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Abstract: Plasma pTau181, a marker of amyloid and tau burden, was evaluated as

a prognostic predictor of clinical decline and Alzheimer’s disease (AD) progression

of amyloid-positive (Aβ+) patients with mild cognitive impairment (MCI). The train-

ing cohort for constructing the Bayesian prediction models comprised 135 Aβ+ MCI

clinical trial placebo subjects. Performance was evaluated in two validation cohorts.

An 18-month ≥1 increase in the Clinical Dementia Rating Sum of Boxes was the

clinical decline criterion. Baseline plasma pTau181 concentration matched clinical

assessments’ prediction performance. Adding pTau181 to clinical assessments signif-

icantly improved the prediction of an 18-month clinical decline and the 36-month

progression fromAβ+MCI toAD. The area under the receiver operating characteristic

curve for the latter increased from 71.8% to 79%, and the hazard ratio for time-

to-progression improved from 2.26 to 3.11 (p < 0.0001). Baseline plasma pTau181

has the potential for identifying Aβ+ MCI subjects with faster clinical decline over

time.
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Highlights

∙ This study assessed pTau181 as a prognostic predictor of 18-month clinical decline

and extended progression to Alzheimer’s disease (AD) in amyloid-positive patients

withmild cognitive impairment (Aβ+MCI).

∙ The research findings underscore the promise of baseline plasma pTau181 as a

screening tool for identifying Aβ+MCI individuals with accelerated clinical decline

within a standard 18-month clinical trial period. The predictive accuracy is notably

enhancedwhen combinedwith clinical assessments.

∙ Similar positive outcomes were noted in forecasting the extended progression of

Aβ+MCI subjects to AD.
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1 BACKGROUND

Implementing blood-based tests for Alzheimer’s disease (AD) screen-

ing andmonitoring offers a faster, easier, and cost-effective alternative

to cerebrospinal fluid (CSF) and imaging methods.1–4 Recent studies

have highlighted the relevance of blood-based biomarkers (BBM), such

as plasma pTau181, which correlate with brain amyloid burden, tau

accumulation, and disease progression in early AD.5–8

The prediction of future clinical decline, manifesting as deficits in

one or more aspects of cognitive and functional tasks, through con-

venient and cost-effective assessments at baseline offers substantial

benefits in drug development, such as optimizing patient selection

and trial design. It is also valuable to real-world clinical practice by

furnishing prognostic information for patients and physicians. Sev-

eral prognostic models for AD progression proposed in the literature

rely on CSF biomarkers or amyloid/tau positron emission tomography

(PET) imaging, which are difficult to implement at scale due to cost,

availability, and perceived invasiveness.9–15 While recent research

advancements in BBM for AD have predominantly focused on disease

diagnosis and staging,16–24 the application of BBM for predicting AD

progression is still in its early stages. Although several models have

been proposed to forecast disease progression using BBM,1,5,7,25,26 a

prevalent issue is the insufficient validation and evaluation of these

models, particularly within clinical trial cohorts.

The growing integration of BBM assessments in contemporary clin-

ical trials and observational research cohorts presents a valuable

opportunity to thoroughly assess their effectiveness in predicting AD

progression. An example of such a biomarker is pTau181, which has

undergone evaluation in multiple AD clinical trials and the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) cohort.27–29 Recent publica-

tions on pTau181 and other isoforms 5,7,25 have focused on predicting

long-term progression (>3 years) using research cohorts, emphasizing

population-level associations over individual predictive performance.

They did not combine baseline clinical assessments. Many studies

focused on transitioning from mild cognitive impairment (MCI) to AD

rather than clinical decline, which may not occur within an 18-month

trial.30 Predicting clinical progression within 18 months is crucial for

AD trials and clinical practice. Including data from both trial and

observational cohorts would enhance confidence in the prediction

model.

In this study, our primary objectivewas to investigate the prognostic

potential of baseline plasma pTau181 concentration, along with demo-

graphics and apolipoprotein E (APOE) ε4 allelic count, as predictors

for the 18-month clinical decline in MCI subjects showing significant

amyloid accumulation (ie, amyloid-beta [Aβ] positive, denoted as Aβ+).
Subsequently, we examined whether the inclusion of pTau181 along-

side routine baseline clinical assessments could enhance the prediction

performance. The prediction models were initially developed using a

clinical trial cohort and then validated in an independent clinical trial

cohort and an observational research cohort. Given that the research

cohort had a more extended clinical follow-up, we also explored the

capability of these clinical progression models to forecast longer-term

disease progression (≥3 years) fromMCI to AD.

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

utilizing PubMed and recent meeting abstracts. Relevant

research on screening and monitoring individuals with

blood-based tests for Alzheimer’s disease (AD) is cited.

Plasma pTau181 is a marker of brain amyloid and tau

burden as well as clinical decline. However, an improved

ability to predict AD progression would be useful for

clinical trials and in clinical practice.

2. Interpretation: Our findings demonstrate that baseline

plasma pTau181 is a prognostic marker for identifying

amyloid-beta (Aβ)+mild cognitive impairment (MCI) indi-

viduals who may experience faster clinical decline over a

typical 18-month duration of a clinical trial. Combining it

with baseline clinical assessments significantly improved

theprediction accuracy. This is also true for predicting the

longer-term progression fromMCI to AD.

3. Future directions: Further research may include the

reconstruction of our models using other fluid biomark-

ers and clinical tools, including those that aremore readily

available in clinical practice.

2 METHODS

2.1 Database

The training cohort (TC) for constructing the prediction models com-

prised 135 Aβ+MCI subjects from the placebo arm of two identically

designed clinical trials that were part of the elenbecestat phase-

3 program (A Placebo-Controlled, Double-Blind, Parallel-Group, 24

Month Study with an Open-Label Extension Phase to Evaluate the

Efficacy and Safety of Elenbecestat [E2609] in Subjects with Early

Alzheimer’sDisease;NCT02956486,MissionAD1andNCT03036280,

MissionAD2).

The first validation cohort (VC-1) for testing the performance of the

prediction models included 115 Aβ+ MCI subjects from the placebo

arm of an 18-month clinical trial of another program (A Study to Eval-

uate Safety, Tolerability, and Efficacy of Lecanemab in Subjects with

Early Alzheimer’s Disease; NCT01767311).31 The trials in TC and VC-

1 were approved by the Institutional Review Board or independent

ethics committee at each center, and all the participants provided

written informed consent.

The second validation cohort (VC-2) for further assessment of the

prediction models included 177 Aβ+ MCI subjects with at least three

years of clinical follow-up and the relevant cognitive and functional

clinical assessments from the ADNI-2 and ADNI-GO phases of the

ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003

as a public-private partnership, led by Principal Investigator Michael

W. Weiner, MD. The primary goal of ADNI has been to test whether
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serial magnetic resonance imaging (MRI), PET, other biological mark-

ers, and clinical and neuropsychological assessment can be combined

tomeasure theprogressionofMCI andAD.Forup-to-date information,

see www.adni-info.org. The study was approved by the Institutional

Review Boards of all of the participating institutions and informed

written consent was obtained from all participants. Data used for the

analyses presented here were accessed onDecember 18, 2023.

Aβ+ status in TC and VC-1 was determined via PET visual read. A

positive visual read scan shows more amyloid in gray matter, while a

negative read maintains contrast between gray and white matter. In

VC-2, amyloid positivity was determined using the PET standardized

uptake value ratio (SUVR) of the cortical composite region normalized

by the whole cerebellum with a threshold of 1.11 as recommended by

ADNI.32 In TC, themajority (64%) received florbetaben, while 24% and

12% received florbetapir and flutemetamol respectively. In VC-1, 83%

received florbetapir, and the remainder (17%) received flutemetamol.

All VC-2 subjects received florbetapir.

In TC and VC-1, subjects with mild AD dementia were classified

as Aβ+ and at an early disease stage.33 Aβ+ MCI subjects met the

National Institute on Aging–Alzheimer’s Association (NIA-AA) crite-

ria, indicating symptomatic individuals without dementia but with AD

characteristics.34 Assessments used the Mini-Mental State Examina-

tion (MMSE), global Clinical Dementia Rating (CDR) score (0.5 forMCI

and 1 for mild AD), and delayed word recall impairment. VC-2 used

similar criteria.

Plasma pTau181 was analyzed by the single-molecule array (Simoa)

technique in all three cohorts, using the same assay in TC and VC-

1 and a different assay in VC-2. For TC and VC-1, Simoa Advantage

V2 assay kit #103714 (immunoassay) provided by Quanterix Corpo-

ration was used to generate the data.35 For VC-2 (ADNI), an in-house

assay developed in the Clinical Neurochemistry Laboratory, University

of Gothenburg, Sweden, was used. Due to the different assay used in

VC-2, to make the data comparable across the training and validation

cohorts, the concentration valueswere log-transformed and then stan-

dardized to have similar means and variances by first subtracting the

concentration value of each subject from the mean concentration of

all subjects from the corresponding cohort and then dividing this dif-

ference by the standard deviation. All subsequent analyses on plasma

pTau181 were carried out using these standardized log-transformed

values.

TC and VC-1 included an 18-month clinical follow-up, and VC-2

included a 3- to 10-year follow-up. An increase from baseline in the

CDR Sum of Boxes (CDR-SB) at 18 months of ≥1 was used as a crite-

rion for faster clinical decliners. Subjects with slower clinical decline

who dropped out before month 18 were excluded from the training

and validation cohorts. A summary of some key demographics and clin-

ical characteristics of the subjects in these three cohorts is included in

Table 1.

2.2 Cognitive function assessments

While the clinical declinewasdefined in termsof the change frombase-

line in theCDR-SB, a variety of cognitive and functional assessments at

baseline were also considered as potential predictors for constructing

the prediction models. These include the MMSE, Alzheimer’s Dis-

ease Assessment Scale–Cognitive Subscale (ADAS-Cog-13), CDR-SB,

Functional Activity Questionnaire (FAQ), and all their subscores.

2.3 Data analysis

A predictive model distinguishing between slower and faster 18-

month clinical decline, where faster decline is defined by the increase

in CDR-SB of at least 1, was initially constructed using baseline

plasma pTau181. The Bayesian logistic lasso regression (BLLR) was

employed in model construction, mirroring a process detailed in a

recent publication.36 Subsequently, a parallel model was developed

including baseline clinical assessments, encompassing the MMSE,

CDR-SB, ADAS-Cog-13, and FAQ composites, along with their respec-

tive subscores. Lastly, a comprehensive model integrating baseline

clinical assessments and plasma pTau181 was established. APOE ε4
allelic count and demographic variables, including gender and age,

were considered for selection in all themodels.

BLLR, a regularization method utilizing a spike and slab mix-

ture double-exponential prior, reduces model complexity, preventing

overfitting and improving generalizability.37 It moderates predictor

variable weights, emphasizing crucial ones and shrinking less signif-

icant ones. Standardization, ensuring interpretability and compara-

bility of odds ratios, involved subtracting the mean and dividing by

the standard deviation. The final model reports key predictors with

their odds ratios and 95% confidence intervals for a comprehensive

summary.

The performance of the models was first assessed through 10

iterations of 10-fold stratified cross-validation within the TC.38 Sub-

sequently, the predictive ability for distinguishing fast versus slow

18-month clinical decline was evaluated in the two independent vali-

dation cohorts (VC-1 and VC-2). Given the extended clinical follow-up

in VC-2, the models were further assessed for their ability to pre-

dict the progression from Aβ+ MCI to AD at 36 months. This longer

timeframewas chosen due to the relatively lowprevalence ofMCI sub-

jects converting to AD within 18 months. Evaluation metrics included

sensitivity, specificity, and the area under the receiver operating char-

acteristic curve (AUROC). Model comparisons based on the AUROC

were conducted using DeLong’s test.39

InVC-2,we compared time-to-progression toADbetweenAβ+MCI

subjects predicted to experience faster versus slower clinical decline.

This utilized Kaplan-Meier analysis with up to 10 years of follow-

up data, deriving estimates of median and quartiles for progression

time. Additionally, the Cox proportional hazards model estimated haz-

ard ratios, indicating the increase in the instantaneous risk of MCI to

AD progression at any given time. The Cox model’s proportional haz-

ards assumption was assessed using a chi-squared test. Hazard ratio

estimates were compared between prediction models using Student’s

t-test for dependent samples.40

All analyseswere performed using R version 4.2.2 (R Foundation for

Statistical Computing),41 along with the packages BhGLM,42 pROC,43

survival,44 and survcomp.40

http://www.adni-info.org
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TABLE 1 Demographics and clinical data summary of training and validation cohorts.

TC

N= 135

VC-1

N= 115

VC-2

N= 177

Patient characteristics

Slower CD

N= 66

Faster CD

N= 69

Slower CD

N= 52

Faster CD

N= 63

Slower CD

N= 51

Faster CD

N= 126

APOE ε4 status ε4 homozygous; N (%) 11 (17%) 10 (14%) 6 (11%) 13 (21%) 4 (8%) 23 (18%)

ε4 heterozygous; N (%) 28 (42%) 39 (57%) 31 (60%) 35 (55%) 24 (47%) 72 (57%)

Non-ε4; N(%) 27 (41%) 20 (29%) 15 (29%) 15 (24%) 23 (45%) 31 (25%)

Gender Female; N(%) 31 (47%) 34 (49%) 24 (46%) 40 (63%) 22 (43%) 56 (44%)

Male; N(%) 35 (53%) 35 (51%) 28 (54%) 23 (37%) 29 (57%) 70 (56%)

Age Mean (SD) 71.8 (6.7) 73.9 (6.9)* 71.1 (7.7) 71.3 (9.9) 71.5 (7.0) 72.7 (6.4)

MMSE Mean (SD) 26.6 (2.7) 25.4 (2.8)* 27.4 (2.0) 26.0 (2.3)* 28.4 (1.7) 27.4 (1.8)*

ADAS-Cog-13 Mean (SD) 17.5 (5.2) 21.8 (6.6)* 15.9 (4.6) 21.1 (5.9)* 11.4 (5.1) 19.5 (6.9)*

Note: Some key demographic and clinical characteristics of the subjects in the training cohort (TC) and the two validation cohorts (VC-1 and VC-2) are sum-

marized here. An increase from baseline in the Clinical Dementia Rating Sum of Boxes score at 18 months of > = 1 was used as a criterion for faster clinical

decliners. Subjects with faster clinical decline (CD) are significantly older in the TC (p < 0.05). Baseline MMSE is significantly lower in subjects with faster

clinical decline in all three cohorts (p< 0.05). Other characteristics are not significantly different.

Abbreviations: APOE ε4, apolipoprotein E gene ε4 allele; ADAS-Cog-13, Alzheimer’s Disease Assessment Scale–Cognitive Subscale; CD, clinical decline;

MMSE,Mini-Mental State Examination; TC, training cohort; VC-1, first validation cohort; VC-2, second validation cohort.

*p< 0.05.

3 RESULTS

3.1 Demographics

Data in the training and two validation cohorts (TC, VC-1, and VC-2)

included 135, 115, and 177 Aβ+ MCI subjects, respectively. A sum-

mary of some key demographic and clinical characteristics (gender,

age, APOE ε4 status, MMSE and ADAS-Cog-13 scores) is presented

in Table 1. As anticipated, the baseline MMSE is lower, and the base-

lineADAS-Cog-13 is higher in subjectswith accelerated clinical decline

across all cohorts (p < 0.05). Furthermore, subjects with faster clinical

decline are significantly older in the TC (p < 0.05), which aligns with

the lower MMSE and higher ADAS-Cog-13 scores in this subgroup.

Age, MMSE, and ADAS-Cog-13 were compared using the Kruskal–

Wallis test, while gender and APOE ε4 status were assessed using the

chi-squared test. Baseline plasma pTau181 ismarkedly elevated in sub-

jects experiencing rapid clinical decline across all three cohorts, and the

distribution of standardized log-transformed plasma pTau181 appears

consistent between the three cohorts, with means and variances

showing no significant differences (Supplementary Figure S1).

3.2 Prediction models

The prediction model, incorporating baseline plasma pTau181, demo-

graphics, and APOE ε4 allelic count, identified pTau181 (p = 0.042)

as the singular key predictor. Conversely, the model integrating base-

line clinical assessments, demographics, and APOE ε4 allelic count

revealed a more comprehensive set of baseline predictors. These

encompassed CDR-SB, ADAS-Cog-13, and CDR-global composites,

alongside functional activities associated with preparing a balanced

meal, assembling, heatingwater,making coffee, and personal care. Sim-

ilarly, the ADAS-Cog-13 tasks for spoken language ability (ADCSL) and

number cancellation (ADCNC) were significant contributors.

Adding baseline plasma pTau181 to clinical assessments preserved

most of the same predictors in the resulting model. The rank order,

odds ratio estimates, and95%confidence intervals for thesepredictors

are summarized in Figure1. Toppredictorswith p<0.05 includedCDR-

SB, ADAS-Cog-13, meal preparation (FAQ06), and plasma pTau181.

Another tier of predictors with relatively less significant influence

(p < 0.2) included activities like heating water (FAQ05), assembling

(FAQ02), personal care (CDR0106), and cognitive tasks like speech

(ADCSL) and number cancellation (ADCNC). Although not attaining

individual statistical significance, the multivariate model recognizes

their contribution to overall prediction accuracy.

3.3 Performance evaluation of the prediction
models

In predicting the 18-month clinical decline, themodel utilizing baseline

plasma pTau181 alone demonstrated comparable performance to the

one relying solely on baseline clinical assessments, with AUROC val-

ues in VC-1 of 64.8% and 70.6%, respectively (p = 0.2), while in VC-2,

bothmodels achieved an AUROCof 69.5%. Similarly, for predicting the

36-month MCI to AD progression in VC-2, the AUROC was 72.5% for

plasma pTau181 and 71.8% for clinical assessments alone (p = 0.56).

Additional details can be found in Table 2.
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F IGURE 1 Key predictors among baseline plasma pTau181 and
baseline clinical assessments in the Bayesian logistic lasso regression
model for predicting the 18-month clinical decline in amyloid-positive
mild cognitive impairment patients are shown here with odds ratio
estimates, 95% confidence intervals, and p-values. Significant
predictors (p< 0.05) are highlighted in red. Although the rest of the
predictors are not statistically significant (p< 0.2) in this model, they
are selected by themodel as they help improve the overall prediction
accuracy. Notation used for the predictors is as follows: ADAS.13,
Alzheimer’s Disease Assessment Scale–Cognitive Subscale; ADCNC,
ADAS.13 number cancellation; ADCSL, ADAS.13 tasks for spoken
language ability; CDR0106, Clinical Dementia Rating item for personal
care; CDR.SB, CDR Sum of Boxes; FAQ02, Functional Activity
Questionnaire (FAQ) item for assembling; FAQ05, FAQ items for
heating water, making coffee, turning off the stove; FAQ06, FAQ item
for preparing a balancedmeal.

Upon incorporating baseline plasma pTau181 into the model

with baseline clinical assessments, a significant enhancement in the

prediction of 18-month clinical decline was observed. The AUROC

increased from 70.6% to 74.2% in VC-1 (p = 0.01) and from 69.5%

to 75.3% in VC-2 (p < 0.001). The improvement was also evident in

predicting the 36-month MCI to AD progression in VC-2, where the

AUROC rose from 71.8% to 79% (p < 0.0001). Refer to Table 2 and

Figure 2A-C for further details.

Longitudinal clinical data spanning 3 to 10 years in VC-2 was uti-

lized to investigate future time-to-progression to AD among Aβ+
MCI subjects. Specifically, it focused on individuals initially identi-

fied at baseline as fast or slow clinical decliners through prediction

models. Table 3 summarizes metrics from Kaplan-Meier analysis for

time-to-progression and hazard ratios, with 95% confidence inter-

vals from Cox proportional hazards models. The proportionality of

hazards assumption was verified by the chi-squared test. Compara-

ble performance was observed in models employing baseline plasma

pTau181 alone versus baseline clinical assessments, yielding hazard

ratios of 2.88 and 2.26, respectively (p = 0.17). Integrating pTau181

into the prediction model alongside clinical assessments significantly

improved performance, with the hazard ratio increasing from 2.26

to 3.11 (p < 0.0001), underscoring the value of incorporating plasma

pTau181 data. Figure 3A–C depicts the nuanced difference in haz-

ard ratios, particularly in Figure 3C, highlighting accelerated future

progression among Aβ+ MCI subjects initially predicted as fast pro-

gressors. This empirical evidence reinforces the utility of the predictive

model, discerning and anticipating varying progression rates in the

validation cohort.

As the amyloid positivity of the subjects in the training and valida-

tion cohorts was determined via PET assessments, the association of

baseline amyloid levels measured via PET Centiloid (CL) with clinical

decline and progression was explored. While baseline CL levels were

associated with the 18-month clinical decline (AUROC = 58%), unlike

plasma pTau181, adding CL to clinical assessments did not significantly

enhance the AUROC (70.6% vs 71.1%, p= 0.479).

TABLE 2 Performance summary for predicting clinical decline and progression in the two validation cohorts.

Validation Cohort 1 (Clinical trial) Validation Cohort 2 (ADNI)

18-month clinical decline (CD) 18-month clinical decline (CD)

36-monthMCI to

AD progression

Scenarios Sensitivity Specificity AUROC p-value Sensitivity Specificity AUROC p-value AUROC p-value

pTau181 60.3% 59.6% 64.8% 67.3% 57.5% 69.5% 72.5%

Clinical 68.3% 63.5% 70.6% 0.01 75.0% 51.7% 69.5% <0.001 71.8% <0.0001

pTau181+Clinical 66.7% 67.3% 74.2% 75.0% 61.7% 75.3% 79.0%

Note: The performance of the models constructed using the Bayesian logistic lasso regression algorithm for predicting 18-month clinical decline (CD) in Val-

idation Cohorts 1 and 2, and the 36-month progression fromMCI to AD in Validation Cohort 2 is summarized here, along with the p-value for assessing the
improvement in the overall prediction accuracy from adding plasma pTau181 to the clinical assessments in the model. “Clinical” includes baseline cognitive

and functional assessments such as the Alzheimer’s Disease Assessment Scale–Cognitive Subscale, Clinical Dementia Rating Sum of Boxes, Functional Activ-

ity Questionnaire, Mini-Mental State Examination, and their subscores. Age, gender and apolipoprotein E gene ε4 allelic count were considered for selection
in all the scenarios.

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s DiseaseNeuroimaging Initiative; AUROC, area under the receiver operating characteristic curve;

CD, clinical decline;MCI, mild cognitive impairment.
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F IGURE 2 The receiver operating characteristic (ROC) curves for predicting the 18-month clinical decline in VC-1 and VC-2 and for predicting
the 36-month progression fromAβ+MCI to AD in VC-2 are shown here in panels A, B, and C, respectively, along with the area under the ROC
curves for the different predictionmodels. The predictionmodel using baseline plasma pTau181 alone (blue) achieved similar performance as the
model using baseline clinical assessments (red). Adding baseline plasma pTau181 to baseline clinical assessments in themodel (green) significantly
improves the prediction performance. Aβ+, amyloid-positive; AD, Alzheimer’s disease; AUROC, area under the receiver operating characteristic
curve;MCI, mild cognitive impairment; ROC, receiver operating characteristic; VC-1, first validation cohort; VC-2, second validation cohort.

TABLE 3 Performance summary for predicting the time-to-progression fromMCI to AD in the second validation cohort.

Predicted fast progressor Predicted slow progressor

N

T2P (months)

N

T2P (months)

Scenarios Q1 Q2 Q3 Q1 Q2 Q3 Hazard ratio (95%CI)

pTau181 88 13 27 73 89 46 87 113 2.88 (1.9, 4.3)

Clinical 100 22 35 87 77 48 83 >120 2.26 (1.5, 3.4)

pTau181+Clinical 88 13 25 77 89 61 84 >120 3.11 (2.0, 4.7)

Note: Estimates of themedian (Q2), first quartile (Q1), and 3rd quartile (Q3) of the time-to-progression (T2P) to ADover the 10-year clinical follow-up period

are summarized here along with the hazard ratio estimates for the amyloid-positive mild cognitive impairment subjects in the second validation cohort who

were predicted by the models to be either fast or slow progressors. “Clinical” includes baseline cognitive and functional assessments such as the Alzheimer’s

Disease Assessment Scale–Cognitive Subscale, Clinical Dementia Rating Sum of Boxes, Functional Activity Questionnaire, Mini-Mental State Examination,

and their subscores. Demographics (age, gender, bodymass index) and apolipoprotein E gene ε4 allelic countwere considered for selection in all the scenarios.
Abbreviations: AD, Alzheimer’s disease; CI, confidence interval; MCI, mild cognitive impairment; T2P, time-to-progression.

4 DISCUSSION

In this study, we constructed prognostic models to forecast the pace of

clinical decline, defined as fast or slow, amongAβ+MCI patientswithin

the standard 18-month duration of a clinical trial. These models relied

on the baseline clinical (cognitive and functional) assessments and

plasma pTau181 measurements. The models were constructed using

the BLLR machine-learning algorithm with a TC of 135 placebo-arm

subjects pooled from two clinical trials.

When predicting 18-month clinical decline within the validation

cohorts, baseline plasma pTau181 showed comparable performance

to using baseline clinical assessments alone. Adding plasma pTau181

to the clinical assessments significantly improved the AUROC for pre-

dicting 36-month clinical progression from Aβ+ MCI to AD. It also

contributed to a more pronounced divergence in the future time-to-

progression between those predicted at baseline to be either fast

or slow decliners over the follow-up period, highlighting the model’s

robustness. Although tau PET is more effective than plasma pTau

markers,45 we developed a model using clinical assessments and

plasma pTau181, which aremore accessible and cost-effective.

As amyloid positivity was determined through PET assessments, we

explored the predictive potential of baseline amyloid levels measured

viaPETCL.AlthoughbaselineCL levelswere correlatedwith18-month

clinical decline, adding CL to clinical assessments did not significantly

improve predictions. This underscores the absence of a linear ormono-

tonic relationship between brain amyloid and cognitive decline46–48

and highlights the distinct prognostic utility of plasma pTau181 beyond

amyloid status.

In a recent review,1 it was noted that tau phosphorylation

starts early in the Aβ cascade, preceding neurofibrillary tangle
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F IGURE 3 Prediction of time-to-progression to AD of Aβ+MCI subjects in the second validation cohort (VC-2) using themodel with baseline
plasma pTau181 alone, baseline clinical assessments alone, and both are shown here in panels A, B, and C, respectively, along with the hazard ratio
estimates. The predictionmodels using baseline plasma pTau181 alone achieved similar performance as themodel using baseline clinical
assessments alone. Adding pTau181 to clinical assessments in the predictionmodel significantly improved the performance (p< 0.05) as visually
evident from the greater separation of the time-to-progression curves in panel C, with the hazard ratio increasing from 2.26 to 3.11. Aβ+,
amyloid-positive; AD, Alzheimer’s disease; MCI, mild cognitive impairment; VC-2, second validation cohort.

accumulation. Elevated pTau isoform levels after Aβ plaque formation

may signal disease progression. This study focused on pTau181 due to

data limitations, but similar findings are expected with other isoforms,

albeit with varied accuracy. Further exploration is planned.

Recent publications have explored the utility of plasma pTau181

and other pTau isoforms for predicting AD progression.5,7,25 Our pre-

diction models stand out in key ways: (1) They were developed using

clinical trial cohorts and validated in both clinical trial and observa-

tional research cohorts; (2) They were optimized to predict near-term

clinical progression (18 months), relevant for both clinical trials and

practice, and effective for predicting longer-term progression (>36

months); and (3) They are based on widely employed baseline clinical

assessments and plasma pTau181.

Incorporating individual subscores of the CDR-SB, FAQ, and ADAS-

Cog-13 into our prediction models provided insights into specific

cognitive and functional domains influencing clinical progression. Key

predictors, as shown in Figure 1, indicate that deficits in functional

activities such asmeal preparation, heatingwater, assembling, and per-

sonal care, along with cognitive tasks related to speech and number

cancellation, significantly impact future clinical decline. The BLLR algo-

rithm’s selection of these tasks aligns with our definition of clinical

decline, incorporating changes from baseline in the CDR-SB. This com-

prehensive approach ensures a nuanced understanding of the factors

contributing to clinical decline.

In light of the restricted number of predictors and the imperative for

streamlined and interpretable models conducive to clinical trials and

practical application, the choicewasmade to employ theBLLRmachine

algorithm for this analysis. The inherent simplicity of the BLLR model,

presented in the form of logistic regression coefficients and odds ratio

estimates for each selected predictor in the final model, significantly

amplifies its interpretative clarity. This simplicity not only fosters a

clearer comprehension of the model’s outcomes but also renders it

pragmatic for seamless integration into both clinical trials and clini-

cal practice. Ensemblemachine-learning algorithms suchas regularized

random forests (RRF) generated comparable predictive factors toBLLR

but did not outperform it in the two validation cohorts. TheAUROC for

models using plasma pTau181 and clinical assessments was 73.7% and

72.7% for RRF, not surpassing those of the BLLR (Table 2).

The BLLR algorithm identified crucial predictors through a lasso-

based regularization method, using the spike and slab double-

exponential prior.37 This approach streamlined model complexity by

shrinking features with marginal contributions to clinical decline to

zero, mitigating overfitting, and enhancing generalizability and perfor-

mance across new datasets. Importantly, our algorithm provided an

unbiased identification of predictive features, eschewing preselection

biases.

As these prognostic models use only the baseline (initial visit) clin-

ical assessments and plasma pTau181 to predict the clinical decline

and progression of Aβ+ MCI patients, there are wide-ranging appli-

cations for these models across drug development and real-world

clinical practice. In drug development, utilizing these models at base-

line can effectively enrich clinical trials with subjects anticipated

to undergo mild to moderate clinical decline. This targeted enrich-

ment substantially reduces sample size requirements, as highlighted

in recent publications,49,50 with reported reductions of up to 50%.

Despite notable variability, as one study reported an R2 of 0.2949 and

another showed an AUROC of 72%,50 their impact on clinical trial

design remains significant. Considering ourmodels achieve similar pre-

diction performance, with AUROC values reaching 74.2% and 75.3% in

the two validation cohorts (Table 2), we anticipate a comparable impact

on clinical trial enrichment. Additionally, thesemodels offer opportuni-

ties for patient stratification within clinical trials, allowing for post hoc

evaluation of treatment effects in subgroups predicted to experience

varying rates of progression.
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A limitation of the proposed models is that certain cognitive and

functional assessments may not be accessible in all settings. Assess-

ments like FAQ might be omitted in some clinical trials, and ADAS-

Cog-13 and CDR-SB are not routinely conducted in clinical practice.

While the direct application of the proposed models may face con-

straints in settings where specific assessments are absent, a notable

strength is their adaptability. In instances where certain assessments

are unavailable, the models can be reconstructed using available

assessments,with performance reevaluated. This study’smethods pro-

vide a framework for customization, accommodating variations in

available data.

Another limitation is the prediction accuracy of the models for

plasma pTau181 when using different assay formats. While stan-

dardizing pTau181 concentration ensured comparability and robust

performance across cohorts, caution is neededwithdifferent assay for-

mats. Evaluation on a case-by-case basis is advisable, and the models

may need reconstruction using data from alternative assay formats to

maintain predictive efficacy.

In summary, this studyhighlights baselineplasmapTau181as aprog-

nostic indicator, particularly for identifying Aβ+MCI subjects likely to

experienceaccelerated clinical declinewithin an18-month clinical trial.

Integrating this biomarker with initial clinical assessments substan-

tially enhances outcome predictions, including forecasting Aβ+ MCI

progression to AD over 36 months and overall time-to-progression.

This approach can be adapted to other biomarkers as they undergo

evaluation in clinical studies.
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