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Abstract: Direction of Arrival (DOA) estimation of low-altitude targets is difficult due to the multipath
coherent interference from the ground reflection image of the targets, especially for very high
frequency (VHF) radars, which have antennae that are severely restricted in terms of aperture and
height. The polarization smoothing generalized multiple signal classification (MUSIC) algorithm,
which combines polarization smoothing and generalized MUSIC algorithm for polarization sensitive
arrays (PSAs), was proposed to solve this problem in this paper. Firstly, the polarization smoothing
pre-processing was exploited to eliminate the coherence between the direct and the specular signals.
Secondly, we constructed the generalized MUSIC algorithm for low angle estimation. Finally, based
on the geometry information of the symmetry multipath model, the proposed algorithm was
introduced to convert the two-dimensional searching into one-dimensional searching, thus reducing
the computational burden. Numerical results were provided to verify the effectiveness of the
proposed method, showing that the proposed algorithm has significantly improved angle estimation
performance in the low-angle area compared with the available methods, especially when the grazing
angle is near zero.
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1. Introduction

Meter wave radar is a direct and effective anti-stealth measure because the meter wavelength
is located in the resonance band for most types of aircrafts, with the shape stealth technology being
no longer valid in this band. Moreover, the wave absorbing efficiency of the dielectric coating is
remarkably corrupted in this band [1]. However, Direction of Arrival (DOA) estimation in low-angle
areas is still one of the most challenging problems, especially for the Very High Frequency (VHF) radar
system, which has antennae that are severely restricted in terms of aperture and height. The poor
performance of the angle estimation and the height measuring, especially in the low-angle tracking
area, limits the application of meter-wave radars. The cause of this problem is the existence of the
multipath effect. In low-angle estimation for the VHF radar, the direct signal and multipath signal
lying in the main lobe are coherent and therefore, it is difficult to distinguish them in the spatial,
temporal and Doppler domains.

Many efforts have been exerted in the recent decades to overcome the multipath effect.
These efforts can be mainly divided into two broad categories: the extended monopulse methods [2–7]
and the array signal processing techniques [8–18]. The former includes the complex indicated angle
method, the double-null method and the fixed-beam method [4,5]. Although these methods have
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low computational complexity, the accuracy of the solution is reduced when the elevation angle of
the incident wave is less than one-fourth of the beam [3]. In [6,7], iterative processing was used to
estimate the elevation angle based on monopulse techniques, calculating the reflection angle and
updating the null position in beamforming to eliminate the multipath effect. However, these methods
heavily depend on the electrical size of the antenna aperture, which is not suitable for meter-wave
radar. The array signal processing methods are featured frequently in studies, such as Maximum
Likehood (ML) approaches [8,12,16,18], multiple signal classification (MUSIC) algorithms [10,11,16,17]
and so on. The ML method requires statistical information about the signals and its computational
cost dramatically increases with an increase in the number of searching angles. The Refined Maximum
Likehood [8] (RML) method is based on a high determined multipath model, which is not always
available in practices. The MUSIC algorithms use the subspace decomposition to differentiate between
the direct and specular signals, which requires preprocessing to eliminate the coherence between
the direct and specular signal for low-angle estimation problems. There are three main approaches
to eliminate the coherence. First, there is the spatial smoothing method [10,11], which may reduce
the effective array aperture length and result in lower resolution and accuracy. Second, there is the
frequency diversity method [19], which is based on the phase difference between the direct and
the specular signals that varies with frequency. It is easily available with the X-band radar. Third,
there is the polarization smoothing method [16,17]. This approach is based on the phase difference
between the direct and the specular signals for different polarization. Unlike the spatial smoothing
methods, the polarization smoothing method is not limited to a specific array geometry and it does
not decrease the effective of array apertures [16]. Furthermore, it does not require a wide bandwidth
of frequency. In addition, a previous study [20] indicated that the polarization diversity strategy has
better performance than the frequency diversity method for low-angle estimation problem, even when
using a smaller number of snapshots.

The polarization smoothing technique is based on the Polarization Sensitive Array (PSA). The PSA
is exploited to resolve the low-angle estimation problem in this paper. The vector sensitive array
was proposed for source localization by Nehorai [21]. Rahamim proposed polarization-smoothing
algorithm [16] in the vector sensitive array under multipath conditions to decorrelate the coherent
signals. Hurtado and Nehorai analyzed the Cramer-Rao Bound (CRB) of the vector sensitive array
for low-angle tracking problems [22], which indicated that the vector sensitive array has better
performance than the traditional phase array. Xu developed the Polarization Smoothing MUSIC
(PS-MUSIC) algorithm, which combines the Polarization Smoothing pre-processing and the MUSIC
algorithm for low-angle tracking in VHF polarization sensitive radars [17]. This approach is based
on the phase difference of the reflected signals between the vertical and horizontal polarization.
However, when the grazing angle is close to zero, there is very little difference in the reflection
coefficient between the horizontal and vertical polarization, which leads to poor decorrelation
performance for the polarization smoothing processing and poor low angle estimation performance.
It can utilize spatial smoothing [23] and polarization smoothing pre-processing simultaneously to
improve the decorrelation performance, which could improve the low-angle estimation performance.
The Polarization Smoothing and forward/backward Spatial Smoothing MUSIC (PS-SS-MUSIC)
algorithm was discussed in a previous study [16] for vector sensor arrays. However, the spatial
smoothing procedure may cause the aperture loss as a trade-off, which could decrease the angle
estimation accuracy. Although the polarization smoothing algorithm can be adapted to the
multiple-input multiple-output (MIMO) radar system for coherent sources [24,25], the polarization
smoothing algorithm cannot be directly utilized in the MIMO radar system for low-angle estimation
due to the coupling term in the multipath signal [26].

The Generalized MUSIC algorithm (GMUSIC) [27] can be used to solve the low-angle estimation
problem using the composite searching vector instead of ordinarily searching vector, which does
not need to solve the coherent problem. However, the GMUSIC algorithm is unable to be applied
when the phase of the fading coefficient is ±180◦ for the traditional phase array. A PSA that contains
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the horizontal and vertical polarized components can fix that problem by using the different phases
of the fading coefficient between the horizontal and vertical polarization. In order to improve the
low-angle estimation performance, especially when the grazing angle is close to zero, the Polarization
Smoothing Generalized MUSIC (PS-GMUSIC) algorithm is proposed in this paper. The proposed
algorithm exploits the composite searching vector instead of ordinary searching vector, making it
unnecessary to solve the coherent problem. Furthermore, the proposed method based on the PSA does
not have limitations in terms of the phase differences between the direct and the reflected signals. In
addition, the geometry information of the symmetry multipath model is exploited to transform the
two-dimensional angle search into one-dimensional angle search in order to reduce the computational
burden for the proposed algorithm. The simulation results indicated that the proposed method has
better low-angle estimation performance than the PS-MUSIC and PS-SS-MUSIC algorithms.

The rest of the paper is organized as follows: the multipath signal model of the polarization
sensitive array and the derivation of CRB are described in Section 2. The polarization smoothing
Generalized MUSIC algorithm (PS-GMUSIC) is proposed in Section 3. The simulation results and
discussions are presented in Section 4. Finally, Section 5 provides our conclusions.

2. Multipath Model for Polarization Sensitive Array

The multipath echoes are comprised of a single specular reflection and diffuse reflections. For a
rough surface, the diffuse component dominates, while the reflected signals consist mainly of the
specular component for a smooth surface. The ground can be considered as a smooth surface at the
VHF band, because the Rayleigh roughness criterion can be easily satisfied due to the long wavelength
based on the Rayleigh roughness criterion. Thus, the diffuse reflection components are ignored and
the ‘double-ray’ symmetry multipath model is used, which is shown in Figure 1.
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As shown in Figure 1, the N Polarization Sensitive Array (PSA) elements are uniformly distributed
on the Z-axis, while the orthogonal electric dipoles are arranged along the X- and Z-directions.
The distance between elements is equal to a half-wavelength. In this figure, Hr is the height of the
PSA; θd is the elevation angle of the direct signal of the target; θs is the depression angle of the specular
signal; and ψ is the grazing angle of the target. According to the symmetry geometrical information of
the symmetry multipath model (Figure 1), we can obtain that:{

θs = −θd
ψ = θd

(1)

Supposing the echo is a completely polarized wave as shown in the Figure 1, the direct electric
field vector can be expressed on the polarization basis (θ, ϕ) as:

ed = Eϕeϕ + Eθeθ = cosγeϕ + sinγejηeθ, (2)
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where γ is the polarization angle; η is the phase difference of the different polarized components;
ϕ and θ are the unit vectors in the Spherical Coordinates with eϕ = [−sinϕ, cosϕ, 0]T and eθ =

[sinθcosϕ, sinθsinϕ,−cosθ]T; and Eϕ = cosγ and Eθ = sinγejη are the electric field amplitude of the
unit vectors eϕ and eθ, respectively. Obviously, although there are three components of the completely
polarized electric field, only two of them are independent. Hence, we assumed that ϕ = π/2 in this
paper as shown in Figure 1. The unit vectors of eϕ and eθ can be simplified as eϕ = [−1, 0, 0]T and
eθ = [0, sinθ,−cosθ]T . The transformation between unit vectors in the spherical coordinates system
and the Cartesian coordinate system is defined as:[

Ex

Ez

]
=

[
−1 0
0 −cosθ

][
Eϕ

Eθ

]
=

[
−Eϕ

−cosθEθ

]
, (3)

The polarization vector p in Cartesian coordinate system of the PSA can be denoted as:

p(θ, η, γ) =

[
Ex

Ez

]
=

[
−cosγ

−cosθsinγejη

]
, (4)

where θ is the grazing angle of the direct signals and θ = θd (Figure 1). The received signal for the PSA
under multipath condition can be expressed as:

y(t) =
(

b(θd, η, γ) + e−j2π∆R/λΓ(ψ)b(θs, η, γ)
)

s(t) + n(t), (5)

where s(t) is the narrow band signal reflected from the target, with the assumption that n(t) is a 2N× 1
Gaussian white noise vector with zero mean. Furthermore, ∆R = 2Hrsinθd is the path difference
between the direct and the specular signals; and b(θd, η, γ), b(θs, η, γ) are the steering vector of the
PSA for the direct and the specular signals, respectively. That can be denoted as:

b(θd, η, γ) = a(θd)
⊗

p(θd, η, γ) =

[
−a(θd)cosγ

−a(θd)cosθdsinγejη

]

b(θs, η, γ) = a(θs)
⊗

p(θd, η, γ) =

[
−a(θs)cosγ

−a(θs)cosθdsinγejη

] (6)

where
⊗

denote the Kronecker product; and a(θd) and a(θs) are the steering vectors for the direct and
the specular signals. These can be expressed as: a(θd) =

[
e−jπ(N−1)dsinθd/λ, · · · , ejπ(N−1)dsinθd/λ

]T

a(θs) =
[
e−jπ(N−1)dsinθs/λ, · · · , ejπ(N−1)dsinθs/λ

]T (7)

The Γ(ψ) in Equation (5) is the Fresnel reflection coefficients vector that contains the horizontal
and vertical polarization reflection coefficients, which can be denoted as:

Γ(ψ) = diag

Γh · · · Γh︸ ︷︷ ︸
N

, Γv · · · Γv︸ ︷︷ ︸
N

 (8)

For the horizontal polarization, the electric field is parallel to the interface. For the vertical
polarization, the electric field is perpendicular to the interface as defined in a previous study [28].
In this paper, the interface plane is XOY plane as shown in Figure 1. Hence, the electric field in θ

direction is called the vertical polarization and the electric field in ϕ direction is called horizontal
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polarization. The Fresnel reflection coefficients for horizontal and vertical polarization are defined
respectively as follows [28]:

Γh(ψ) =
sinψ−

√
εc−cos2ψ

sinψ+
√

εc−cos2ψ
, Horizontal polarization

Γv(ψ) =
εcsinψ−

√
εc−cos2ψ

εcsinψ+
√

εc−cos2ψ
, Vertical polarization

(9)

The Fresnel reflection coefficients are determined by the grazing angle ψ and εc. where
εc = εr − j60λσ is the complex permittivity of the smooth ground; εr represents the relative
permittivity; and σ is the conductivity of the reflective surface. When the grazing angle ψ is close
to zero, we can obtain Γh(ψ) ≈ Γh(ψ) ≈ −1. In other words, there is very little difference between
Γh(ψ) and Γv(ψ) when the grazing angle is close to zero. In order to simplify the received signal in
Equation (4), we used c to represent the composite vectors, with c denoted as:

c = (b(θd, η, γ) + ρb(θs, η, γ)), (10)

where ρ is the fading coefficient vector of the PSA. It can be expressed as:

ρ = e−j2π∆R/λΓ(ψ) = diag

ρh · · · ρh︸ ︷︷ ︸
N

, ρv · · · ρv︸ ︷︷ ︸
N

, (11)

where ρh and ρv are the horizontal and vertical polarization fading coefficients, respectively. These are
expressed as: {

ρh = Γh(ψ)e−j2π∆R/λ = ρh
′ + jρh

′′

ρv = Γv(ψ)e−j2π∆R/λ = ρv
′ + jρv ′′

, (12)

where ρh
′ and ρv

′ are the real parts of horizontal and vertical polarization fading coefficients,
respectively; and ρh

′′ and ρv ′′ are the image parts of horizontal and vertical polarization fading
coefficients, respectively. The fading coefficients are dependent on the grazing angle ψ, Fresnel
reflection coefficient Γh,v(ψ) and path difference ∆R. By substituting Equation (10) into Equation (5),
the received signals in Equation (5) can be simplified as:

y(t) = cs(t) + n(t). (13)

In order to derive the CRB of the elevation angle θd, we need to calculate the covariance of the
received signal. The covariance of the received signal in Equation (13) is:

R = σ2
s ccH + INσ2

n , (14)

where σ2
s = E

[
s(t)s(t)H

]
and σ2

n = E
[
n(t)n(t)H

]
are the covariance of the signal and noise, respectively.

We defined the signal-to-noise ratio of the completely polarized wave signal as: SNR = σ2
s /σ2

n .
The CRB is a universal lower boundary for the variance of all unbiased estimators of a set of
parameters. It is defined as the inverse of the Fisher information matrix (FIM), which describes
the amount of information that the data provide about unknown parameters. According to the
symmetry geometrical information of the symmetry multipath model as shown in Figure 1, we can
obtain θs = −θd. Hence, there are nine unknown parameters

{
θd, η, γ, ρh

′, ρh
′′ , ρv

′, ρv ′′ , σ2
s , σ2

n
}

in the
covariance matrix R. The Cramer-Rao Bound (CRB) of the elevation angle θd for the PSA can be
derived from FIM and the deduction process is included in the Appendix A. The CRB for DOA of
grazing angle θd is:

CRB(θd) = [FIM]−1
1,1. (15)



Sensors 2018, 18, 1534 6 of 15

3. Polarization Smoothing Generalized MUSIC Algorithm

As shown in Figure 1, the received signals for the PSA under the multipath conditions for the
coordinate’s axis can be expressed as follows [17]:

yh(t) = yx(t) = A

[
1
ρh

]
(−cosγ)s(t) + n(t)

yv(t) = yz(t) = A

[
1
ρv

]
(−sinγ)cosθdejηs(t) + n(t)

, (16)

where A = [a(θd), a(θs)] is the composite steering vector that contains a(θd) and a(θs). In addition,
the X-direction component corresponds to the horizontal polarization and the Z-direction component
corresponds to the vertical polarization. The covariance of each polarized components of the received
signal in Equation (16) can be expressed as:

Rh = Rxx = σ2
s cos2γA

[
1 ρ∗h
ρh |ρh|2

]
AH + INσ2

n

Rv = Rzz = σ2
s sin2γcos2θdA

[
1 ρ∗v
ρv |ρv|2

]
AH + INσ2

n

(17)

As we can see from Equation (17), there is only one larger eigenvalue in the covariance matrix Rxx

and Rzz due to the coherence between the direct and the specular signals. The Polarization Smoothing
algorithm was proposed by Rahamim [16], which averages the data covariance matrix along the
elements in the vector sensors of an array, with the averaging operation performed along the array
aperture. The polarization smoothing pre-processing for VHF Polarization Sensitive Array under the
multipath conditions can be summarized as:

Rps = (Rh + Rv)/2 = σ2
s AQAH + INσ2

n (18)

where Q is the averaged envelope covariance matrix of horizontal and vertical polarization subarrays.
This can be derived as follows:

Q =
cos2γ

2

[
1 ρ∗h
ρh |ρh|2

]
+

sin2γcos2θ

2

[
1 ρ∗v
ρv |ρv|2

]
. (19)

As we can see from Equation (19), we can obtain that rank(Q) = 2 when ρh 6= ρv. This indicates
that the polarization smoothing pre-processing could eliminate the coherence between the direct
and the specular signals. Hence, there are two larger eigenvalues in the polarization smoothing
average covariance Rps. The decorrelation performance of the polarization smoothing pre-processing
is based on the differences of the ρh and ρv. The PS-MUSIC [17] algorithm is established based on the
polarization smoothing technique and MUSIC algorithm for low-angle estimation problem. However,
when the grazing angle is close to zero, there is very little difference between ρh and ρv. Therefore, the
decorrelation performance of the polarization smoothing method is reduced when the grazing angle is
close to zero. In order to improve the decorrelation performance, the spatial smoothing processing
can be exploited after the polarization smoothing pre-processing, which can be used to achieve the
PS-SS-MUSIC algorithm. The PS-SS-MUSIC algorithm suffers aperture loss when the number of
overlapping subarrays for the spatial smoothing is more than one. In contrast, GMUSIC [27] can be
used to solve the low-angle estimation problem, which does not need to solve the coherent problem.
Hence, we developed a GMUSIC algorithm for the PSA.

As we can see from the multipath signal model in Equation (16), the covariance matrices Rh
and Rv can be estimated with L snapshots by R̂h = 1

L ∑L
l=1 yh(l)yh(l)

H and R̂v = 1
L ∑L

l=1 yv(l)yv(l)
H.

Furthermore, the sample polarization smoothing average covariance R̂ps can be estimated from



Sensors 2018, 18, 1534 7 of 15

Equation (18). The steering vectors a(θd) and a(θs) that correspond to the direct and the specular
incoming signals in the signal subspace are therefore orthogonal to the noise subspace Un. According to
the orthogonality of the signal subspace to the noise subspace, we can derive:

Pa(θd) = 0
Pa(θs) = 0
P = UnUH

n

, (20)

where P is the projection matrix that is constructed from the eigenvectors Un of the sample covariance
matrix R̂ps corresponding to the N-2 minimum eigenvalue. By constructing the projection matrix
A(θ1, θ2)

HPA(θ1, θ2), we obtain:

AHPA =

[
aH(θ1)Pa(θ1) aH(θ1)Pa(θ2)

aH(θ2)Pa(θ1) aH(θ2)Pa(θ2)

]
, (21)

where θ1 and θ2 are the searching angles; and A = [a(θ1), a(θ2)] is the composite steering vector.
Obviously, the A(θ1, θ2)

HPA(θ1, θ2) is singular if and only if {θ1 = θ2}, {θ1 = θd and θ2 = θs},
or {θ2 = θd and θ1 = θs}. According to the geometry information of the symmetry multipath model,
we assumed that θ1 > 0◦ and θ2 < 0◦ for the range of interest. Therefore, A(θ1, θ2)

HPA(θ1, θ2) is singular
only if θ1 = θd, θ2 = θs, which can obtain that:

det
(

A(θd, θs)
HPA(θd, θs)

)
= 0, (22)

where det() denotes the determinant of the matrix. Moreover, when ρh is equal to ρv,
A(θd, θs)

HPA(θd, θs) also is singular, with the proof included in the Appendix B. After this, the spatial
spectrum of PS-GMUSIC is formed by projecting a continuum of composite DOA vector A(θ1, θ2) over
the given range of interest onto P, with the following form:

PPS−GMUSIC(θ1, θ2) =
det
(

A(θ1, θ2)
HA(θ1, θ2)

)
det
(

A(θ1, θ2)
HPA(θ1, θ2)

) , θ1 > 0◦, θ2 < 0◦. (23)

The proposed method exploits the composite steering vector A(θ1, θ2), making it unnecessary
to solve the coherent problem. However, it requires a multidimensional search, which leads to a
significant increase in computational burden. Additionally, based on the geometry of symmetry
multipath model (Figure 1), it can obtain the following expression for the searching angles:

θ2 = −θ1. (24)

Substituting Equation (24) into Equation (23), the two-dimensional angle searching in Equation (23)
can be transformed into one-dimensional angle searching, which is:

PPS−GMUSIC(θ1) =
det
(

A(θ1,−θ1)
HA(θ1,−θ1)

)
det
(

A(θ1,−θ1)
HPA(θ1,−θ1)

) , θ1 > 0◦ (25)

Up to now, we have achieved the PS-GMUSIC algorithm. The procedure of the proposed method
can be summarized as follows:

1. Construct sample covariance matrices R̂h and R̂v;
2. Use the polarization smoothing pre-processing to get R̂ps;
3. Compute the noise subspace Un and Projection matrix P by means of EVD (Eigenvalue

Decomposition) using R̂ps; and



Sensors 2018, 18, 1534 8 of 15

4. Establish the PS-GMUSIC spatial spectrum based on Equation (25).

The geometry information of the multipath model can be exploited to reduce the computational
cost for the PS-GMUSIC algorithm. After the transformation from the two-dimensional
searching into the one-dimensional searching, the computation burden of the PS-GMUSIC is
OPS−GMUSIC

(
N3 + 2LN2 + n

(
N3 + 6N2 + 20N + 4

))
, where L is the number of the snapshots and

n is the number of the searching angles.

4. Results

In this section, some simulation results are presented to assess the performance of the proposed
method in terms of CRB, RMSE and Pseudo spectra. We adopted the VHF PSA radar system with
N = 10, f0 = 300 MHZ, Hr = 10 m, SNR = 10 dB, d = λ/2 and L = 256. We assumed that there is one
point target over the calm seawater (εr = 80, σ = 4 s/m) for the following simulations.

4.1. CRB Analysis

The CRB of the PSA VHF radar system for different grazing angles and polarization angles is
shown in Figure 2. The polarization angle γ lies in (0◦–90◦). The grazing angle of the target varies
from 0◦ to 10◦. The CRB is very high when the grazing angle is close to zero. That is still a challenging
problem for low-angle estimation. There are some periodic peaks and troughs for the CRB when the
polarization angle γ lies in (0◦–20◦) and (70◦–90◦), which is shown in Figure 2. When γ lies in the
interval of [30◦–60◦], the CRB is lower at the rings for the different grazing angles. This is reasonable
since the energy of horizontal polarization and vertical polarization component is almost the same
when γ lies in the interval of [30◦–60◦]. However, when γ lies in (0◦–20◦), the horizontal polarization
component dominates, while the vertical polarization component dominates when γ lies in (70◦–90◦).
Therefore, the polarization angle γ ∈ [30◦–60◦] is recommended for the PSA.Sensors 2018, 18, x FOR PEER REVIEW  8 of 14 
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Figure 2. CRB with respect to polarization angle γ and DOA of grazing angle θd.

As we can see from Figure 3, the CRBs of horizontal and vertical polarization have ‘singular
points’ (Peak points) when the phase of fading coefficients is ±180◦. For example, the grazing angle is
2.9◦, 3.5◦, 5.7◦ and 6.8◦, which is shown in Figure 3a,b. It is because the SNR is reduced when the phase
of fading coefficients is ±180◦ due to the cancellation between the direct and reflected signals. This is
why the performance of GMUSIC algorithm corrupts when the phase of fading coefficients is ±180◦

with the traditional phase array. In contrast, the CRB of PSA could merge the ‘singular points’ for
γ = 45◦ based on the different phases of fading coefficients for the horizontal and vertical polarization
components in the PSA.
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4.2. RMSE of the Proposed Method

In order to assess the angle estimation performance of the proposed algorithm, the Monte Carlo
simulations are presented in this part. The root-mean-square error (RMSE) is defined below:

δRMSE =

√
1
M ∑M

i=1

∣∣θ̂i,d − θd
∣∣2

where θ̂i,d is the ith angle estimation of the DOA of grazing angle θd, M is the number of Monte Carlo
simulations. Assume M = 1000 for the following simulations. The RMSE of the proposed method
was compared with PS-MUSIC [17], PS-SS-MUSIC [16] and IBMUSIC [29] algorithms. The Spatial
Smoothing utilizes the forward and backward smoothing [23] with two overlapping subarrays in
the simulation. The iteration beamspace multiple signal classification (IBMUSIC) algorithm was
proposed in [29] to realize unbiased estimation and reduce the calculation time for DOA of CDMA
Multipath signals. This approach can be utilized for low angle estimation performance with PSA.
The performance of the IBMUSIC algorithm heavily depends on initial value [29]. And assume the
initial value is 1◦ for the following simulations. The beam number of beamspace is 5 for IBMUSIC
algorithm and assume the deviation precision value as 0.001 for iteration.

Figure 4a,b show the RMSE with respect to the polarization angle γ. We assumed that the
direct signal arrived at an angle of 2.9◦ and 3.5◦ when the phase of fading coefficients is ±180◦

(Figure 3). Since the decorrelation performance of the polarization smoothing are determined by the
polarization angle [17], the RMSE of PS-MUSIC varies according to the polarization angle as shown in
Figure 4. When γ lies in (0◦–20◦), the horizontal polarization component dominates, while the vertical
polarization component dominates when γ lies in (70◦–90◦).And the decorrelation of the polarization
smoothing is poor when the vertical polarization or horizontal polarization component dominate,
hence the performance of PS-MUSIC is nearly destroyed when γ lies in (70◦–90◦) and (0◦–20◦),
as shown in Figure 4. The PS-SS-MUSIC algorithm takes advantage the polarization smoothing
method and spatial smoothing approach at the same time to improve the decorrelation performance.
Hence, the performance of PS-SS-MUSIC algorithm is much better than PS-MUSIC when γ lies in
(70◦–90◦) and (0◦–20◦) as shown in Figure 4a. When γ lies in [20◦–70◦] in Figure 4a or [50◦–70◦] in
Figure 4b, the RMSE of PS-SS-MUSIC is higher than those of the PS-MUSIC algorithm due to the
aperture loss. The performance of IBMUSIC algorithm is poor when γ lies in (70◦–90◦) and (0◦–20◦) as
shown in Figure 4a. It because the decorrelation of the polarization smoothing is poor when the single
polarized components dominate. Unlike the other schemes, when the single polarized components
dominate the proposed method does not need to solve the coherence between the direct signal and
specular signals. Hence, our proposed scheme retains more stable performance for all the polarization
angles as shown in Figure 4. The RMSE of the proposed method is much higher when γ lies in
(0◦–20◦) in Figure 4a or (80◦–90◦) in Figure 4b. This is because the SNR is reduced when the phase of



Sensors 2018, 18, 1534 10 of 15

fading coefficients is ±180◦ for single polarized dominates. To achieve more stable angle estimation
performance for all DOA of grazing angle, γ = 45◦ is assumed in the following simulations.
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Figure 4. RMSE with respect to the polarization angle γ for SNR = 10 dB for: (a) DOA of θd = 2.9◦;
(b) DOA of θd = 3.5◦.

Figure 5 demonstrates the RMSE with respect to the DOA of grazing angle θd. From Figure 5,
the proposed method has better performance than PS-MUSIC and PS-SS-MUSIC. The proposed
method does not have any antenna aperture loss in comparison with PS-SS-MUSIC. The RMSE of
the PS-MUSIC and PS-SS-MUSIC algorithm are corrupted when the elevation angle is less than 2.5◦

(Figure 5). The RMSE of the proposed method still is consistent with the CRB curve, even when the
grazing angle is around 0.5◦. That is because the decorrelation of polarization smoothing is poor for
polarization smoothing when the grazing angle is close to zero. While the proposed method doesn’t
need to solve the coherent problem. Hence the better performance is expected.

Figure 6a,b represent the RMSE with respect to SNR with DOA of θd is 1◦ and 2◦ which are
close to zero. As expected, the angular accuracy is improved with an increase in SNR. The proposed
method has the lowest RMSE of angle estimation for different SNR in comparison with PS-MUSIC,
PS-SS-MUSIC and IBMUSIC algorithms (Figure 6). Under the low-SNR condition, the PS-MUSIC and
PS-SS-MUSIC corrupts (Figure 6). However, the proposed method still is consistent with the CRB
curve, even in the low SNR conditions.Sensors 2018, 18, x FOR PEER REVIEW  10 of 14 
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4.3. Pseudo Spectra of the Proposed Method

As we can see from Figure 7, when the DOA of grazing angle θd is close to zero, the pseudo
spectra of PS-MUSIC and SS-PS-MUSIC algorithm do not have obvious peaks, while the PS-GMUSIC
algorithm still has a peak. That indicates that the proposed method has better angle resolution and can
achieve better low-angle estimation performance when the grazing angle is close to zero.
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5. Conclusions

The PS-GMUSIC method for low-angle estimation with PSA radar system is proposed in this paper.
The proposed algorithm takes advantage of the polarization smoothing method and the generalized
MUSIC algorithm to achieve better low-angle estimation performance. The PS-GMUSIC algorithm
utilizes the composite steering vector instead of the ordinary steering vector, which does not need
to solve the coherent problem. Meanwhile, the information of the symmetry geometry of multipath
model is exploited to reduce the computational burden for the proposed algorithm. The PS-GMUSIC
has a more stable performance for all polarization angles. In addition, the proposed method has better
angle estimation performance in low-angle area in comparison with PS-MUSIC, PS-SS-MUSIC and
IBMUSIC algorithms, especially when the grazing angle is close to zero. The strategy that proposed in
this paper also can be exploited in the MIMO radar system for the low-angle estimation problem.
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Appendix A

The CRB for PSA radar system is derived in this part. Fisher information Matrix (FIM) is the
foundation of the Cramer-Rao Bound. The FIM of the multipath model in this paper can be denoted as:

FIM =
[

Fuiuj

]
. (A1)

where Fuiuj is the (i, j)th element of the FIM, which is defined as:

Fuiuj = L·Tr

(
R−1 ∂R

∂ui
R−1 ∂R

∂uj

)
= Fujui . (A2)

There are nine unknown parameters
{

θd, η, γ, ρh
′, ρh

′′ , ρv
′, ρv ′′ , σ2

s , σ2
n
}

in the covariance matrix R.
and ui,j ∈

{
θd, η, γ, ρh

′, ρh
′′ , ρv

′, ρv ′′ , σ2
s , σ2

n
}

, where L is number of the snapshots of the received signal.
When ui, uj ∈

{
σ2

s , σ2
n
}

Fuiuj can be simplified as:{
Fσ2

s ,σ2
s
= L·

(
cHR−1ccHR−1c

)
Fσ2

n ,σ2
n
= L·Tr

(
R−1R−1) (A3)

When ui, uj ∈ {θd, η, γ, ρh
′, ρh

′′ , ρv
′, ρv ′′ }, Fuiuj can be simplified as:

Fuiuj = 2σ4
s · L·Re

(
cHR−1 ∂c

∂ui
cHR−1 ∂c

∂uj
+ cHR−1c

∂cH

∂ui
R−1 ∂c

∂uj

)
, (A4)

where c is the composite steering vector of the received signal for PSA; and σ2
s is the variance of the

signal. When ui ∈
{

σ2
s , σ2

n
}

, uj ∈ {θd, η, γ, ρh
′, ρh

′′ , ρv
′, ρv ′′ }, Fuiuj can be simplified as:

Fσ2
s uj

= 2σ2
s · L·Re

(
cHR−1ccHR−1 ∂c

∂uj

)
Fσ2

s ,σ2
n
= L·Tr

(
R−1ccHR−1)

Fσ2
nuj

= 2σ2
s · L·Re

(
cHR−1R−1 ∂c

∂uj

)
Fσ2

n ,σ2
s
= L·Tr

(
R−1R−1ccH)

. (A5)

In order to establish the FIM, we only need to know the partial derivatives of composite steering
vector c with respect to ui ∈ {θd, η, γ, ρh

′, ρh
′′ , ρv

′, ρv ′′ }. According to the definition of the composite
steering vector c in Equation (9), the partial derivatives can be derived as:

∂c
∂θd

= ∂b(θd ,η,γ)
∂θd

+ ρ
∂b(−θd ,η,γ)

∂θd
∂c
∂η = ∂b(θd ,η,γ)

∂η + ρ
∂b(−θd ,η,γ)

∂η
∂c
∂γ = ∂b(θd ,η,γ)

∂γ + ρ
∂b(−θd ,η,γ)

∂γ

(A6)
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∂c
∂ρh
′= diag

1 · · · 1︸ ︷︷ ︸
N

, 0 · · · 0︸ ︷︷ ︸
N

b(−θd, η, γ)

∂c
∂ρh
′′ = diag

j · · · j︸ ︷︷ ︸
N

, 0 · · · 0︸ ︷︷ ︸
N

b(−θd, η, γ)

∂c
∂ρv ′

= diag

0 · · · 0︸ ︷︷ ︸
N

, 1 · · · 1︸ ︷︷ ︸
N

b(−θd, η, γ)

∂c
∂ρv ′′

= diag

0 · · · 0︸ ︷︷ ︸
N

, j · · · j︸ ︷︷ ︸
N

b(−θd, η, γ)

, (A7)

where: 
∂b(θd ,η,γ)

∂θd
=

[
−dd � a(θd)cosγ

−dd � a(θd)cosθdsinγejη1 + a(θd)sinθdsinγejη

]
∂b(−θd ,η,γ)

∂θd
=

[
dd � a(−θd)cosγ

dd � a(−θd)cosθdsinγejη1 − a(−θd)sinθdsinγejη

] (A8)


∂b(θd ,η,γ)

∂η =

[
0

−ja(θd)cosθdsinγejη

]
∂b(−θd ,η,γ)

∂η =

[
0

−ja(−θd)cosθdsinγejη

] . (A9)


∂b(θd ,η,γ)

∂γ =

[
a(θd)sinγ

−a(θd)cosθdcosγejη

]
∂b(−θd ,η,γ)

∂γ =

[
a(−θd)sinγ

−a(−θd)cosθdcosγejη

] (A10)

dd = jπ cos θd

[
−N − 1

2
,−N − 2

2
, · · · ,

N − 2
2

,
N − 1

2

]T
(A11)

where
⊙

represents the element-wise product. By substituting (A6)–(A11) into (A3)–(A5) to establish
the Fisher Information Matrix FIM, the CRB of the θd can be subsequently calculated as:

CRB(θd) = [FIM]−1
1,1. (A12)

Appendix B

When ρh is equal to ρv, the envelope matrix Q can be simplified as:

Q =
cos2γ

2

[
1 ρ∗h
ρh |ρh|2

]
+

sin2γcos2θ

2

[
1 ρ∗v
ρv |ρv|2

]
=

cos2γ + sin2γcos2θd
2

ββH, (A13)

where:

β =

[
1
ρh

]
. (A14)

As we can see from (A13), we can obtain rank(Q) = 1. Hence, the polarization smoothing
pre-processing cannot eliminate the coherence between the direct and reflected signal when ρh is
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equal to ρv. By substituting (A13) into Equation (5), the covariance of the received signal after the
polarization smoothing can be expressed as:

Rps = σ2
s

cos2γ + sin2γcos2θd
2

Aβ(Aβ)H + INσ2
n = σ2

s AQAH + INσ2
n . (A15)

Because the rank of Q is one, there is only one larger eigenvalue in the Eigen-decomposition of
the average covariance matrix Rps. The eigen-decomposition of Rps can be expressed as:

Rps = UsEsUH
s + UnEnUH

n (A16)

where Es = diag(σ1) and σ1 is the largest eigenvalues of Rps; Us is the eigenvector corresponding
to the largest eigenvalue σ1, which spans the signal subspace; En = diag(σ2, · · · , σN) is a diagnosis
matrix constructed by the N − 1 minimum eigenvalue of Rps; and Un contains the N − 1 eigenvectors
corresponding to the N − 1 minimum eigenvalue of Rps, which span the noise subspace. We can
obtain that: {

PA(θd, θs)β = 0
P = UnUH

n
, (A17)

where A(θd, θs) = [a(θd), a(θs)] and P is the projection matrix that is constructed from the eigenvectors
Un. According to (A17), we can obtain that:{

Pa(θd) = −ρhPa(θs)

aH(θd)P = −ρ∗haH(θs)P
(A18)

We constructed the projection matrix A(θd, θs)
HPA(θd, θs) as follows:

AHPA =

[
aH(θd)Pa(θd) aH(θd)Pa(θs)

aH(θs)Pa(θd) aH(θs)Pa(θs)

]
. (A19)

By substituting (A18) into (A19), (A19) can be simplified as:

AHPA =

[
ρhρ∗h −ρ∗h
−ρh 1

]
aH(θs)Pa(θs). (A20)

Obviously, the A(θd, θs)
HPA(θd, θs) is singular and hence:

det
(

A(θd, θs)
HPA(θd, θs)

)
= 0. (A21)

When ρh = ρv, A(θd, θs)
HPA(θd, θs) is also singular.
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