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Background: The previous studies demonstrated that theremight be complex and close

relationships among leucine supplementation, gut microbiota, and muscle health, which

still needs further investigation.

Aims: This study aimed to explore the associations of gut microbiota with muscle health

after leucine intake.

Methods: In this study, 19-month-old male C57BL/6j mice (n = 12/group) were

supplemented with ultrapure water, low dose of leucine (500 mg/kg·d), and high dose of

leucine (1,250 mg/kg·d) for 12 weeks by oral gavage. The mice fecal samples in each

group before and after supplementation were collected for baseline and endpoint gut

microbiota analysis by using 16S rDNA amplicon sequencing. Meanwhile, ultrasound

measurement, H&E staining, myofiber cross-sectional area (CSA) measurement, and

western blotting were performed in the quadriceps subsequently. The pyruvate levels

were detected in feces.

Results: Improvement in muscle of histology and ultrasonography were observed

after both low and high dose of leucine supplementation. High dose of leucine

supplementation could promote skeletal muscle health in aging mice via regulating

AMPKα/SIRT1/PGC-1α. The richness and diversities of microbiota as well

as enriched metabolic pathways were altered after leucine supplementation.

Firmicutes-Bacteroidetes ratio was significantly decreased in high-leucine group.

Moreover, pyruvate fermentation to propanoate I were negatively associated with

differential species and the pyruvate levels were significantly increased in feces after

high dose of leucine supplementation.

Conclusions: Chronic high dose of leucine supplementation changed gut microbiota

composition and increased pyruvate levels in the feces, which possibly provides a novel

direction for promoting muscle health in aging mice.
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INTRODUCTION

Muscle aging is characterized by decline in muscle mass and
function as well as increase in fat mass with growing age,
consequently leading to age-related sarcopenia, if without any
preventive timely treatment (1, 2). Astonishingly, muscle mass
and function begins to decline approximately at the age of 30
years, and rates of decline gradually accelerate as age increases
(3), which would be aggravated by increased fat mass in muscle.
The risks of falls, frailty, loss of ability to perform basic
activities, type-II diabetes and cognitive performance decline
were increased in elderly people with muscle aging, which all
impaired the quality of life and caused premature mortality (4, 5).
Moreover, a research based on the National Health and Nutrition
Examination Survey (NHANES) demonstrated that muscle mass
is a significant predictor of longevity for all-cause mortality in
population of men and women aged over 55 and 65, respectively
(6). Hence, it is urgent to explore an effective way to promote
muscle health in the aging people.

Nutritional supplementation, such as protein and branched
chain amino acids (BCAAs), has provided an easy and efficient
way to promote muscle health for years. Leucine, an essential
BCAA, was widely demonstrated to advance muscle health
in the model of old animal and humans (7). Both our
published reviews and other studies revealed that leucine
intake could promote muscle protein synthesis and improve
myofiber regeneration by mammalian target of rapamycin
(mTOR) signaling pathway in the elderly (2, 8–10). Notably,
leucine was reported to modulate energy homeostasis by
activating energy sensor network, AMP-activated protein kinase
(AMPK)/silent information regulator 1 (SIRT1)/peroxisome
proliferator-activated receptor γ co-activator 1α (PGC-1α) (11).
However, whether long-term leucine intake could impact on
muscle health in old mice via regulating AMPKα/SIRT1/PGC-1α
remains largely uncertain.

In recent years, a growing focus on the impact of BCAAs, such
as leucine, on the composition and function of gut microbiota,
consequently making difference on health. BCAAs balance
markedly improved Gammaproteobacteria, Lactobacillales, and
Aeromonadales proliferation in piglets, which might mediate
growth promotion and amino acid metabolism (12). Leucine
concentration in serum was reported to correlate positively with
the abundance of Bacteroides in postmenopausal women (13).
Leucine intake enhanced intestinal health through regulation of
mTOR pathway and promoting SIgA secretion in 6-week-old
mice intestine, which might be linked with markedly and shifted
Firmicutes-Bacteroidetes ratio (14). Another study demonstrated
that leucine supplementation decreased body fat weight in pigs,
associated with higher Actinobacteria and increased colonic
butyrate and propionate concentrations (15). Moreover, Zhang
et al. summarized that leucine may regulate lipid metabolism
by modulating gut microbiota and short-chain fatty acids (11).
Thus, given that leucine intake had well-known impact on
muscle health, investigation about the effects of leucine on gut
microbiota in an aging animal model is essential.

Gut microbiota would change along with aging, which were
associated with the physiological decline of musculoskeletal

function of the host (16). A report revealed that aging skewed
the composition of the gut microbiome particularly by altering
the Sutterella to Barneseilla ratio and altered the metabolic
potential of intestinal bacteria by comparing the gut microbiota
of aged sarcopenic rats (8, 18, and 24 months) (17). Moreover,
the microbiota may underlie the sarcopenic phenotype of the
aged rats via vitamin synthesis, altered lipid metabolism, and
regulation of growth and immune-related factors, as a previous
study also suggested the same (17). Roger et al. transplanted
microbiota of high-physical-functioning older adults (70–85
years old) to germ-free mice and demonstrated that gut
microbiota may play a role in maintenance of muscle strength
(18). However, whether gut microbiota would participate in the
effects of leucine on muscle health in aging mice is still unknown.

As mentioned above, there are complex and close
relationships among leucine intake, gut microbiota, and
muscle health in an aging animal model. Hence, in this
exploratory study, 19-month-old mice were supplemented by
low and high dose of leucine (500 and 1250 mg/kg·d) for 12
weeks to explore the chronic effects of leucine on muscle health.
Simultaneously, the mice feces were collected before and after
leucine supplementation for microbiota analysis, for the sake of
studying the possible association of gut microbiota with muscle
health after leucine intake in aging mice.

MATERIALS AND METHODS

Animals
Nineteen-month-old male C57BL/6j mice were purchased from
Vital River Laboratory Animal Technology Company (Beijing,
China) and housed in specific pathogen-free animal laboratory
(one mouse per cage) with controlled temperature (23 ±

2◦C), relative humidity (55 ± 5%), 12-h light/dark cycle, and
ventilation (air exchange rate of 18 times per hour). The mice
were allowed ad libitum access to food and water. The study was
approved by the Institutional Animal Care and Use Committee
of Tongji Medical College, Huazhong University of Science and
Technology (IACUC number: S407) in line with the guidelines
of National Institute of Health Guide for the Care and Use of
Laboratory Animals.

Experiment Design
It is widely-accepted that 500 mg/kg·d was the upper limit for
leucine in both young and old men, while 1,250 mg/kg·d was
investigated to be the maximum safe level of intake in young
men, since temporary hyperammonemia would appear but no
other adverse effects were observed at these two doses (19–21).
Quadriceps strength would obviously decrease by 3–5% per year
in 60-year-old men (3), whose age was equivalent to mice around
19 months according to The Jackson Laboratory. Additionally,
most of the reported leucine intake studies were short term,
instead of long term (19). Hence, we applied 500 and 1,250
mg/kg·d as low and high leucine supplementation levels in 19-
month-old mice for 12 weeks, to investigate the chronic effects of
leucine intake on muscle health in an aging animal model.

A sample size of 36 mice (12 mice/group) were selected
by referring to the previous similar papers (22–24) as well as
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following the 4R principles (25). This study is a regular nutrition
intervention experiment on healthy aging mice, which has no
specific requirement on animal model. Hence, no specific criteria
for including and excluding animals were set in this study.
Randomization was carried out as follows. After 1-week adaptive
feeding, a total number of 36 mice were weighed and reordered
from high to low body weight. Three cages were labeled A,
B, and C, respectively. Starting from mouse with the highest
body weight, the mice were allocated into each cage successively
according to the order of body weight. The first round, three
mice were allocated into A, B, and C cage successively. The
second round, three mice were allocated into B, C, and A cage
successively. The third round, three mice were allocated into
C, A, and B cage successively, and so on, until all mice were
allocated into the cages (12mice per cage). Cages A, B, andCwere
designated as control, low-leucine, and high-leucine group (n =

12/group), respectively. Each mouse in each group was raised in
one cage alone.

The mice feces of three groups were collected for the baseline
microbiota analysis before gavage (baseline groups: baseline of
control (BC) group, baseline of low-leucine (BL) group, and
baseline of high-leucine (BH) group). Mice were administered
by L-Leucine (powder dissolved in ultrapure water, BioFRoxx,
1215GR500, purity ≥ 99%, Germany) once a day by oral gavage
at doses of 500 mg/kg body mass and 1,250 mg/kg body mass
in low-leucine and high-leucine groups for 12 weeks, while
control group received ultrapure water only. After gavage, the
mice feces were also collected in three groups for endpoint
microbiota analysis (endpoint groups: endpoint of control (EC)
group, endpoint of low-leucine (EL) group, and endpoint of high-
leucine (EH) group). All the fecal samples were obtained and
immediately stored at −80◦C until analysis. Finally, the mice
quadriceps were collected and stored at −80◦C after the sacrifice
of mice (experiment design shown in Figure 1).

H&E Staining
The quadriceps were fixed in 4% paraformaldehyde for 24 h at
least, then, embedded in paraffin blocks, and cross-sectioned
at a thickness of 4µm (Leica, Solms, Germany). The sections
were stained with H&E for morphological analysis. Quadriceps
microscopy was performed using an Olympus IX-71 microscope
(Tokyo, Japan).

Muscle Fiber Cross-Sectional Area (CSA)
Measurements
Six images of different locations in one H&E section were
captured at×200magnification for muscle fiber CSA calculation.
Fifty contiguous myofibers in each image were circled to obtain
an average of 300 fibers for each muscle. Image J software
(National Institutes of Health, Bethesda, MD, USA) was used to
determine the area and number of muscle fibers.

Ultrasound Measurement in Quadriceps
The ultrasonography was used to evaluate muscle mass by
measuring muscle thickness. Muscle thickness was determined
using a B-mode ultrasound system (ACUSON S3000; SIEMENS,
CA, USA) with a 10.0-MHz transducer (ACUSON 18L6 HD;

SIEMENS, CA, USA). Mice were sedated with a subcutaneous
injection of 250 mg/kg tribromoethanol. The hair on the right
femoral external side was clipped. The transducer with a generous
amount of gel was placed perpendicular to the long axis of the
femur or muscle. Quadriceps ultrasound was performed after
leucine gavage.

DNA Extraction and 16S rRNA Gene
Sequencing
Total microbial DNA was extracted from the baseline and
endpoint mice feces in each group (n = 9/group) using the
QIAamp Fast DNA Stool Mini Kit (Qiagen, Germany), and
DNA quality control was preformed using Thermo Nanodrop
2000 fluorometer (Thermo Fisher Scientific, MA, USA) and
1% agarose gel electrophoresis. PCR was performed to produce
V3-V4 hypervariable regions of the 16S rRNA gene using
the conserved primers 341F (5′-CCTACGGGRSGCAGCAG-3′)
and 806R (5′-GGACTACVVGGGTATCTAATC-3′). The PCR
fragments were sequenced with IlluminaMiseq PE250 by Realbio
Technology (Shanghai, China) under standard instruction. The
sequencing data analysis was performed following methods in
Supplementary Materials.

Pyruvate Detection
The levels of pyruvate of three groups in the mice feces
before leucine gavage, and in the feces and quadriceps after
leucine gavage were detected by pyruvate assay kits (E-BC-
K130-M, Elabscience, Wuhan, China) respectively, following the
instructions of manufacturer. The results of pyruvate levels were
presented as µmol/ml in per mg feces.

Western Blotting
Total protein was extracted from mice quadriceps. After being
separated with 10% sodium dodecyl sulfate-PAGE (SDS-PAGE),
the proteins were transferred to nitrocellulose membranes. The
proteins were probed with primary antibodies against AMPKα

(#5831, 1:1000, Cell Signaling Technology,MA, USA), p-AMPKα

(thr172) (#2535, 1:1000, Cell Signaling Technology, MA, USA),
SIRT1 (#9475, 1:1000, Cell Signaling Technology, MA, USA),
PGC-lα (ab54481, 1:1000, Abcam, UK), PPARγ (#A0270,1:1000,
ABclonal, Wuhan, China), Foxo3a (#2497, 1:1000, Cell Signaling
Technology, MA, USA), MEF2C (#5030, 1:1000, Cell Signaling
Technology, MA, USA), FASN (A0461, 1:1000, ABclonal,
Wuhan, China), Atrogin-1 (sc-166806-HRP, 1:1000, Santa Cruz,
USA), Myod1 (A16218, 1:1000, ABclonal, Wuhan, China), and
GAPDH (#5174, 1:10000, Cell Signaling Technology, MA, USA).
Secondary HRP-linked antibody (#7076, 1:10000, Cell Signaling
Technology, MA, USA) and Lumigen ECL Ultra (Lumigen, MI,
USA) detection reagents were used to visualize proteins.

Statistical Analysis
Data are expressed as the mean ± SEM of at least three
independent experiments for each group. One-way ANOVA was
used to evaluate the data for comparisons between the two groups
and multiple groups, respectively. A statistical analysis was
conducted and graphed by GraphPad Prism (Version 8.0, CA,
USA). A value of P < 0.05 was considered statistically significant.
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FIGURE 1 | Experiment design scheme.

RESULTS

Improvement in Muscle of Histology and
Ultrasonography Were Observed After
Leucine Supplementation
Body weight gain was similar in the three groups throughout
the experiment period (P > 0.05, Figure 2A). Likewise, food
intake was analyzed throughout the experiment and did not
differ among the three groups (P > 0.05, Figure 2B). To
evaluate the effects of leucine supplementation for 12 weeks
on muscle mass, quadriceps-body weight ratio comparison was
made among the three groups. However, there was no significant
difference of quadriceps-body weight ratio among the three
groups (P > 0.05, Figure 2C). Ultrasonography of Quadriceps
was also used to characterize muscle thickness in the three
groups. Muscle fiber appeared hypoechoic, while perimysium
and fascia appeared hyperechoic. As ultrasonic graphs showed,
there were obviously more hypoechoic areas as doses of leucine
supplementation increased (Figure 2D). Nevertheless, thickness
of right quadriceps was also not significantly different among
the three groups (P > 0.05, Figure 2E). Otherwise, the H&E
staining sections displayed there are more evident muscle
fibers vacuolization, rounding, nuclei ingression in EC group,
indicating leucine could lay promoting effects on the histology
of quadriceps tissues in the EL and EH groups (Figure 2F). The
mean muscle fiber CSA was measured to evaluate muscle fiber
size in the three groups according to the H&E section images,
whereas, meanCSA had no significant difference among the three
groups (P > 0.05, Figure 2G).

Chronic High Dose of Leucine
Supplementation Could Impact on Skeletal
Muscle Health via Regulating
AMPKα/SIRT1/PGC-1α in Aging Mice
To explore whether leucine supplementation could exert
the effects on skeletal muscle in aging mice through

AMPK/SIRT1/PGC-1α, protein levels of AMPKα, SIRT1,
and PGC-lα in quadriceps were measured by using western-blot.
There was significantly higher p-AMPKα (thr172)/AMPKα

in EH group, compared with that in EC group (P < 0.05,
Figure 3A), suggesting that AMPKα pathway was activated by
leucine supplementation. The protein levels of both SIRT1 and
PGC-lα were significantly increased in EH group compared with
that in EC group (P < 0.05, Figures 3B,C).

In addition, PGC-1α, acts as a myokine controller, is known
to interact with several nuclear transcription factors, such as
peroxisome proliferator-activated receptor γ (PPARγ), fork head
box protein O 3a (Foxo3a), and myocyte enhancer factor-2C
(MEF2C) (26–28), together with fatty acid synthase (FASN),
Atrogin-1 and myogenic differentiation 1 (Myod1) (29–31),
modulating skeletal muscle health. Therefore, the protein levels
of PPARγ, Foxo3a, and MEF2C as well as FASN, Atrogin-1, and
Myod1 were detected in quadriceps. PPARγ level was increased
while FASN level was decreased in EH group, compared with
that in EC group, respectively (P < 0.05, Figures 3D,E). There
were significant decreases of Foxo3a and Atrogin-1 protein
levels in EH group compared with that in EC group (P <

0.05, Figures 3F,G). Inversely, both MEF2C and Myod1 protein
levels had significant increases in EH group compared with that
in EC group (P < 0.05, Figures 3H,I). Taken together, high
dose of leucine supplementation for 12 weeks could influence
muscle health through regulating AMPKα/SIRT1/PGC-1α in the
aging mice.

Leucine Supplementation Altered
Microbiota Richness and Diversity
To examine whether the effects of leucine supplementation on
muscle is related with gut microbiota, microbiota composition
was detected in the feces of baseline and endpoint groups. There
were 643 Operational Taxonomic Units (OTUs) and 638 OTUs
in microbiota of baseline and endpoint groups, respectively. As
shown in Figures 4A,B, the common OTUs were decreased after
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FIGURE 2 | Phenotype changes after leucine supplementation in aging mice. (A,B) Body weight and food intake variation throughout the experiment; (C)

quadriceps-body weight ratio in endpoint groups; (D,E) the quadriceps ultrasonographic images as well as muscle thickness of right quadriceps in endpoint groups.

Muscle fiber appeared hypoechoic, while perimysium and fascia appeared hyperechoic. White triangles represented hypoechoic areas while the dotted lines showed

the transverse diameters of quadriceps; (F) H&E staining sections of quadriceps in endpoint groups, scale bar: 200µm. Long arrows pointed to vacuolization, stars

represented rounding and short arrows pointed to nuclei ingression in muscle fibers. (G) Relative mean muscle fiber cross-sectional area (CSA) in the endpoint

groups. ns, no significance.
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FIGURE 3 | Leucine supplementation could impact on skeletal muscle health via regulating AMPKα/SIRT1/PGC-1α in aging mice. (A) Protein levels of p-AMPKα

(thr172)/AMPKα in the endpoint groups; (B,C) the protein levels of SIRT1 and PGC-lα in the endpoint groups; (D,E) the protein levels of peroxisome

proliferator-activated receptor γ (PPARγ) and fatty acid synthase (FASN) in the endpoint groups; (F,G) the protein levels of fork head box protein O 3a (Foxo3a) and

Atrogin-1 in the endpoint groups; (H,I) the protein levels of myocyte enhancer factor-2C (MEF2C) and myogenic differentiation 1 (MyoD1) in the endpoint groups; ns,

no significance; *P < 0.05; **P < 0.01; and ***P < 0.001.

leucine supplementation. OTU principal component analysis
(PCA) was applied to evaluate the intergroup differences of
baseline and endpoint. The microbiota composition in the
endpoint groups was rather obviously separated among the three
groups than that of the baseline groups (Figures 4C,D), implying
that leucine supplementation exerted influence on microbiota
composition in the aging mice.

Relative abundance of microbiota at phylum level in the
three groups before and after leucine supplementation was
shown in Figures 4E,F. The ratio of Firmicutes and Bacteroidetes
had no significant difference among the baseline groups
(P > 0.05, Figure 4G). Nevertheless, the Firmicutes-Bacteroidetes
ratio presented a significant decrease after high dose of leucine

supplementation, compared with that of EC group (P < 0.05,
Figure 4H). Besides, the top 20 genera were also displayed
according to relative abundance in the baseline and endpoint
groups (Figures 4I,J). Barnesiella, Alloprevotella, and Prevotella
were the dominant bacterial genera among the baseline groups.
Notably, Prevotella was increased to be the first dominant genus
after 12 weeks of leucine intake (P < 0.05, Figure 4K), followed
by Barnesiella and Bacteroides. Interestingly, Paraprevotella was
markedly increased after high dose of leucine supplementation
(P < 0.05, Figure 4L), compared with that of EC and EL groups.

Alpha diversity analysis was used to analyze the bacterial
diversity in single sample to show the species richness and
evenness. There were no significant difference of Shannon
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FIGURE 4 | Microbiota richness and diversity before and after leucine supplementation. (A,B) OTU Venn diagrams in gut microbiota in the baseline and endpoint

groups; (C,D) OTU principal component analysis (PCA) plots in the baseline and endpoint groups; (E,F) relative abundance of microbiota at phylum level in the

baseline and endpoint groups; (G,H) the ratios of Bacteroidetes and Firmicutes in the baseline and endpoint groups; (I,J) relative abundance of top 20 genera in the

baseline and endpoint groups; (K,L) relative abundance of Prevotella and Paraprevotella in endpoint groups; (M,N) Shannon and Simpson diversity index in the

baseline groups; (O,P) Shannon and Simpson diversity index in the endpoint groups; (Q,R) principal coordinates analysis (PCoA) plots in the baseline and endpoint

groups; (S,T) analysis of similarity (ANOSIM) analysis in the baseline and endpoint groups; ns, no significance; *P < 0.05; and **P < 0.01.

and Simpson index in the three groups before leucine
supplementation (P > 0.05, Figures 4M,N). Whereas, both
Shannon and Simpson index were significantly lower in the EH
group than in the EC and EL group (P < 0.05, Figures 4O,P),
suggesting that high-dose leucine supplementation for 12 weeks
could decrease the richness and evenness of gut microbiota.

Beta diversity analysis was used to compare the differences
of species diversity among the samples. A principal coordinates

analysis (PCoA) presented that microbial community structure
of different samples were obviously separated after leucine
supplementation, while no difference was shown among the
groups before leucine gavage (P > 0.05, Figures 4Q,R). Similarly,
the differences of intergroup and intragroup were not significant
in the baseline groups (P > 0.05), but the difference of intergroup
was significantly greater than that of intragroup in the endpoint
groups, as analysis of similarity (ANOSIM) analysis revealed
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(P < 0.05, Figures 4S,T). The results of PCoA and ANOSIM
demonstrated that leucine supplementation could change the
difference of microbiota diversity among the samples.

More Differential Species and Metabolic
Pathways Were Enriched After Leucine
Supplementation
To identify specific microbial communities associated with
leucine supplementation, the compositions of gut microbiota
in the baseline and endpoint groups were compared by using
linear discriminant analysis (LDA) effect size (LEfSe) analysis.
In total, LEfSe analysis revealed 12 discriminative features at
all the taxon levels before leucine gavage (LDA > 2, P < 0.05,
Figure 5A). After leucine supplementation, 30 discriminative
features at all the taxon levels were identified (LDA> 2, P < 0.05,
Figure 5B). Cladograms in the baseline and endpoint groups
individually represented microbial communities playing vital
effects in the groups (Figures 5C,D). In addition, the differential
species identification in each group was also confirmed by
Kruskal–Wallis rank sum test. There were 10 and 30 significantly
different species enriched at all the taxon levels in the baseline
and endpoint groups, respectively (P < 0.05, Figures 5E,F). The
PCA plots at all the taxon levels revealed that there was no
clear division among the baseline groups, whereas EH group was
obviously separated from the EC and EL groups (Figures 5G,H).
As shown above, the differential species identified by the
two different analysis methods remained broadly consistent,
suggesting the stability of gut microbiota profiling data.

Specific species at genus level was also distinguished by
Kruskal–Wallis rank sum test. There were 5 and 15 significantly
different species at genus level enriched in the baseline
and endpoint groups, respectively (P < 0.05, Figures 5I,J,
Supplementary Tables S1, S2). Particularly, Prevotella,
Paraprevotella, Alloprevotella, Parasutterella, Roseburia,
Allobaculum, and Streptococcuswere significantly increased while
Clostridium XlVa, Desulfovibrio, Odoribacter, Clostridium XlVb,
and Flavonifractor were significantly decreased after leucine
gavage. Nevertheless, Acetatifactor, Allobaculum, Flavonifractor,
Olsenella, and Vampirovibrio were also significantly different in
the baseline groups. The PCA plots at genus level demonstrated
similar results with that at all the taxon levels described
previously (Figures 5K,L). All the results above suggested that
more differential species and metabolic pathways were enriched
after leucine supplementation.

Chronic High Dose of Leucine
Supplementation Suppressed Pyruvate
Fermentation to Propanoate I in Feces
To characterize the functional alterations in the gut microbiota
related to leucine supplementation, the functional composition
profiles using 16S rRNA gene sequencing data were analyzed
with PICRUSt2. As shown in Figures 6A,B, there were 6 and
45 differential metabolic pathways clustered in the baseline
and endpoint groups (P < 0.05, Supplementary Tables S3, S4),
based on the MetaCyc metabolic pathways database. The
differential metabolic pathways were mainly classified into three

categories, which were biosynthesis (fatty acid biosynthesis,
amino acid biosynthesis, and enzyme cofactor biosynthesis),
degradation/utilization/assimilation (amine and polyamine
degradation, aromatic compound degradation, and secondary
metabolite degradation), and generation of precursor metabolites
and energy (fermentation). Taken together, more differential
species and metabolic pathways were enriched in the feces after
leucine supplementation.

To explore the effects of differential microbial communities
on the metabolic pathways, a correlation network between
differential species at genus level and differential metabolic
pathways was constructed. There were five differential species
and five differential metabolic pathways correlated in the baseline
groups, while 14 differential species were associated with 41
differential metabolic pathways in the endpoint groups (P< 0.05,
Figures 6C,D). More differential species in EC (n = 5) and EH
(n= 6) groups correlated to differential metabolic pathways than
that in EL (n= 3) groups. Moreover, the correlations between the
metabolic pathways and differential species in EL group were not
as strong as that in the EC and EH groups, which was probably
driven by high dose of leucine gavage. Differential species showed
closer relation to pyruvate fermentation to propanoate I in
endpoint groups among all the metabolic pathways, which was
positively correlated to differential species in EC group but
was negatively associated with that in EH group. High-dose of
leucine supplementation may inhibit pyruvate fermentation to
propanoate I, indicating that pyruvate may increase after high-
dose of leucine supplementation.

To examine the suppressive effects of leucine supplementation
on pyruvate fermentation to propanoate I, the pyruvate levels
were detected in the feces of baseline and endpoint groups. There
was no difference of pyruvate levels in the feces of baseline
groups (P > 0.05, Figure 6E), while the pyruvate levels in
feces of EH group were significantly higher than that in EC
group (P < 0.05, Figure 6F), demonstrating that high dose of
leucine supplementation could surely increase pyruvate level in
feces. Taken together, pyruvate fermentation to propanoate I
was suppressed after high dose of leucine supplementation in
the feces.

DISCUSSION

In present study, leucine supplementation for 12 weeks did
not influence muscle mass and atrophy in 19-month-old mice
but improved the histological and ultrasonographic changes in
quadriceps. The previous studies with similar doses of leucine
intake (675 and 1,350 mg/kg·d mostly) mainly focused on
the short-term effects of leucine in the young or adult mice
or rats, but changes in muscle mass and CSA were not so
consistent in different studies for the variances of animal models,
supplementation duration, and muscles (8, 23, 32–34). Besides,
research on long- or short-term effects of leucine intake in
the elderly animals and humans demonstrated long- or short-
term leucine supplementation alone did not increase muscle
weight and CSA while that in combination with exercise did
(9, 22, 35, 36). Besides, a significant effect of leucine on muscle
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FIGURE 5 | Differential species and metabolic pathways before and after leucine supplementation. (A,B) Linear discriminant analysis (LDA) effect size (LEfSe) analysis

revealed 12 and 30 discriminative features at all the taxon levels in the baseline and endpoint groups (LDA > 2); (C,D) taxonomic cladograms in the baseline and

endpoint groups; (E,F) Kruskal–Wallis rank sum test showed 10 and 30 (top 20) significantly different species at all the taxon levels in the baseline and endpoint

groups; (G,H) the PCA plots at all taxon levels in the baseline and endpoint groups; (I,J) Kruskal–Wallis rank sum test revealed 5 and 15 (top 12) significantly different

species at genus level in the baseline and endpoint groups; (K,L) the PCA plots at genus level in the baseline and endpoint groups.

mass was shown in sarcopenic persons but not in the healthy
subjects, and leucine supplementation on top of physical exercise
could increase muscle mass (37). Exercise and sarcopenia may
enhance the energy requirements to better promote leucine
utilization, which may explain the negative results of leucine
supplementation alone on muscle mass.

As results showed, chronic high dose of leucine activated
AMPK/SIRT1/PGC-1α signaling pathway to regulate the
expression of proteins related to lipid metabolism (PPARγ and
FASN) (38, 39), muscle atrophy (Foxo3a and Atrogin-1) (29), and
muscle protein synthesis (MEF2C and MyoD1) (31). Depressed
protein level of Foxo3a and Atrogin-1 as well as the increased
protein levels of MEF2C and MyoD1 indicated that leucine
could enhanced MPS and alleviated atrophy in skeletal muscle
after high dose of leucine gavage in the present study. PPARγ,
well-known as a master regulator of adipocyte differentiation,
whose depletion was completely devoid of adipose tissue (39).
FASN functions as a central regulator of lipid metabolism for
endogenous fatty acid synthesis (38). However, the increased
protein level of PPARγ and decreased protein level of FASN
were controversial after high dose of leucine supplementation
in the present study. Surprisingly, PPARγ deletion was also
demonstrated to cause insulin resistance in skeletal muscle
(40) and impair muscle stem cells expansion and myogenesis
after injury (41), indicating PPARγ has tissue-specific effects.
Thus, the increased PPARγ levels in present study might have
something to do with myogenesis.

Species richness, alpha and beta diversities were not different
among the baseline groups, while lower gut microbiota richness
and alpha diversity as well as different beta diversity were
shown especially in group supplemented with high dose of
leucine. Similarly, 6-week-old mice receiving 1.0% leucine also
reduced the alpha and beta diversities of the gut microbiota (14).
Additionally, the Firmicutes-Bacteroidetes ratio was decreased
gradually as doses of leucine increased. As is known to all,
Firmicutes and Bacteroidetes are the two groups of beneficial
and dominant bacteria in the gut, increasing ratio of which was
closely related to body-weight loss (42, 43). The previous studies
also demonstrated that chronic leucine supplementation played
a role of anti-obesity by lowering body weight and white adipose
tissue weight (44, 45). Therefore, leucine supplementation in the
present study may cause change in the gut microbiota associated
with losing body weight or adipose tissue weight.

Predictably, there were differential species appearing among
the baseline groups, probably due to the variances of individual,
housing environment, sampling, or experiments. The first
dominant genus Prevotella and the markedly-increased genus
Paraprevotella, after leucine gavage in present study, belonging
to Bacteroidetes, was also reported to enrich in high-physical-
functioning older adults (18), both of which were also
demonstrated to be the key negative bacteria in lipid increase
(46–48). Moreover, Prevotella enrichment also had something
to do with alleviating aging (49). Besides, other significantly
increased genera Alloprevotella, Parasutterella, and Allobaculum
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FIGURE 6 | Chronic high dose of leucine supplementation suppressed pyruvate fermentation to propanoate I in feces. (A,B) Based on the MetaCyc metabolic

pathways database, 6 and 45 differential metabolic pathways clustered in the baseline and endpoint groups (LDA > 2); (C,D) correlation networks between differential

species at genus level and differential metabolic pathways; differential species seemed to more closely related to pyruvate fermentation to propanoate I in the endpoint

groups among all the metabolic pathways. (E) The pyruvate levels in feces of the baseline groups; (F) the pyruvate levels in feces of endpoint groups; ns, no

significance; *P < 0.05.

and significantly reduced genera Clostridium XlVa, Clostridium
XlVb, and Desulfovibrio were also previously reported to closely
relate to obesity and diabetes (48, 50–52), which may contribute
to age-related diseases (53). Streptococcus were positively
associated with the muscle improvement outcomes (54).
Moreover, the differential pathways in fatty acid biosynthesis as
well as amino acid synthesis and degradation were enriched in
the endpoint groups in present study, which was demonstrated to
correlate to muscle metabolism (54). Therefore, gut microbiota
may relate to the effects of leucine supplementation on
promoting muscle health in aging mice.

Pyruvate fermentation to propanoate I, had stronger positive
relation to differential genera in the EC group but negative
correlation with differential genera in EH group, compared
with other metabolic pathways. Pyruvate is a three-carbon
intermediate compound between the glycolysis pathway that
exerts an important role in oxidation and energy supply (55).
Several published studies have demonstrated that pyruvate could
induce weight loss and fat loss in the animals and humans by
influencing energy metabolism (56–59). Remarkably, high dose
of leucine supplementation induced significantly higher pyruvate
levels in the feces in present study. Additionally, impaired
mitochondrial pyruvate uptake led to strikingly decreased
adiposity in skeletal muscle with complete muscle mass and

strength retention, which highlighted the potential utility of
modulating muscle pyruvate utilization to ameliorate obesity
(60). Muscle aging was known to be accompanied with and
exacerbated by adiposity (1). Furthermore, the pyruvate levels
were reported to increase AMP/ATP and ADP/ATP ratios to
subsequently activate AMPK and then control metabolism in
aging (61). AMPK, a high sensitively nutrient and energy sensor,
was also activated in this study in quadriceps. Besides, SIRT1
and PGC-1α, two famous molecular targets of anti-muscle aging,
were regulated by AMPK phosphorylation (62, 63). Thus, we
hypothesized that chronic high dose of leucine might be effective
in advancing muscle health in aging mice through a potential
pyruvate-associated AMPK/SIRT1/PGC-1α pathway (Figure 7),
which requires more evidence to verify in the future.

In conclusion, chronic high dose of leucine supplementation
could impact on skeletal muscle health via regulating
AMPKα/SIRT1/PGC-1α in aging mice. The composition
and diversities of gut microbiota were altered after leucine
supplementation. Moreover, pyruvate fermentation to
propanoate I were negatively associated with differential
species and the pyruvate levels were significantly increased
in feces after high dose of leucine supplementation,
possibly related to AMPK/SIRT1/PGC-1α pathway
in promoting muscle health. The present study shed
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FIGURE 7 | Schematic diagram of present work. Chronic high dose of leucine supplementation could promote muscle health via regulating AMPKα/SIRT1/PGC-1α.

Besides, chronic high dose of leucine supplementation altered the composition and diversities of gut microbiota as well as increased pyruvate levels in the feces.

Whether microbiota-related pyruvate level may correlate with the effects of chronic high dose of leucine supplementation on muscle health in the aging mice requires

further study. Red indicates increased relative abundances or the expression levels while green denotes decreased relative abundances or expression levels.

light on the changes of pyruvate levels in feces, which
would be a new focus in advancing muscle health by
leucine supplementation in aging mice but requiring
further investigation.
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