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Abstract

Background: Leg amputees suffer the lack of sensory feedback from a prosthesis, which is connected to their low
confidence during walking, falls and low mobility. Electrical peripheral nerve stimulation (ePNS) of upper-limb
amputee’s residual nerves has shown the ability to restore the sensations from the missing limb via intraneural
(TIME) and epineural (FINE) neural interfaces. Physiologically plausible stimulation protocols targeting lower limb
sciatic nerve hold promise to induce sensory feedback restoration that should facilitate close-to-natural
sensorimotor integration and therefore walking corrections. The sciatic nerve, innervating the foot and lower leg,
has very different dimensions in respect to upper-limb nerves. Therefore, there is a need to develop a
computational model of its behavior in response to the ePNS.

Methods: We employed a hybrid FEM-NEURON model framework for the development of anatomically correct
sciatic nerve model. Based on histological images of two distinct sciatic nerve cross-sections, we reconstructed
accurate FEM models for testing neural interfaces. Two different electrode types (based on TIME and FINE) with
multiple active sites configurations were tested and evaluated for efficiency (selective recruitment of fascicles). We
also investigated different policies of stimulation (monopolar and bipolar), as well as the optimal number of
implants. Additionally, we optimized the existing simulation framework significantly reducing the computational
load.

Results: The main findings achieved through our modelling study include electrode manufacturing and surgical
placement indications, together with beneficial stimulation policy of use. It results that TIME electrodes with 20
active sites are optimal for lower limb and the same number has been obtained for FINE electrodes. To interface
the huge sciatic nerve, model indicates that 3 TIMEs is the optimal number of surgically implanted electrodes.
Through the bipolar policy of stimulation, all studied configurations were gaining in the efficiency. Also, an
indication for the optimized computation is given, which decreased the computation time by 80%.

Conclusions: This computational model suggests the optimal interfaces to use in human subjects with lower limb
amputation, their surgical placement and beneficial bipolar policy of stimulation. It will potentially enable the
clinical translation of the sensory neuroprosthetics towards the lower limb applications.

Keywords: Sensory, Neuroprosthesis, Lower limb, Hybrid computational model, Neural interfacing, Neural
stimulation
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Background
Leg amputees lack sensory feedback and have limited vol-
untary control of currently available prostheses [1]. These
limitations do not allow for a correct generation of postural
reflexes at the spinal level and overall correct sensory-
motor integration between the user’s central nervous sys-
tem and the artificial limbs. Because of the lack of sensory
feedback and no controllability of the prosthesis itself,
which are difficult to separate as issues, since inherently
connected, amputees are suffering many health-related
problems. Users experience dangerous falls [2], do not
manage to maintain symmetry during standing and walking
[3, 4], i.e. they tend to shift more weight and have a pro-
longed stance phase on the sound limb than on the pros-
thetic limb [5–7]. Resulting abnormal kinematics and
postural asymmetries can, after long-term use of the pros-
thesis, lead to musculoskeletal diseases as knee and hip
osteoarthritis, osteoporosis, and back pain [8, 9]. Moreover,
since they exert unnatural compensatory movements with
prosthetic and healthy leg and body, they face an aug-
mented metabolic cost, then fatigue and occasionally hearth
failures [10]. As such, an amputee, especially a thigh-level
one (transfemoral (TF)), is faced with several challenges in
daily life situations. Sitting and standing up, running, shuf-
fling and carrying loads can be a difficult and even danger-
ous task for a TF amputee. Moreover, 50–80% of amputees
report neuropathic pain from the missing extremity, which
is called a phantom limb pain (PLP) [11] and for which an
effective treatment is not available [12]. Finally, the users do
not perceive the prosthesis as part of their own body, which
increases the cognitive effort when using the device itself
[13], affecting its acceptability (low embodiment) [14, 15]
and causing a reduction in the confidence of the subject in
its use (i.e. they are afraid to fall if relying over it) resulting
in 60% of lower limb amputees abandoning the prosthesis
(i.e. they do not use it and do not walk anymore) [16, 17].
Sensory feedback provided by foot sole mechanoreceptors
is important for controlling balance and movement in
humans [18–22]. Lower-limb amputees rely on often-
uncomfortable haptic feedback from the stump-socket
interaction to monitor ground contact, counteract inter-
action with obstacles, stabilize balance and walk symmet-
rically. Many, of the drawbacks associated with
operating the device arise from the lack of proper
sensory feedback of the lost limb. Partial or full res-
toration of the afferent information path would allow
closing that gap, which currently stands wide open.
Recently, the provision of sensory feedback, has been
shown to alleviate the PLP and metabolic cost in
transfemoral amputees while walking [23], and help
regarding the fall avoidance, stair mobility and em-
bodiment boosting [24]. These are important ratio-
nales for the development of the models for a sensory
neuroprosthesis, as the present one.

Sensations can be restored by means of non-invasive
techniques such as electrotactile [25] and vibrotactile
[26] stimulations, with the drawback of being not hom-
ologous and not selective, and therefore of increasing
the cognitive effort of the subjects and forcing them to
spend a period of training to only partially overcome this
limitation. By connecting to the peripheral nervous sys-
tem with a neural interface [27], it is possible to restore
close-to-natural sensations within bidirectional loop as
recently showed in upper-limb amputees [28–30].
Recently, very important clinical translations have

been shown in the upper-limb amputees’ investigations
[28–38]. Neuromodulation at the median and ulnar
nerves using transversal intraneural electrodes (TIMEs)
[28, 31–34], allowed amputees to feel touch sensations
from a missing hand and to exploit this sensation in
prosthesis bidirectional control [28, 32, 35], diminished
their phantom limb pain [32] and boosted prosthesis
embodiment [29, 32, 36, 37, 39]. A long-term use of
FINE electrodes in humans has been reported [29, 30,
38, 39]. Despite these achievements, the sensations en-
coding mechanisms, the most effective way to restore
sensory feedback by invasive neural stimulation, are still
objects of a scientific discussion [33, 34, 40, 41].
Here we explored how these technologies, namely TIMEs

and FINEs, could be transferred to the lower limb applica-
tion, via computational modeling. The development of an
optimal communication between neural (ions) and artificial
(electrons) codes (i.e. electrode-nervous tissue communica-
tion), based on deep understanding of Electro-Neuron in-
teractions is needed. It is a mandatory step, since the
dimensions of median and ulnar nerves (upper limb) are
much smaller than the ones of the sciatic nerve. Existing
models of nerves (that do not include human sciatic nerve
for sensory stimulation) are exploring the effects of the
nerve stimulation to the resulting neural population [31, 42,
43]. What is missing is a sensory nerve model, which would
indicate how to optimally stimulate within the high-
dimensional space of possible electrode’s geometries, stimu-
lation parameters and their placements within PNS, intract-
able with the “brute-force” approach. To address this, we
developed a detailed anatomically and biophysically plaus-
ible model of the human sciatic nerve, accounting both for
the electrical stimulation effects and the neural responses of
axons: electro-neuro model (ENM). We compared the
TIME and FINE electrodes [27] in terms of efficiency (se-
lectivity) and efficacy (the threshold values).
This model was used to identify i) the optimal geom-

etry of the neural interface, ii) neurosurgical placement
(number of implants) and iii) beneficial stimulation pol-
icy. The type of electrode, number of active sites (AS),
the number of devices to be implanted and more sophis-
ticated stimulation policy, are explored in the present
study.
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Methods
We developed ENM of sciatic nerve that will allow for
evaluation of different electrode designs and operating
paradigms (Fig. 1).

Finite elements model (FEM)-neuron hybrid model
In our study, we utilized a three-step framework [44,
45], combining a realistic Finite Elements Model (FEM)
of the nerve, providing electric potentials, with a Neuron
Compartmental Model for calculation of fiber recruit-
ment. The experimental setup was similar to the one de-
scribed previously [46] and optimized for computational
time.

Electrical potentials solution using FEM
To accurately replicate the anatomical structures of a
human sciatic nerve, two histological cross-section im-
ages were identified for the model creation (Fig. 1.). The
first image [47] representing the nerve at the ischial tu-
berosity, later referred to as the proximal anatomy, and
another one close to the sciatic bifurcation [48] –

denominated as the distal anatomy. The proximal geom-
etry (187 × 88mm) of a 28-year-old patient contained 37
fascicles and should be an attainable spot for electrode
placement for even the highest trans-femoral amputees.
The distal cross section of a female cadaver (87–102
years old) accommodated 31 fascicles at 58.2 mm2

(11.5 × 6.4 mm). This level of the nerve is suitable im-
plantation sport for the lower above-knee amputations.
Images were imported into ImageJ software [49] for

manual segmentation of the anatomical structures with
a NeuronJ plugin [50]. Exported data contained the out-
line of the nerve and the fascicles within it. Next, we re-
constructed the anatomical features of the nerve using
MATLAB (The MathWorks, Inc., Natick, Massachusetts,
United States). The outer layer of the fascicles – peri-
neurium, was defined as 3% of its diameter [51], and the
endoneurium filling the rest of the fascicle’s lumen. The
segmented 2D geometry was then imported into COM-
SOL Multiphysics (COMSOL AB, Stockholm, Sweden)
FEM software, in which by extrusion in the longitudinal
direction, a 3D model was created.

Fig. 1 Schematic representation of hybrid modeling for neuroprosthetic applications. a The target peripheral nerve is identified for restoring
sensory feedback (i.e. sciatic nerve) and its histological pictures are extracted. In order to interface the neuroprosthesis with the biological tissue,
intraneural and extraneural interfaces are considered (i.e. FINE and TIME). b Hybrid models are developed considering geometrical and physical
properties of nerve-electrode interface during neural stimulation (FEM module). Axon fibers model and different populations are integrated to
study recruitment and electrode selectivity (Neuron module). c The outcomes of this process, guiding design of an optimal neuroprosthetic leg
for trans-femoral amputees, are: Optimization of the electrode design; Indications for the surgical implant; and optimization of the
stimulation strategy
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We prepared a total of 15 different electrode designs
(7 extraneural and 8 intraneural) with varying number of
active sites and dimensions.
Intraneural models were based on the Transversal

Intrafascicular Multichannel Electrode (TIME) [52], and
we built 4 active sites configuration for each nerve
model – 12, 16, 20 and 24 ASs, spanning across the
length of the electrode’s shaft. Following the Raspopovic
et al., 2017 [46] we have opted for the asymmetrical de-
sign of the electrode with the ASs on the opposite side
shifted by a half the distance between the sites. Using
this approach, we maximize the effective spatial range of
the electrode, with respect to the symmetrical case. We
adjusted the size of our models to fit the anatomical
structures of the sciatic nerve. Therefore, the intraneural
electrodes were 18 and 10mm for proximal and distal
anatomy respectively. The thickness was fixed at 20 μm
for all the designs, while the width depended on the
number of active sites to account for the needed trace
paths to the stimulation point (380 to 670 μm range).
The AS area was modelled as a circle and has a 60 μm
diameter [52].
The extraneural electrode’s design was based on the

no-compression version of Flat Interface Nerve Elec-
trode’s model (FINE) [43]. Size of the electrode was ad-
justed to match the dimensions of the two nerves -
18.75 × 8.85 mm for the proximal and 10.9 × 7mm for
the distal anatomy. Since neither the compression model
of the nerve, nor histological data of human sciatic nerve
under compression were available, we opted to imple-
ment the no-compression version of FINE (a nerve and
FINE have the same dimension). Yet, implemented
model is clinically relevant, since being qualitatively
similar to the extraneural electrodes, which are not com-
pressing the nerve, used in the unique effort performed
to interface sciatic nerve for sensory feedback, until
today [53]. The contact area of active sites was modelled
as in the original FINE design – 0.5 × 0.5 mm. Our extra-
neural electrodes had 12, 16, 20 and 24 active sites for
the proximal anatomy of the nerve and 12, 16 and 20
ASs for distal as we were limited by the dimensions of
the nerve (maintaining the original AS’s sizes).
To correctly calculate the electric potential distribu-

tion within the model, we needed to attribute each tissue
with a corresponding electrical property [54]. Epineu-
rium was defined as an isotropic medium with a con-
ductivity value (σ) of 0.0826 S/m [42, 55]. Intrafascicular
endoneurium is assumed as an anisotropic tissue with a
conductivity tensor of 0.571 S/m and 0.0826 S/m [42,
55], for the longitudinal and transversal values respect-
ively. Perineurium’s value was set to 0.00088 S/m as re-
ported in Raspopovic et al., 2017 [46]. As reported in
previous studies [42, 43, 55], the space closely surround-
ing the nerve was modelled as a homogenous saline

solution with a conductivity of 2 S/m. Main shaft of the
electrode was defined as a polyimide structure with σ =
6.67*e-14 S/m [52]. The boundary current conditions
were replicated from the previous study [46] – cylinder
with a 16mm diameter and 15.4 mm length in both di-
rections from the center. The active sites of each elec-
trode were defined as a boundary current source with an
effective current of 2 μA for TIME and 20 μA for our
extraneural electrode (FINE). Thanks to the linearity of
governing equations results for the other values of
current can be simply linearly scaled.
The nerves and the electrode models were then

merged in the COMSOL software, and using the EC
module of COMSOL, an equation to the electromag-
netic problem was defined as a Laplace formulation for
the extracellular electric potential:

∇�σ∇Ve ¼ 0:

The solution is discretized based on a mesh generated
for the model [56]. To reduce the computational com-
plexity, the mesh composed of tetrahedral elements with
an extremely fine density in the proximity of the elec-
trode (higher electric field gradient) and coarser for the
rest of geometry is implemented. To automatize the
process of running FEM simulations we utilize the
COMSOL interface available for MATLAB – COMSOL
Link with MATLAB.

Axonal responses calculation via NEURON model
In our study, we utilized the compartmental neuron
model with Ranvier nodes and axon tracts separating
them. In particular, we use a McIntyre-Richardson-Grill
model [57]. Each fiber of diameter (D) consists of 21
nodes of Ranvier (shifted randomly across fiber popula-
tion) and 20 internodes with a distance of L = 100 ∗D
between them. The NEURON’s extracellular stimulation
procedure was used to simulate the excitation of the
cells.
To account for the anatomical variability of the sciatic

nerve, we implemented multiple fiber populations per
fascicle, similarly as in [46], since fibers within one fas-
cicle may account for sensation from different areas of
the leg, and/or can be very concentrated or uniformly
spread over the fascicle. Depending on the size of the
fascicles, 1, 3 or 5 populations were placed in the fasci-
cle’s lumen (small < 400 μm, 400 μm<medium <
800 μm, big > 800 μm). Each population occupied a dif-
ferent area of the nerve bundle, but its fibers remained
grouped. The density and the diameter distribution of
the fibers were taken from Garven et al. [58] and match
a 28-year-old female patient. Fiber density was reduced
from 11,953 to 240 fiber per mm2 (a 50x reduction),
similarly as in other works [43, 46], which vastly
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improved our simulation times. This reduction does not
affect potential distribution within the individual fascicle.
Importantly, we maintained the fiber diameter distribu-
tion, therefore accurately representing nerve’s overall
functional anatomy and neural responses.

Connecting FEM and NEURON into a hybrid model
Solution to the electric potential distribution calculated
for the FEM structure was interpolated to the desired
positions of fiber nodes of Ranvier, as explained in detail
[46] and exported through COMSOL Link with
MATLAB for further steps. Interpolated data points
were then sent individually for each fiber within a given
fixed range away for the active site. The neuron’s re-
sponse is later computed using NEURON’s MRG model
and the extracellular mechanism for membrane
depolarization [59]. We iterated 60 times for each fiber,
gradually increasing the amplitude of the electric poten-
tial at the Ranvier node, maintaining the 50 μs pulse dur-
ation, effectively changing applied charge from 0.5 to 60
nC. Axon was considered recruited, when a generated
action potential run over the entire length of the
neuron.

Varying operating modes (policy of stimulation) and
multi-electrode implantation
As neural interfaces allow stimulating through more
than one active site at the same time, we evaluated dif-
ferent stimulation protocols. We tested single active sites
for a monopolar cathodic stimulation (which is conven-
tionally used in almost all neuroprostheses) and then
used a superposition to evaluate bipolar modes (see
Fig. 6a). Highlighted areas schematically represent po-
tential distributions (A, B, C) elicited by different active
sites, which are disposed as explained in continuation. A
indicates a field potential elicited by a single AS. B indi-
cates a field potential elicited by adjacent ASs, which is
on the opposite side of the electrode with respect to A.
C is elicited by the AS closest to the A on the same face
of the electrode. In each configuration, we simulated dif-
ferent polarities of the individual ASs, switching between
positive (indicated by the red color) and negative (blue
color), effectively changing the potential distribution
field in the nerve. Monopolar stimulation allows for an
activation of only one active site at a time, while bipolar
stimulation enable to use two contacts in any
polarization configuration (see Fig. 6a: e.g. opposite
colors red and blue, and same polarization–color red).
As an example, enabling bipolar stimulation allows ap-
plying opposite current to the adjoining active site and
therefore modified the spread of the current (Fig. 6a
right inset).
Additionally, we investigated the effects of implanting

multiple intraneural electrodes on the overall fascicle

recruitment. This may serve as an indicator for surgeons
to choose the best approach for a given target anatomy.
For both the proximal and distal anatomy we simulated
an insertion of up to 4 electrodes.

Performance evaluation
Each electrode’s variant and the operating protocol was
assessed based on the two performance indexes to select
the most optimal approach for neural stimulation. The
aim was to design the most effective neural interface to
selectively recruit fascicles within a given anatomy.
Therefore, to define the selective recruitment we used
two separate indexes that considered both the percent-
age of fascicle’s recruitment as well as the absolute num-
ber of fibers recruited. The first index [42] evaluates the
spatial selectivity and measures if the fascicle i is select-
ively recruited with respect the entire fascicles range:

Seli ¼ μi−
1

m−1

Xm

j¼1; j≠i

μ j

where μi is the number of axons recruited employing
extracellular potential divided by the total number of fi-
bers within the ith fascicle.
Based on the principle reported in Van Hees and

Gybels 1972 [60], that even a single activated fiber can
elicit a sensation (a “tactile unit”), we use an additional
selectivity index proposed in Raspopovic et al., 2017
[46]. It aims to evaluate the functional, sensory, selectiv-
ity of an active site:

Sel si ¼ niPm
j¼1n j

where ni is the number of activated fibers within the
ith fascicle, while nj is the total number of elicited fibers.
Both indexes are calculated for each active site and for
each fascicle. AS was considered selective when it
respected both spatial and functional selectivity condi-
tion (Seli > 0.6 and Sel _ si > 0.9) and then added to the
electrodes score.
When we performed the validation process, we as-

sumed the threshold to be a charge value at which 10%
of axons within the fascicle are recruited [61].

Computational optimization
The entire population of fibers in the proximal nerve
reached 13.5 K in 37 fascicles, which is a significant
number to compute for each simulation (12–24 simula-
tions per single electrode). Considering our stimulation
parameters, we created a test setup to estimate a max-
imal effective range of stimulation (range between elicit-
ing a single fiber and an entire fascicle without
activating the others), and avoided simulating out from
it, since it would waste the computational time, while
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being useless for the selective stimulation. Out from this
range, the fiber would either not have been recruited, or
it would not be possible to elicit a fascicle-selective stim-
uli (sensation), effectively discarding it from the selectiv-
ity consideration. The setup assumed performing
multiple simulations of the entire nerve’s population and
evaluating the fiber recruitment. We have decided that
eliciting a single fiber within the fixed range, would im-
plicate an entire fascicle, it belongs to, for the selectivity
consideration.

Statistical analysis and system specification
All data were extracted and processed in MATLAB. All
statistics were performed using available built-in func-
tions. The normality of the data was first checked (one-
sample Kolmogorov-Smirnov test) and reported the
average and standard deviation. Since none of the data
was normally distributed, for the analyses in the paper a
two-tailed Kruskal-Wallis test was used to measure the
significance of the chi-square statistic. When needed, a
Tukey’s Honestly Significant Difference Procedure for
multi-group comparison was applied. All the software
simulations were ran using on a mid-range PC (HP Z2,
Intel i7–8700, 32GB RAM, Windows 10). The software

used included MathWorks MATLAB 2017b, COMSOL
Multiphysics 5.4, NEURON v7.3 and ImageJ v1.48.

Results
An intraneural electrode (TIME, [62]) and an extra-
neural electrode (FINE, [63]) were selected since they
were used in many clinical investigations in upper-limb
[28, 29, 31, 32, 38, 53]. The abovementioned electrodes
are implanted and simulated into two different parts of
the sciatic nerve: proximal and distal section (see
Methods section). This choice was taken in order to
consider the different levels of amputation that could
occur in trans-femoral amputees and also to exploit our
model for two different nerve geometries.
First, in order to optimize the computational burden,

we tested an optimal range of distances from the active
site for both geometries - proximal and distal, as well as
for an electrode type – intraneural and extraneural.
After running 32 (proximal) and 20 (distal) simulations
for the extraneural designs, and 32 (16 for each proximal
and distal) using intraneural, for entire nerve’s fiber
population, we evaluated results in terms of fiber activa-
tion and significance to the selectivity calculations. In
both cases for TIME variants, we have observed no

Fig. 2 Optimization of the simulations. a Maximal range of stimulation (yellow circle - 2 mm) for TIME electrode in distal and proximal cross-
section of the sciatic nerve. b Maximal range of stimulation (yellow circle - 4 mm for proximal and 3mm for distal sections) for FINE in distal and
proximal cross-section of the sciatic nerve. Red dots indicate recruited fibers at maximum charge (Qmax). Green fibers are not recruited. If a fiber
is contained inside the range, entire fascicle is taken into account
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meaningful fibers recruited above 2000 μm away from
the active site (see Fig. 2a).
With extraneural designs we noted a discrepancy be-

tween the proximal and the distal anatomy, being a con-
sequence of a size difference among them (see Fig. 2b).
Therefore, we assigned an effective range of 4000 μm for
the proximal and 3000 μm in case of the distal anatomy.
Table 1 shows the absolute fiber count reduction per
single electrode simulation (TIME20 in the proximal
nerve) and the time improvement we gained over the
previous approach.
With this optimized model, we first investigated the

optimal number of active sites for TIME (Fig. 3). FEM
solutions for distal anatomy of the sciatic nerve with 31
fascicles are shown (Fig. 3a). The fascicles selectively
stimulated were calculated and their percentage in re-
spect to the total number of fascicles were obtained for
TIME with 12, 16, 20, and 24 active sites for both
nerve’s cross-sections (Fig. 3b). The smallest number of
targets was reached using TIME with only 12 active sites
(6 on each side of the electrode) – 19.35 ± 4.9% for distal
and 14.86 ± 6.3% for the proximal section.
For the distal section, increasing the number of active

sites did not result in more fascicles recruited passing
from 12 to 16 AS (Kruskal-Wallis test with Tukey-
Kramer post-hoc test, p > 0.05), but number of fascicles
increased– 23.55 ± 5.8% (p < 0.001), when using 20 AS.
The effectiveness did not change significantly with
TIME-24, becoming 23.22 ± 6.8% (p > 0.05). Therefore,
the configuration with 20 AS, being more effective than
smaller number of AS and equally effective as higher
number of AS is chosen as an optimal one.
Cross-section of the proximal anatomy consisted of 37

fascicles and the same electrode configurations were
tested (Fig. 3b right side). An increase in effectiveness
was observed for TIME with 16 AS, where 16.76 ± 9.1%
nerve was successfully targeted (p < 0.001). TIME with
20 stimulating sites showed higher performance among
previous variations with the number of selectively acti-
vated fascicles of 20.54 ± 7.7% of all fascicles. The effect-
iveness did not vary significantly for the proximal
anatomy when passing to the TIME-24 to 20.81 ± 9.2%
(p > 0.05). The results demonstrated that the optimal
number of active sites, in terms of stimulation selectivity,
for TIME in sciatic nerve is 20 (10 per side).
Similarly as done with TIMEs, a FINE was simulated

for both sciatic nerve sections (Fig. 4). For both anat-
omies FINE with 12 active sites presented the worst

performance, with only 12.43 ± 2.3% and 12.58 ± 3.4%
for proximal and distal anatomy respectively. Additional
4 active sites gave a significant selectivity improvement:
17.29 ± 6.3% for the proximal and 16.77 ± 4.1% for the
distal anatomy were reached selectively. While further
increase in number of active sites, to FINE-20, for distal
anatomy did not change significantly the final number of
fascicles recruited, 16.77 ± 4.1%. Instead, for proximal
cross-section FINE-20 boosted the success rate to
19.46 ± 5.5%. In the proximal section, for FINE-24 no
improvement was observed respect to FINE-20 –
19.46 ± 5.5%. The results demonstrated that the optimal
number of active sites, in terms of stimulation selectivity,
for FINE in the distal part of the sciatic nerve is 16 and
20 for the proximal.
After the optimization of the neural interface, we in-

vestigated the number of intraneural electrodes to im-
plant in order to selectively stimulate as many fascicles
as possible inside the nerve, consequently maximizing
the efficacy of the neural stimulation (i.e. increase the
probability to elicit several distinct sensation locations
referred on the phantom leg). On the other hand, inter-
fascicular electrodes are quite invasive and therefore
implanting too many electrodes may cause unnecessary
nerve damage. To unveil this effects, single, double,
triple and quadruple TIME implants were simulated and
compared in the most challenging case of very high am-
putations, and therefore in the proximal section (Fig. 5).
Since 20 AS was found as the optimal number of active
sites, TIME-20 was inside the sciatic nerve and the num-
ber of fascicles selectively recruited was evaluated.
The results for implantation of multiple TIMEs is

shown in Fig. 5a, b. We observed big leap from single to
two electrodes implanted in parallel: 20.54 ± 7.7% of fas-
cicles selectively recruited for single and 38.38 ± 14.7%
for double implant (p < 0.001). Placing the third elec-
trode is beneficial for the selectivity improving the per-
centage of fascicles recruited to 54.05 ± 18.9% (p < 0.05).
Implanting a fourth TIME was not effective, since the
performance did not change significantly – 58.37 ±
19.8% (p > 0.05).
Taking into consideration these results together with

the potential nerve damage and the complexity of surgi-
cal procedure, it is not beneficial to implant more than
three TIME in a human sciatic nerve.
Then, we investigated the optimal stimulation strategy

comparing monopolar and bipolar neural stimulation
(Fig. 6). As clearly seen in Fig. 6b-c, thanks to this

Table 1 Computational time difference shown for TIME20 intraneural electrode in the proximal nerve simulations

proximal TIME20 standard setup range optimized Reduction in computational time

fiber count 271,280 53,132 80.41%

computational time [h] 226.1 44.3
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operation several additional fascicles (yellow color) can
be selectively recruited compared to the monopolar
stimulation (green color) both for FINE and TIME

implanted in distal or proximal part of the sciatic nerve.
These results were confirmed with all tested TIME and
FINE regardless the number of active sites.
Overall, with the bipolar stimulation, we have observed

12.29 ± 4.7% and 8.9 ± 2.07% improvement in the num-
ber of fascicles selectively recruited in comparison to

Fig. 3 Optimal number of active sites for TIME. TIME models with 12
and 20 ASs are represented in panel (a). Highlighted insets represent
the fascicles selectively stimulated. The elicited voltage distributions
are plotted in the planes orthogonal to the center of stimulating AS.
Two sciatic nerve’s anatomies were used to create hybrid models for
the estimation of electrode’s performance proximal and distal cross-
section. b) A bar graph presents percentage recruitment of fascicles
for TIME with varying number of active sites, from 12 up to 24. The
increase from 16 to 20 ASs yields a significant augmentation in the
number of selectively stimulated fascicles (* p < 0.001), while when
passing from 20 to 24 ASs there was no statistical difference (p >
0.05), for both anatomies

Fig. 4 Optimal number of active sites for FINE. FINE models with 12
and 20 ASs are represented in panel (a). Highlighted insets represent
the fascicles selectively stimulated. The elicited voltage distributions
are plotted in the planes orthogonal to the center of stimulating AS.
b) A bar graph presents percentage recruitment of fascicles for FINE
with varying number of active sites, from 12 up to 24. The increases
from 12 to 16 AS for distal and from 12 to 20 AS for proximal
section yields significant increase in the number of selectively
stimulated fascicles (* p < 0.001)

Zelechowski et al. Journal of NeuroEngineering and Rehabilitation           (2020) 17:24 Page 8 of 13



standard monopolar activity for TIME and FINE re-
spectively (Fig. 6b,c).
To benchmark our model results against available hu-

man data, we compared the thresholds values between
simulated data using hybrid modelling and experimental
data presented in Petrini et al., 2018 ([32]) (Fig. 7). The
minimal charges necessary to selectively recruit at least
10% of the fascicle fibers ([42]) were calculated for both
proximal and distal section of the sciatic nerve im-
planted with a TIME. They were compared for both
ulnar and median nerve thresholds collected in a trans-
radial amputee stimulated using implanted TIME elec-
trodes (14 active sites). The stimulation frequency was
fixed to 50 Hz ([28]). Experimental data were acquired
in the first weeks of implant for all active sites (4
TIMEs × 14 active sites). No significant difference was
found between experimental and modelling data (Krus-
kal-Wallis test with Tukey-Kramer post-hoc, p > 0.1), in-
dicating a good validity of modeling results in respect to
real human data. In particular, experimental thresholds
were 5.39 ± 0.98 nC for the median and 6.46 ± 0.72 nC
for the ulnar nerve and modelling data were 6.86 ± 2.07
nC for the proximal and 6.37 ± 2.37 nC for the distal sci-
atic nerve section. As expected, in both experimental
and simulated data the different geometrical shape of
the targeted nerve did not affected the threshold values
(Kruskal-Wallis test with Tukey-Kramer post-hoc, p >
0.05).

Discussion
We developed a detailed computational model of the
sciatic nerve for the purpose of development of the sen-
sory neuroprosthesis for highly disabled, lower limb am-
putees. It holds potential to help in transferring of
promising results obtained in the upper limb to the
lower-limb amputees [23, 24].
The hybrid modeling is an important step in designing

optimal neural interfaces, and also to perform efficient
manufacturing avoiding unnecessary animal experimen-
tation [46]. Moreover, it allows proposing the indications
for the neurosurgical procedure. Developed models [42,
43, 55, 61] for the invasive stimulation of the peripheral
nerves, were mainly devoted to the design and the valid-
ation of the motor fibers, and therefore muscular activa-
tion. An interesting probabilistic modeling [43] of the
sciatic nerve stimulation has been proposed, but ac-
counting only for the motor effects, with only FINE elec-
trodes implemented. Therefore, in the overall context,
present is one of the first models with an aim of sensory
neuroprosthesis design.
Physically, we are exploring different sizes of fascicles,

and their arrangement, without any assumption about
their specific function or placement in the specific pa-
tient. Also we are emulating a range of different fibers

Fig. 5 Optimal number of implants. a TIME models with double,
triple and quadruple implants are represented in panel (a).
Highlighted insets represent the fascicles selectively stimulated. The
elicited voltage distributions are plotted in the planes orthogonal to
the center of stimulating AS. b A bar graph presents percentage
recruitment of fascicles with varying number of implants, from 1 up
to 4. The increase from 2 to 3 implants yields a significant
augmentation in the number of selectively stimulated fascicles
(* p < 0.001)
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populations in each of these, since it is unknown how
are single fibers grouped within them. We are ac-
counting for a very small nerve specimen, and a huge
one, which can correspond to the proximal and distal
section, or to the huge and small individual [47, 48].
The number of fascicles accounted in the model is in
the range of the sciatic nerve specimens from litera-
ture [47, 48]. Therefore, the hybrid modeling is taking
into account many different physically and anatomic-
ally plausible inputs in order to obtain the “average”
statistically important results, which are then
generalizable.

Due to the present limitations in imaging techniques,
and computational power presently available, in no way
we are trying to implement the “patient-specific” devices
(not to exclude in the future when imaging gets more
selective, and computers more powerful), but rather to
propose the indications for general device use and their
design.
The MRG model adopted in this study has been ori-

ginally developed only for motor fiber modeling but
could be adapted to sensory Aβ fibers as well. We imple-
mented the realistic population diameters found in the
sensory fibers connected to the foot receptors [19, 20].

Fig. 6 Optimization of stimulation strategy – Bipolar VS Monopolar stimulation. a Different bipolar stimulation configurations are schematically
displayed (left). Red and blue areas represent schematically voltage distribution induced by a given AS (red for positive and blue for negative
polarity). A indicates a distribution elicited by a single AS. B indicates a distribution elicited by adjacent ASs, which is on the opposite side of the
electrode with respect to A. C is elicited by the AS closest to the A on the same face of the electrode. Voltage distribution elicited by an active
site using monopolar stimulation and two adjacent sites using bipolar stimulation (case of A-B) are computed (right). b New fascicles are
selectively elicited by bipolar stimulation (in yellow) with respect to monopolar (green), for both TIME and (c) FINE. b-c Bar plots of FINE and TIME
with different number of actives site are shown, in which the bipolar has always a higher selectivity than the monopolar stimulation
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We performed the validation of our model results with
respect to the human experimental studies, in which
TIMEs were implanted in the upper limb amputees.
Physically and as indicated by our results, the charge
values related to the fiber thresholds (indicating that a
limited subset of fibers was elicited) should be similar
also in different nerve geometries, since they are calcu-
lated at the intra-fascicular level.
Model limitations include the need for the better rep-

resentation of the most external layer of the nerve (de-
fined as paraneurium [64]), which is typically not
accounted [42, 43, 55, 61] for, and could play a very im-
portant role, especially when extraneural (FINE) stimula-
tion is performed. An emulation of the nerve
compression with FINE (as for the femoral nerve in
Schiefer et al., 2008 [55]) could be implemented in the
future, as currently implemented model closer resembles
a FINE without compression (yet clinically relevant
since, similar to the cuff electrodes used in the sensory
feedback restoration with trans-tibial amputees [53]). A
compression model including mechanical characteristics
of the sciatic nerve and its fascicles would allow to prop-
erly model a deformation caused by FINE, once this ex-
perimental data becomes available.
Also, the validation with FINE experimental data

should be performed, which here was impossible since
we did not have access to that data. Moreover, instead of
comparing thresholds found in upper-limb amputees
(eg. median and ulnar nerve stimulation), the data from
lower limb amputees (eg. sciatic nerve stimulation) will

be compared to our modelling results for a better valid-
ation. We have used two different anatomies to emulate
the anatomical variability, but in future the use of more
histological sections could potentially give even higher
precision of the model.
It is of the paramount importance to emphasize that,

when dealing with models, they can be used properly
only when addressing a clearly defined issue, and it can-
not be intended to explain all the aspects of such com-
plex system as neural system stimulation in every its
aspect. Indeed, here we give indications about correct di-
mensioning, number of implants, and novel stimulation
policies for the studied two types of electrodes in the
specific sciatic nerves, which could potentially drive the
development of a new generation of neuroprosthetic
devices.
Definition of the “optimal” neural interface takes into

account the high selectivity as the quality measure,
which would be translated in reality to the discrete areas
and a single type of sensation reported by amputees.
They also have to account with i) low invasiveness; ii)
high stability: mechanical and functional and iii) low ac-
tivation thresholds, which would indicate a smaller tissue
damage and a longer battery life.
We believe that with the future development of the

neuro-technologies, the sophisticated and widespread
neuroprosthetic devices will go towards the personalized
[65] modeling-based approach. Indeed, we could think
of having the patient-specific neural interface with a
tuned protocol of use in the near future. Additionally,
developing valid computational models not only would
be a cost-efficient option for neural interfaces design,
but also would reduce the number of unnecessary ani-
mal experiments (still fundamental in current neuro-
prosthesis development).
From the neurophysiological viewpoint, the postural

reflexes are generated at the spinal level [66]. On the
higher level, the information conveyed from the lower
limbs into the spinal cord, and then further to the Gra-
cile Nucleus and higher structures. It is reasonable to
believe that if restore physiologically plausible sensory
feedback from the missing foot and leg, these could be
properly interpreted and integrated by the higher struc-
tures, achieving the correction of the incorrect sensori-
motor integration occurring in lower-limb amputees.
Therefore, it is of a paramount importance to design an
optimal peripheral encoding for the success of such
prosthetic device.

Conclusions
We developed and validated an anatomically realistic,
computational model of the sensory stimulation for the
sciatic nerve. It suggests the optimal geometry of inter-
faces to be used in human subjects with lower limb

Fig. 7 Validation of the modeling physical construction. Comparison
between modeled and experimental data of minimum charges
necessary to reach the perceptual threshold are shown (p > 0.05).
Thresholds are not different (p > 0.05) also between different nerves
both in experimental and modeling data
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amputation, their surgical placement and beneficial bi-
polar policy of stimulation. The results suggest that a
highly selective stimulation of fascicles of the human sci-
atic nerve, which innervates the majority of sensations
from the foot and lower leg, can be obtained by TIMEs
and FINEs, when using very penalizing selectivity in-
dexes. A 20-active site TIME is able to selectively acti-
vate the largest number of fascicles, in both anatomies
studied. FINEs of 16 and 20 active sites resulted in high-
est extraneural selectivity. Simulations indicate that opti-
mal number of TIME implants to be surgically placed in
the huge sciatic nerve is three, since with addition of
more electrodes there is no functional gain. Finally, with
both types of electrodes the bipolar stimulations aug-
mented significantly the performance achieved. These
results will potentially enable the clinical translation of
the sensory neuroprosthetics towards the lower limb
applications.
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