLRs only 7 were detectable within the murine
mesentery samples (Table 3). Analysis of expression within sham
controls provided a baseline for subsequent comparison with
DSS which demonstrated a significant upregulation in TLR4
(P < 0.0001). We hypothesized that TLR4, which recognize
the bacterial component LPS, could be involved heavily in
lymphatic-driven inflammation and dysfunction during DSS
induced colitis. Additionally, during the progression of DSS
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induced colitis, the epithelium of the gut is severely disrupted
allowing a vast influx of lumenally-derivedmicrobial content into
the mesenteric lymphatics.

DAMPs Created Within the Colon During
DSS Treatment Activate Cells in a TLR4
Dependent Manner
In order to discern what, within the GI tract, could be activating
upon TLR4 directly, samples of colonic fecal matter were
collected from sham and DSS treated mice for analysis. Data
shown in Figure 1A show protein normalized samples and
their subsequent LAL-determined endotoxin levels per milligram
of fecal matter from both sham and DSS treated mice. The
levels of endotoxin present in the sample are denoted as: PRE
(before) and POST (after) endotoxin removal via the Polymyxin-
B column. Figure 1B demonstrates that the induction of the NF-
κBSEAP (Secreted Embryonic Alkaline Phosphatase) and IL-8
luciferin reporters found within the HEK-TLR4 reporter cells
can be driven by substances within the murine fecal matter. A
significant reduction in the induction of gene expression can
be seen through the removal of LPS. However, a proportion of
the (POST) DSS sample can still induce both NF-κB and IL-8
gene expression suggesting other molecules are being recognized
by TLR4.

TLR4 Blockade Through C34 Treatment
Ameliorates the Progression of DSS
Induced Disease Activity
Being home to the majority of the microbiome, the gut must
function effectively as a barrier in order to prevent the influx
of microbial pathogens into the normally sterile sub-mucosa.
The multi-layered composition of the intestinal tract aids in this
function through the secretion of mucins, the epithelial barrier
itself and the rapid response of immune cells a site of breach
(32). During DSS induced colitis, the breakdown of the epithelial
barrier leaves the potential for invasion of commensal bacterium,
fungi, viruses and dietary substances to permeate the pseudo-
sterile barrier (33, 34). Activation of the resident macrophages,
dendritic cells and mast cells within the epithelial sub-lining
promotes the recruitment of neutrophils, the induction of pro-
reparative measures, and the clearance of antigens to the lymph
node in an attempt to create and effective immune response to
the infection (35, 36).

With high levels of bacterial LPS and DAMPs present
within the intestinal luminal space, a potential to activate a
TLR4 mediated innate immune response is rife. Inflammatory
molecules induced by TLR4 activation are documented to
negatively impact on lymphatic function, thus potentially
reducing flow of antigens to the lymph node and subsequent
immunosuppression (37). Therefore, we attempted to determine
the effect of inhibition of TLR4 and subsequent effect on
inflammation within the local drainage lymphatic system. Mice
treated with 2.5% DSS for 7 days, received a daily I.P injection
of either saline, C34 or PMXB from days 3 to 7 (See Methods).
DSS colitis in mice is characterized by the development of
diarrhea, colonic inflammation, and subsequent weight loss.

Fecal consistency, blood presence in feces and the extent of
the colon shortening was converted to a DAI and recorded
as described in Methods (see Table 3). When compared to
sham controls, treatment with C34 significantly reduced weight
loss (Figure 2A), reduced disease activity score (Figure 2B) and
reduced colon shortening (Figure 2C). However, treatment with
PMXB did not aid significantly in the characteristic disease
phenotype. We also tested an alternative drug delivery method
via oral gavage of the treatments in the same dosage and time
frame, however, neither treatment alleviated any tested condition
(Data not shown).

TLR4 Modulates Lymphatic Alterations
Within the Mesentery in an
LPS-Independent Manner
The promotion of lymphangiogenesis within the mesentery of
DSS treated animals is a well-documented phenomenon (3, 10).
Alongside lymphangiogenesis, vessel dilation mediated by iNOS-
dependent production of nitric oxide is a common feature
associated with inflammation within the tissue surrounding the
lymphatics (37). The dilation often correlates with increased
vessel permeability and particulate exchange, although the
effectors regulating this process are still unknown. This
“leakiness” can disrupt the flow of antigen-bearing immune cells
to the lymph node and cause lymph and its content to spill out
into the surrounding tissue. We hypothesized that one of the
functions of mesenteric lymphatic network expansion is to resorb
this lost material.

Mesenteric sections were isolated from sham and DSS mice
treated or not with C34 or PMXB, fixed as whole-mount and
stained with lymphatic vessel markers. The initial-lymphatic
endothelial marker CCL21, and collecting lymphatic marker
αSMA, were used to highlight the border of the lymphatic
endothelium and/or smooth muscle layer, allowing vessel size
measurement (Figure 3). As illustrated in Figure 3, sham-
control collecting lymphatic vessels average luminal diameter
and branch points were assessed creating baseline values. DSS
treated samples showed extensive expansion of the lymphatic
network and a significant increase in lymphatic vessel diameter.
Restoration of the normal phenotype was successfully achieved
through administration with C34. However, PMXB had no
significant effect. This finding was compounded through the
analysis of CCL21 mRNA levels within the affected tissue,
whereby C34 reduced expression to that of sham control whilst
PMXB had no effect on transcript levels. Altogether, these data
show mesenteric lymphangiogenesis and lymphangiectasia can
be resolved through the I.P. blockade of TLR4 using C34.

TLR4 Activation Modulates
Lymphangiogenic and Inflammatory
Molecules Within the Mesentery
The inflammation associated with DSS-induced intestinal
inflammation promotes lymphangiogenesis within themesentery
as well as altering lymphatic structure through dilation of
the collecting lymphatic vessels (Figure 2). Analysis of mRNA
levels of poignant lymphatic markers (Figure 4) revealed

Frontiers in Immunology | www.frontiersin.org 5 March 2019 | Volume 10 | Article 557

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Stephens et al. TLR4 Driven Mesenteric Lymphatic Alterations

FIGURE 1 | TLR4 activation in vitro is triggered by a ligand other than LPS. (A) Fecal matter samples from sham and DSS (2.5% 7d) mice were isolated, normalized

by protein content, and treated in an endotoxin removal column for 72 h at 4◦C (post-sham and post-DSS samples). (B) Percentage NF-κB and IL-8 response from

samples removed of endotoxin displayed DSS treated mice having a large proportion of activation due to non-LPS derived products. Data is represented as the mean

±SEM of 3 experimental replicates. EU, endotoxin unit. Two-tailed Student’s t-test and one-way Anova (Tukey post-hoc test) and were used in A and B, respectively.

*P < 0.05, ***P < 0.001, and ****P < 0.0001.

significant increases in LYVE-1 (P < 0.001) and CCL21 (P
< 0.05) transcription during DSS treatment with the effect
ameliorated by treatment with C34. Interestingly, the widely
accepted universal lymphatic endothelial marker PROX-1,
was not significantly induced through DSS treatment. Rather,
inhibition of TLR4 signaling through C34 treatment induced
PROX-1 transcription suggesting that TLR4 regulates the
lymphangiogenic transcription factor in an activation dependent
manner. Additionally, COX2 (P < 0.0001) and iNOS (P <

0.01) mRNA levels spiked during DSS treatment, indicating signs
of mesenteric dysfunction, with both treatments ameliorating
this induction suggesting an anti-inflammatory effect of TLR4
inhibition within the mesentery itself. Interestingly VEGFR3
expression was not significantly increased in the DSS group
compared to sham but was rather significantly reduced through
C34 (P < 0.01) and PMXB (P < 0.01). Furthermore, analysis
of common inflammatory markers (TNFα, IL-1β and IL-6)

in paired mesenteric samples showed no significant induction
within any group at day 7, inferring the passage of the acute
inflammatory phase within that region (Data not shown).

LPS Drives Lymph Node Expansion and
Cellular Migration During DSS Treatment
Lymphadenopathy, or swelling on the lymph node, is a common
occurrence during the response to infection presenting in
either a localized (regional) or diffuse (generalized) phenotype
(38). Immune cells within the mesentery can become activated
and promote expression of chemotactic agents within the
collecting lymphatics such as CCL21 which, though production
of a gradient, attracts CCR7+ cells, such as dendritic cells,
from the lamina propria to the mesenteric lymph node for
antigen presentation (39, 40). These cells accumulate within
the lymph node after trafficking antigens from a peripheral
site of inflammation, and subsequently produce a wide array
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FIGURE 2 | Total TLR4 blockade within the peritoneum ameliorates DSS induced colitis in vivo. Mice were treated with DSS 2.5% and additionally with either C34 (50

mg/kg) or PMXB (50 mg/kg) from days 3 to 7. Percent body weight change (A), clinical disease activity score (B) and colon length (C, D) were measured as

macroscopic scores for disease response measures. Data are expressed as the average ±SEM of 3 independent experiments (n = 8 in each group). Images are

representatives from those experiments. Statistics analyzed using one-way Anova (Tukey post-hoc test), *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

of proliferative and chemoattractant agents, which, result in
structural remodeling of the node (41, 42). TLR4 activation
is known to induce TNF-a production, IL-8 secretion, and
matrix protease secretion from a wide variety of cells, including
fibroblastic reticular cells and macrophages, key players in lymph
node remodeling (43, 44).

Examination of the lymph node corroborated that DSS had
a distinct effect on lymphadenopathy significantly increasing
the MLN size (P < 0.0001), weight (P < 0.001), and cellular
content (P < 0.0001) (Figure 5A). This effect was not abrogated
through C34 blockade of TLR4, however, PMXB treatment
reduced significantly the MLN size (P < 0.0001), weight (P <

0.0001), and cell count (P < 0.0001) suggesting the possible
involvement of a non-TLR4 dependent LPS interaction in
lymphadenopathy. Altogether, these results suggest that TLR4
does not directly influence lymphadenopathy in a DSS model
of colonic inflammation but LPS does, and it does so in a
TLR4-independent manner. DSS treatment also significantly
upregulated CCL21 expression within the MLN (P < 0.05)
(Figure 5B). C34 in combination with DSS treatment had
no effect on CCL21 expression in the MLN, however PMXB

treatment significantly reduced it (P < 0.01), impacting
the recruitment of CCR7+ CD103+ DCs accumulation
(P < 0.05) (Figure 5C).

DISCUSSION

Within the intestine there is a delicate balance between innate
immune activation and inflammation. Invasive pathogens can
be recognized by a myriad of pattern recognition receptors
and induce an inflammatory response, a feature critical to the
successful clearance of aforementioned pathogen (45). However,
in a system that has the potential to be exposed to an enormous
volume of these microbes, a correct magnitude of response is
paramount (46). Patients suffering from IBD have an exacerbated
and possibly unregulated inflammation within the intestinal
tract, a feature that does not resolve normally as expected, but
rather perpetuates in a chronic fashion. During the progression
of IBD, and perhaps its conception, the structure of the
gastrointestinal-associated and mesenteric lymphatic vascular
environment changes drastically (22, 47–49). Whether this
phenomenon is a direct cause of IBD or a causal agent of IBD
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FIGURE 3 | TLR4 blockade ameliorates lymphatic alterations within the mesentery of DSS treated mice. Mice treated with C34 TLR4 total inhibitor reduced

lymphangiogenesis and lymphangiectasia within the mesentery however, PMXB treated mice had no significant reduction. Images are representative staining of (A)

CCL21 positive mesenteric initial lymphatics and (B) αSMA positive mesenteric collecting lymphatics, n = 3 for each group. Measurements were taken at 3 random

points along the vessel width and averaged for each mouse. Branching points were identified and calculated per field of view. Data are expressed as mean ±SEM of

2–3 separate experiments. One-way ANOVA with Tukey post-hoc test *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

is debated. However, from our own lympho-centric opinion,
the lymphatic dysfunction itself could cause both. Increased
intestinal permeability, combined with reduced lymphatic
function could lead to a stagnation of material within the effected
intestinal region leading to a hot-spot of inflammation. In the
DSS model, intestinal permeability is increased through the
chemical ablation of the intestinal epithelium via the formation

of nano-lipocomplexes betweenmedium-chain-length fatty acids
and DSS, highly abundant in the colon, therefore greatly isolating
its effector venue (50). Loss of this barrier allows a vast milieu
of microbial and dietary content to enter the submucosa and be
directly exposed to the lymphatic system via the initial lacteal
vessels. Within this transport system the exposure of immune
and stromal cells to bacterial products such as LPS cause a
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FIGURE 4 | DSS alters lymphatic and inflammatory modulators within the mesentery and is altered through TLR4 blockade. mRNA induction of lymphatic markers

LYVE-1, CCL21, Prox-1, VEGFR3 and inflammatory markers COX2 and iNOS were measured on total extractions of mesenteric preparations from SHAM, DSS

treated, and DSS + treatment groups. GAPDH was used for normalization to a housekeeping gene and values are expressed as such. Data is mean ±SEM from 5

individuals from 3 separate experiments. One-way ANOVA with Tukey-post-hoc test *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

large inflammatory response, tissue remodeling and cellular
proliferation/recruitment, a phenomenon well-documented in
the lung (51, 52). During the progression of IBD extra-cellular
matrix remodeling is common, the role of this remodeling
however, is poorly understood and it is thought that extracellular
molecules produced during this destructive/reparative stage
may in fact perpetuate inflammation (53). We have previously
demonstrated that even after the removal of DSS, remodeled
lymphatics persist, a phenomenon that is evident with the IBD
patient population (3).

TLR4 has been implicated in the pathogenesis of many
inflammatory diseases including IBD, as through the recognition
of LPS and a wide array of previously mentioned PAMPs and
DAMPs, a large inflammatory stimulus can be generated (54).
Our data reveals not only the TLR4-driven lymphatic alterations
during DSS-induced colitis, but the gross-mechanisms which
they act. Through the use of a competitive TLR4 antagonist
(C34) and Polymyxin we were able to selectively differentiate
between total TLR4-driven lymphatic alterations/consequences
during DSS induced colitis, and those driven by LPS. Data
presented, indicates that substances separate from LPS, i.e.,

TLR4-DAMPs, and other PRR PAMPs, modulate inflammation
and lymphatics to a much greater extent than previously
estimated. This hypothesis was confirmed through the detection
and analysis of TLR4 activating material within the colon of
DSS mice separate from the LPS content. Currently, specific
DAMPs have not been elucidated in this system, however
it would be feasible to expect well-published TLR4 DAMPs
such as Tenacin-C, HMGB1, HSP90, or S100 proteins to be
candidates as levels are known to drastically rise during tissue
damage (55–57).

A key marker of correct lymphatic response was the potent
lymphadenopathy seen during DSS treatment. This effect was
disrupted through the PMXB treatment, accredited to the
lack of CD103+ DC migration to the lymph node. However,
through C34 inhibition of TLR4, CCL21 (a potent lymphatic
chemokine) was downregulated in the mesentery but not the
lymph node, creating a gradient for increased movement of
CCR7+ CD103+ DCs. This gives partial explanation to the
reduced cellular content of the lymph node and significant
reduction in lymphadenopathy which was ameliorated through
PMXB treatment where the CCL21 content in the lymph node is
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FIGURE 5 | LPS drives lymphadenopathy during DSS treatment augmenting CD103+ DC recruitment to the Mesenteric lymph node. (A) Isolated MLNs were

measured for size, weight and cellularity. (B) mRNA expression of CCL21 within the MLN and mesentery during treatments. (C) MLN accumulation of

CD11c+CD11b+CD103+ Dendritic cells were determined through flow cytometric analysis and quantified within the lymph node in each condition. Data are mean

±SEM of 3 experimental replicates (n = 5–8). One-way Anova with Tukey post-hoc tests were performed as necessary. *P < 0.05, **P < 0.01, ***P < 0.001, and

****P < 0.0001.

downregulated. Therefore, any CCL21-driven chemotaxis within
the mesentery has no directionality. This also suggests that the
lymphadenopathy, whilst caused by LPS, is not driven through
TLR4, a novel finding in this context.

We also present evidence supporting our hypothesis
that restoration of lymphatic function to a “normal”
phenotype, significantly aids in the reparation of DSS-
induced disease activity. Achieved through TLR4 blockade
via C34, mesenteric lymphatic disruption was significantly
reduced, evidenced by reduced lymphangiogenesis and
lymphangiectasia. We note that this finding, of reduced
lymphangiogenesis improving DSS-induced phenotype,
is in somewhat opposition to D’Alessio’s, work whereby
lymphangiogenesis was beneficial to their model of IBD
(10). This discrepancy could be solely contributed to the
timing of the treatments or the target itself. Our experimental
method and timings were designed to modulate inflammation
after its genesis rather than in a preventative capacity. We
attempted to modulate TLR4-associated inflammation and
therefore the subsequent lymphatic remodeling, whereas
D’Alessio and colleagues focused intentionally on promoting
lymphatic remodeling through the overexpression of VEGFC,
a method that likely had many targets separate from VEGFR3
induced lymphangiogenesis.

We know with certainty that alterations occur within the
lymphatics of patients with of IBD and we are able to mimic

them in murine models of DSS-induced intestinal inflammation.
However, what is not yet understood is whether TLR4 could
be a potential target for IBD in humans. Targeting such
an important receptor undoubtedly has its risks but data
presented in this paper suggest the plasticity of the receptor in
delineating pathogenic material from self, a phenomenon that
could be utilized in the future for the development of novel
treatment of IBD.
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