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Changes in chromatin state play important roles in cell fate transitions. Current computational approaches to analyze chro-

matin modifications across multiple cell types do not model how the cell types are related on a lineage or over time. To
overcome this limitation, we developed a method called Chromatin Module INference on Trees (CMINT), a probabilistic

clustering approach to systematically capture chromatin state dynamics across multiple cell types. Compared to existing

approaches, CMINT can handle complex lineage topologies, capture higher quality clusters, and reliably detect chromatin

transitions between cell types. We applied CMINT to gain novel insights in two complex processes: reprogramming to in-

duced pluripotent stem cells (iPSCs) and hematopoiesis. In reprogramming, chromatin changes could occur without large

gene expression changes, different combinations of activating marks were associated with specific reprogramming factors,

there was an order of acquisition of chromatin marks at pluripotency loci, and multivalent states (comprising previously

undetermined combinations of activating and repressive histone modifications) were enriched for CTCF. In the hematopoi-

etic system, we defined critical decision points in the lineage tree, identified regulatory elements that were enriched in cell-

type–specific regions, and found that the underlying chromatin state was achieved by specific erasure of preexisting chro-

matin marks in the precursor cell or by de novo assembly. Our method provides a systematic approach to model the dy-

namics of chromatin state to provide novel insights into the relationships among cell types in diverse cell-fate specification

processes.

[Supplemental material is available for this article.]

Regulatory networks that control cell-type–specific gene expres-
sion patterns are established through a complex interplay between
epigenetic modifications and transcription factor binding at regu-
latory regions of a gene. Transcription factors alone are sufficient
to convert differentiated somatic cells to induced pluripotent
stem cells (iPSCs) (Takahashi and Yamanaka 2006) albeit at low ef-
ficiency. Chemical or genetic modifiers that reduce repressive
chromatin levels enhance reprogramming efficiency implicating
epigenetic contribution (Onder et al. 2012; Apostolou and
Hochedlinger 2013; Papp and Plath 2013; Sridharan et al. 2013).
Reciprocally, during development, the chromatin state at specific
loci has to become permissive concomitant with appropriate tran-
scription factor levels for cell-type–specific expression to com-
mence. Given the multitude of histone modifications and their
combinations, parsing which ones are necessary or sufficient to
enable a permissive environment for gene expression is a chal-
lenge. Therefore, systematic approaches to study the dynamics of
chromatin are essential to understand the underlying regulatory
networks that drive transitions during cell fate change.

Several computational approaches, ChromHMM (Ernst and
Kellis 2010), jMosaics (Zeng et al. 2013), EpiCSeg (Mammana
and Chung 2015), Segway (Hoffman et al. 2012), and GATE (Yu
et al. 2013), have been developed to examine multiple chromatin

marks in one ormore cell types.With the exception ofGATE, these
approaches focus more on automatically segmenting the genome
to identify regulatory elements and less on examining dynamics of
chromatin state.Most computational analyses of chromatinmarks
acrossmultiple cell types have either focused on identifying differ-
ential regions between pairs of cell types or time points (Liang and
Keles 2012; Shao et al. 2012), single clustering of loci using marks
across all cell types (Suvà et al. 2014), or clustering entire epige-
nomes one mark at a time (Roadmap Epigenomics Consortium
et al. 2015). Importantly, existing approaches for multiple cell-
type chromatin data do not account for the hierarchical relation-
ships between the cell types.

To enable systematic characterization of chromatin state dy-
namics acrossmultiple related cell types, we developed Chromatin
Module INference on Trees (CMINT).We define a chromatinmod-
ule to be a set of genomic loci with the same combination of chro-
matin modifications that likely represent coordinately regulated
genes exhibiting similar regulatory states analogous to gene ex-
pression modules (Tanay et al. 2004). A novel aspect of our ap-
proach is that we model the relationship of different cell types.

We applied CMINT to eight chromatin marks to study chro-
matin state transitions during reprogramming to iPSCs. Seven of
these marks correspond to histone post-translational modifica-
tions (PTMs) that we previously identified to be significantly
changed during reprogramming using an unbiased mass
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spectrometry approach (Sridharan et al. 2013). These marks are as-
sociated with active transcription (H3K4me3, H3K9ac, H3K14ac,
and H3K18ac), repression (H3K9me3 and H3K9me2), and tran-
scription elongation (H3K79me2). We profiled these modifica-
tions in the promoters of somatic cells, partial and completely
reprogrammed iPSCs, and combined it with published data
measuring H3K4me3 and H3K27me3 (Maherali et al. 2007;
Sridharan et al. 2009). We also applied CMINT to the hematopoi-
etic lineage with 15 different cell types in which four chromatin
marks (H3K27ac, H3K4me1, H3K4me2, and H3K4me3) were mea-
sured (Lara-Astiaso et al. 2014).

Results

CMINT: Chromatin Module INference

on Trees

CMINT is a generative probabilistic
graphical model-based approach for
multitask clustering (Caruana 1997)
that simultaneously identifies chromatin
modules inmultiple cell types.Wedefine
a chromatin module as a set of genomic
loci with the same chromatin state spec-
ified by the combination of histone
PTMs (henceforth called marks). Given
multiple chromatin marks frommultiple
cell types related by a tree, CMINT ad-
dresses four questions: (1) in what chro-
matin states do genomic loci exist; (2)
to what extent are chromatin modules
shared between cell types at the level of
mark combinatorial pattern; (3) how
likely are genomic loci to switch mod-
ules; and (4) which genomic loci switch
chromatin state between cell types, since
such loci are likely important for cell
state change.

CMINT is motivated by the hierar-
chical structure of developmental lineag-
es, in which a new cell type arises from a
predecessor through several intermediate
states. Such relationships are naturally
represented by a tree, and computational
approaches that can incorporate the tree
structure while identifying regulatory
modules and networks have been useful
in understanding evolutionary (Xie
et al. 2011; Roy et al. 2013; Shay et al.
2013) and developmental processes
(Jojic et al. 2013). CMINT is based on a
previous module inference algorithm
that we developed for species lineages
(Roy et al. 2013) with two major exten-
sions. Specifically, CMINT handles the
complex topology of cell lineages that
can progress successively into more
than two differentiated states, which
can vary depending upon the point in
the lineage. In addition, unlike a species
phylogeny, in which ancestral states are
unobserved, in a cell lineage, ancestral

cellular states represent a progenitor cell that can be experimental-
ly profiled and therefore needs to be modeled as observed data.

The CMINT generative model is made up of two parts (Fig.
1A). The first captures the chromatin modules in a cell type mod-
eled by a mixture of k multivariate Gaussian distributions with
diagonal covariance (Hastie et al. 2003). The second part captures
module transitiondynamics of loci between the different cell types
with conditional probability distributions, one for each branch in
the tree (Fig. 1A, black-white matrices). The conditional probabil-
ity distribution specifies the probability that a locus is in module
i in cell type A given its module assignment in the immediate

Figure 1. The CMINT approach. (A) The generativemodel of the CMINT approach. Themodel is made
up of two parts: the first part corresponds to a mixture of P-dimensional Gaussians, one dimension for
each mark. The second part specifies the transition probabilities of genes (black-white matrices) switch-
ingmodules between a cell type and its predecessor. Each circle on the tree corresponds to a cell type. All
cell types other than the root cell type (e.g., the starting differentiated cell type) have a k × k matrix of
conditional probabilities. The starting cell type only has an initial prior probability distribution of module
assignments (gray boxes). (B) The reprogramming system: (MEFs) mouse embryonic fibroblasts; (pre-
iPSCs) partially reprogrammed induced pluripotent stem cells; (iPSCs) induced pluripotent stem cells.
Bottom: Histone H3 lysine (K) modifications assessed by ChIP-chip analysis, listed according to their asso-
ciation with transcriptional activation or repression when present alone. (C) The hematopoietic system:
(LT) long-term hematopoietic stem cells; (ST) short-term hematopoietic stem cells; (MPP) multipotent
progenitor; (CMP) commonmyeloid progenitor; (MEP)megakaryocyte erythrocyte precursor; (EryA) im-
mature erythrocytes; (EryB) mature erythrocytes; (GMP) granulocyte monocyte precursor; (GN) granu-
locyte; (MF) macrophage; (Mono) monocyte; (CLP) common lymphoid progenitor; (B) B lymphocyte;
(CD4) CD4 T lymphocyte; (CD8) CD8 T lymphocyte. Bottom: Histone modifications profiled in Lara-
Astiaso et al. (2014) and their known localization pattern.
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ancestral cell type of A. One of the cell types is designated as the
root of the tree at which we have a prior probability of loci to
belong to one of the k modules. The parameters of the model
are the means and variances for each of the k Gaussians in each
cell type, the prior probability of modules, and the module transi-
tion probabilities for each tree branch. We use the Expectation
Maximization (EM) algorithm to estimate these parameters
(Methods, Supplemental Methods).

CMINT is applicable to chromatin mark profiles measured
usingmicroarrays as well as next-generation sequencing technolo-
gies. For our reprogramming study (Fig. 1B), we used eight
chromatin mark profiles measured using promoter microarrays
in three cell types: (1) mouse embryonic fibroblasts (MEFs), the
starting differentiated cell type, (2) a stalled intermediate cell
state (pre-iPSCs) derived from MEFs (Sridharan et al. 2009), and
(3) iPSCs. In this study we generated chromatin immunoprecipi-
tation followed by binding to a promoter microarray (ChIP-chip
data) for H3K9ac, H3K14ac, H3K18ac, H3K9me2, H3K9me3,
and H3K79me2. To demonstrate the applicability of CMINT
both to a more complex lineage structure and for genome-wide
sequencing data, we used ChIP-seq data from a comprehensive
study of hematopoiesis (Fig. 1C) by Lara-Astiaso et al. (2014) that
measured four chromatin marks in 16 different cell types using
ChIP-seq.

CMINT outperforms other approaches to finding modules

and transitions

We first compared the quality of CMINT clusters from the repro-
gramming system (Fig. 1B) to that from two baseline methods
(Supplemental Fig. S1A). The MERGE-FIRST approach merges the
data matrices per cell type into a single matrix with as many mea-
surements per gene as the total number ofmarks times the number
of cell types and then clusters this merged data matrix (Methods).
The per-cell-type clusters are identified by projecting the cluster as-
signments on to each cell-type–specific data. (Supplemental Fig.
S1A, M1). The CLUSTER-FIRST clusters each cell type indepen-
dently followed by post-processing matching of clusters of one
cell type to those from another (Supplemental Fig. S1A, C1).
Comparison of the methods based on a silhouette index, which
measures the sharpness in boundaries of clusters, shows that the
MERGE-FIRST approach produces the lowest quality clusters
(Supplemental Fig. S1A). The CLUSTER-FIRST approach, which
solely optimizes the cluster quality per cell type, is expected to
have the highest silhouette index.

We next evaluated CMINT and the CLUSTER-FIRST approach
for their ability to detect chromatinmodule transitions on simulat-
ed data for which the actual transitions were known (Methods).
For CLUSTER-FIRST, we used the Hungarian algorithm (Kuhn
2010) to match clusters from one cell type to another. We used
Precision, Recall, and F-score to compare the cluster transitions
to true cluster transitions (Supplemental Fig. S1) and found that
CMINT is significantly better (high F-scores) compared to
CLUSTER-FIRST in detecting transitions (Supplemental Fig. S1B).
CLUSTER-FIRST has lower precision (Supplemental Fig. S1C) and
comparable recall to CMINT (Supplemental Fig. S1D). This indi-
cates that by using the CMINT approach of jointly clustering the
chromatin marks across multiple cell types while exploiting their
relatedness, we are able to more reliably detect cluster transitions.

Wenext compared theoutput ofCMINT fromthehematopoi-
etic hierarchy (Fig. 1C) to that from two other methods that have
been used to examine multiple chromatin marks across cell types

—ChromHMM (Ernst and Kellis 2010) and GATE (Yu et al. 2013).
By using the entire hematopoietic lineage, we found that the clus-
ter quality of CMINT is better than that of ChromHMM based on
cluster coherence (Fig. 2A) and silhouette index (Fig. 2B). The clus-
ters obtainedbyCMINTwere alsovisuallybetter thanChromHMM
(Supplemental Fig. S2). For comparison toGATE,which is suited for
time courses, we restricted ourselves to the single longest branch,
selecting the erythrocyte lineage, which has six cell types: LT, ST,
CMP,MEP, EryA, andEryB.CMINTagainperformedbetter in terms
of cluster quality using both coherence and silhouette index (Fig.
2C,D) and patterns in the heatmaps (Supplemental Fig. S3).
Taken together these results demonstrate the advantage of using
CMINT to study chromatin state dynamics on cell lineages.

CMINT provides novel insights into the chromatin state dynamics

during reprogramming

Using CMINT, we first determined the most likely trajectory
among two possibilities: a linear chain on which MEFs led to
pre-iPSC, which led to the iPSC state, and a branch on which
MEFs led to pre-iPSC and iPSC states independently. Based on
themodel likelihood, we found that the linear chain in both direc-
tions, from MEFs to iPSCs and from iPSCs to MEFs, was signifi-
cantly higher than the branching relationship (t-test P-value
<10−19) (Supplemental Fig. S4A). Furthermore, both these linear
trajectories are much more likely than other possible linear trajec-
tories, suggesting that the chromatin state in pre-iPSCs is on the
trajectory to acquire the iPSC state.

We used CMINT to identify 15modules in each cell type (Fig.
3) based on the average of the number of modules that would be
selected for each cell type (Methods; Supplemental Fig. S4B). Five
modules (1, 2, 3, 4, and 5) were enriched for repressive marks; six
modules (8, 9, 10, 11, 12, and 14), were associated with activating
marks, and two modules (6 and 7) were associated with both acti-
vating and repressivemarks (Fig. 3A). Twomodules (0 and 13) were
not as coherent as other modules but contributed to transitioning
genes as discussed below. The activating modules were organized
into three distinct patterns: Module 9 was enriched for all the acti-
vating marks (with some enrichment for H3K9me3 in iPSCs),
whereas module 8 only excluded H3K79me2. Modules 10–14
were specifically depleted for H3K14ac andH3K18ac to varying ex-
tents. Modules 6 and 7, which were enriched for both activating
and repressive modifications, represent novel “multivalent” mod-
ules. We define multivalent modules as those containingmultiple
activating and repressive marks, although at a resolution of 8 kb
theymaynot occur on the same nucleosome. Gene expression lev-
els (Sridharan et al. 2009) were consistent with chromatin patterns
(Fig. 3B; Supplemental Fig. S4C), withmodules 8–14havinghigher
expression than modules 1–5 and the multivalent modules dis-
playing an intermediate expression level (Fig. 3B). For example,
module 6 had significantly high expression (t-test P-value <10−6)
compared toModules 1–5, but significantly lower expression com-
pared to modules 8–14 (t-test P-value <10−8). We found a similar
trend in MEFs and pre-iPSCs (Supplemental Fig. S4C), suggesting
that the combination of modifications in each module and their
relationship to expression is a conserved property across multiple
cell types.

We determined the biological significance of the modules
based on enrichment of transcription factor binding and function-
al categories using false discovery rate (FDR)-corrected hypergeo-
metric test P-value (FDR < 0.05). We used ChIP-chip binding data
of the reprogramming factors POU5F1 (also known as OCT4),
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SOX2, MYC, and KLF4 in iPSC (Sridharan et al. 2009) and pluripo-
tency proteins in embryonic stem cells (ESCs) (Fig. 3C; Chen et al.
2008). Module 9, which contained all the activating marks, was
enriched for binding of POU5F1, KLF4 or SOX2, and NANOG.
Intriguingly, modules 10, 11, and 12, which were relatively
depleted for H3K14ac and H3K18ac, were enriched for MYC
binding in iPSCs and not enriched for any of the other factors
(Fig. 3C). The combination of MYC (includes both MYC and
MYCN), E2F1, and ZFX were again enriched in the modules that
lacked H3K14ac and H3K18ac in ESCs (Fig. 3C). The multivalent
module 6, which is depleted for H3K9ac, H3K79me2, and
H3K9me2, is enriched for POU5F1, SOX2, KLF4, ESRRB, and
TCFCP2L1 binding, but not for MYC. Intriguingly, the multiva-
lent module 7, characterized by H3K14ac, H3K18ac, and
H3K9me2 is enriched only for the 3D chromatin organizing pro-
tein CTCF. Taken together, these results suggest that the repro-
gramming factors likely recruit different chromatin modifying
complexes to achieve high expression of genes in iPSCs, and
some multivalent states may not control gene expression but in-
stead organize the genome into territories as evidenced by the en-
richment of CTCF.

Enrichment analysis of Gene ontology processes (FDR < 0.05)
(Supplemental Fig. S4D; Ashburner et al. 2000) revealed that the
repressive modules 1–4, which were enriched for H3K9me2 and
H3K9me3, included sensory transduction families of olfactory
and taste receptors, protocadherins, and cytokine genes, whereas
module 5 included transcription factors related tomorphogenesis.
Modules 0 and 13, which had higher expression thanmodules 1–4
were enriched for cation binding (0) andmitochondria related pro-
cesses (13). Although themodules 10–14 exhibited similar binding
profiles (Fig. 3), they were functionally separable into distinctmet-
abolic processes including protein catabolism (10), RNA transla-
tion (11), vesicle transport (12), and kinase activity (14). These
results further demonstrate that the CMINT approach is adept at
identifying biologically relevant clusters.

Cell-type–specific transitions suggest that the bottleneck to

reaching the pluripotent state is in gene activation

Although similar modules are observed in all three cell types, the
genes exhibiting a specific pattern may not be the same between
cell types. Hence, we examined the similarity of the genes inmod-
ules between pairs of cell types (Fig. 4A) by creating a module sim-
ilarity matrix using the average of the negative logarithm of two
hypergeometric test P-values (one for each cell type’s regions as
the background). The red diagonal in each pairwise comparison in-
dicates a high similarity in the genes inmoduleswith the samepat-
tern across the cell types (Fig. 4A). We identified the module pairs
between which genes tended to change patterns in the different
cell types by inspecting significant off-diagonal entries (hypergeo-
metric test P-value <0.05) (Fig. 4A, blue entries). The significance of
the transitions depended both on themodules and cell types being
compared and ranged from 0.02 to 10−43 (Fig. 4A, blue intensity).
Strikingly, genes tended to switch between repressive (1–5) ormul-
tivalent modules (6 and 7) in the MEF-pre-iPSC transition more
than between active modules (9–14). In contrast, the transitions
between pre-iPSCs and iPSCs occur between repressive, activating,
and multivalent modules. This switching pattern suggests that
genes in pre-iPSC retain theMEF activation pattern, and the bottle-
neck to reaching the iPSC state is likely in the activation of genes.
From the multivalent module 6, genes could transition to both re-
pressive (modules 4 and 5) and activating (modules 8 and 9) states.
Genes inmultivalent module 7 only transition tomodule 3 by los-
ing activemarks, irrespective of cell type. Transition of genes in ac-
tivating modules tended to occur within modules 8 and 9
(enriched for POU5F1, SOX2, KLF4) or between modules 10–14
(enriched for MYC). From module 0, genes tended to transition
to module 2 and from module 13 to module 8.

Taken together from this global perspective, we find that (1)
significant numbers of genes do not transition between activating
to repressive patterns directly; (2) the repressive modules in MEFs

A B

DC

Figure 2. Comparison of CMINT against ChromHMM and GATE on 15 cell types of the hematopoiesis lineage. Cluster coherence (A) and silhouette
index (B) of clusters generated by using ChromHMM and CMINT. The filled circles represent the cluster coherence and silhouette index values for
ChromHMM. The box plots represent the values obtained using CMINT on 20 different random initializations. Cluster coherence (C ) and silhouette index
(D) of clusters generated by using GATE and CMINT on one branch of hematopoietic tree. The filled circles represent the silhouette index and cluster co-
herence values for GATE. The box plots represent the values obtained by CMINT for 20 different runs of the algorithm.
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have transitioned to an activated state in pre-iPSC, suggesting that
gene activation rather than repression could be the bottleneck in
transitioning to iPSCs from the pre-iPSCs; and (3) not all multiva-
lent modules can resolve into both activating and repressive
patterns.

Changes in chromatin state can occur without large changes

in gene expression

We next investigated whether there were genes that exhibited low
expression changes or expression-independent transitions in chro-
matin state, because such changes could indicate a poised state
responsive to environmental cues. We grouped genes into high
(log[Expression] > 9.2), medium (5.92 < log[Expression] < 9.2),
and low expression levels (log[Expression] < 5.92) by fitting a
Gaussian mixture model to the logarithm of the absolute expres-
sion levels measured in these cell types previously (Sridharan
et al. 2009). Focusing on genes with both mRNA and chromatin
measurements, we found a total of 6310 genes that changed their
chromatin state between any two cell types. Of these, about a third

(2317) changed their expression state,
suggesting that the majority of the
genes change their chromatin state with-
out very large changes in expression.
However, most such transitions of genes
occurred between modules of similar ex-
pression outputs. For example, the proto-
cadherin (Pcdh) genes involved in cell
adhesion switched from module 1 (re-
pressive with H3K9me2 and H3K9me3)
in MEFs to module 2 (repressive with
H3K27me3) in iPSCs (Fig. 4B, top).
Similarly, a shift from activating module
12 in MEFs to another activating module
10 in pre-iPSCs and iPSCs does not chan-
ge the expression levels drastically (Fig.
4B, bottom).

Transitions at individual loci identify

multiple routes to multivalency and

bottlenecks to iPSCs

Using the transitions between cell types,
we asked whether the multivalent state 6
in iPSCs arises primarily because of pre-
existing repressive marks in MEFs that
then acquire activatingmarks or vice ver-
sa (Fig. 4C). We found examples of both
kinds of transitioning genes (761), with
the majority arising from activating
modules in MEFs (477 genes). In con-
trast, a significant fraction (67%) of the
genes in the multivalent module 7 of
iPSCs arose solely from module 3 of
MEFs. Genes that transitioned from hav-
ing repressive modifications in MEFs
(Fig. 4C,i) to becoming multivalent in
iPSCs were enriched for NANOG,
ESRRB, and SOX2 binding (FDR < 0.05),
suggesting that these transcription fac-
tors were required to add on to the preex-
isting activating modifications.

Since our trajectory analysis indicated that the pre-iPSC state
was intermediate to that of MEFs and iPSCs (Supplemental Fig.
S4A), we examined transitions encountered in the pre-iPSC state
(Fig. 4; Supplemental Material). This allowed us to examine the
pre-iPSC state of genes that have opposing chromatin module
memberships in MEFs and iPSCs. We coded these “rules” using
module membership in the three cell types: iPSC–pre-iPSC–MEF.
For example, the transition 5-6-8 meant that the gene was in a re-
pressive module 5 in iPSC, in the multivalent module 6 in pre-
iPSC, and activating module 8 in MEF. We found examples of
such genes to be in multivalent (9-7-3) (Fig. 4D,i) and activating
states (9-8-5) in pre-iPSCs (Supplemental Material).

We then examined the genes that became multivalent in
iPSCs. Interestingly, if this state was reached from an active state
inMEF, then in pre-iPSC, the genes were first repressed completely
before acquiring the activemodification in iPSC. This group (6-5-8
and 6-5-9) (Fig. 4D,ii, bottom)was enriched for TCFCP2L1 binding
in iPSCs (FDR < 0.05). Conversely, genes acquired a transient active
state in pre-iPSCs from a repressive state in MEFs before reaching
multivalency in iPSCs including patterns 6-8-5, 6-9-5, 6-9-4, 7-9-2,

Figure 3. Chromatin modules in the reprogramming cell types identified by CMINT. (A) Heatmaps of
15 chromatin modules ordered from 0–14, obtained from CMINT: (top) MEFs; (middle) pre-iPSC; (bot-
tom) iPSC. Each row in each heatmap represents one gene; each column represents one histone modi-
fication. (Red) enriched; (blue) depleted as compared to input. Height of each module is roughly
proportional to the number of genes. (B) Box plots of gene expression of genes in each of the chromatin
modules in iPSC. (C, top) Enrichment of reprogramming factors in the iPSC modules based on ChIP-chip
data from iPSCs; (bottom) enrichment of pluripotency factors in the iPSC modules based on ChIP-seq
data from ESCs.
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Figure 4. Chromatinmodule transitionsduring reprogramming. (A) Plot of similarity ofmodulemembershipofgenes that changebetweenMEFs andpre-
iPSCs (left), andpre-iPSCs and iPSCs (right). Twodifferent colors areused: (red) denotes similarity formoduleswith the samepattern (diagonal entries); (blue)
denotes similarity formodules with different patterns (off-diagonal entries). Themore red or blue an entry, themore similar are thematrices. The intensity of
red (blue) corresponds to the significanceof overlapof regions (genes) between twocell types and is themeanof thenegative logof twohypergeometric test
P-values. One P-value uses regions fromone cell type as the background, and another P-value uses the regions from the second cell type as the background.
(B) Example sets of genes that do not change greatly in expression but change in module membership. (Left) Gene names and log gene expression in iPSC,
pre-iPSC (pre-i) and MEF. (Right) Heat map of enrichment of all histone modifications in iPSC, pre-iPSC andMEF compared to input. (Red) enriched; (blue)
depleted. (412-Rik) 4121402D02Rik. (C) Left and right panels represent different gene sets, each exhibiting a different type of chromatin transition. (Left)
Example set of genes thatgainmultivalency in iPSCs froman active state inMEF. (Right) Example set of genes thatgainmultivalency in iPSCs froma repressed
state inMEF. Gene names are provided on the left. The heatmaps show the enrichment of histonemarks compared to input in each cell type. (D) Chromatin
module dynamics of genes identified using rules encoding patterns. The right panels providemodulemembership of genes in (I) iPSC, (P) pre-iPSC, and (M)
MEF. Gene names are provided on the left, histonemodifications in red–blue heatmaps: (red) enriched; (blue) depleted. (i) Example of genes that transition
through a multivalent state (module 7) in pre-iPSC to an active state in iPSCs from a repressive state in MEF. (ii) Examples of gene sets that transition to a
multivalent state in iPSC (module 6) through activating modules (module 8, 9) in pre-iPSCs (top) or a repressed modules (module 5) in pre-iPSCs (bottom).
(iii) Example sets of genes that acquire transient activemodifications in pre-iPSC. (iv) Example sets of genes thatdisplayan aberrant activated state in pre-iPSC
that is not recapitulated in the starting MEF or endpoint iPSC cell types: (170-Rik) 1700061G19Rik; (201-Rik) 2010002N04Rik.
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7-9-3 (Fig. 4D,ii, top, examples). There are also genes that are in a
multivalent state in MEFs and pass through an activated state in
pre-iPSCs before being repressed (5-8-6, 5-9-6). This group contains
several patterning genes of the Hox clusters (Fig. 4D,iii). Finally,
genes could display a different chromatin state in pre-iPSC when
the MEF and iPSC states were equivalent including patterns 5-8-5,
5-9-5, 3-9-3, 5-6-5, 6-5-6, and 6-9-6 (Fig. 4D,iv, examples).

Chromatin states in hematopoietic cell lineage are maintained

despite extensive dissimilarity of individual regions exhibiting

these states

The previous analysis demonstrated the power of using CMINT
in cellular reprogramming but focused on promoter arrays and
three cell types. To examine chromatin state dynamics in a more
genome-wide setting in a complex hierarchy of cell types, we
applied CMINT to 15 cell types of the hematopoiesis lineage using
the data set from Lara-Astiaso et al. (2014) measuring four
marks, H3K4me1, H3K4me2, H3K27ac (enhancer enriched), and
H3K4me3 (promoter enriched) (Fig. 1C). We applied CMINT to
1,189,496 regions of 2000-bp length that weremeasured in at least
one cell type for at least one mark and learned 16 modules in each
cell type (Supplemental Fig. S5A). Application of CMINT to these
roughly million regions revealed modules with different chroma-
tin signatures. Despite there being overall similarity in the pattern
exhibited in different cell types, we observed extensive off-diago-
nal transitions assessed using multiple measures (Supplemental
Fig. S6, F-score; Supplemental Fig. S7, significance of overlap).
This is an interesting contrast to the reprogramming study (Fig.
4A), in which the majority of the modules had similar genes and
is likely due to both the more complex hierarchy and the fact
that we examined the entire genome as opposed to genic regions.
Among all cell type comparisons,module 15, whichwas highly en-
riched for all four marks, had the most similar module member-
ship, followed by modules 14 and 8 (Supplemental Figs. S5A, S6,
S7). Closely related cell types (e.g., EryA and EryB) had more simi-
larmodules than distant cell types (Supplemental Fig. S6). To func-
tionally interpret these modules, we performed region-level
enrichment analysis by mapping known cis-regulatory elements
from the ORegAnno database (Lesurf et al. 2016) to these regions
(Supplemental Figs. S5B, S8; Methods). To examine common
regulatory programs across the multiple cell types in the hemato-
poiesis lineage, we selected regulators that were enriched in
the majority of the cell types (at least 12 of 15 cell types).
Enrichment analysis of the clusters using these mapped elements
recapitulated several known important regulators of the hemato-
poietic lineage. Several transcription factor elements, including
BHLEH40, BCL6, GFI1B, MEIS1, and STAT6 were enriched in all
the cell types in module 15, which contains all four marks
(Supplemental Fig. 5B). Interestingly, GATA1, a transcription fac-
tor that is essential for erythropoiesis, was enriched in module
14 that is relatively depleted in H3K4me3 (Supplemental Fig. 8),
a promoter-specific mark, but not in module 15 in the MEP,
EryA, and EryB cell types, which had all four marks. This suggests
that GATA1may bemore important at the enhancer-like locations
specified by H3K27ac and H3K4me1 than at promoter proximal
locations in these erythroid lineages. In addition to these activa-
tors, we also found a strong enrichment for components of the pol-
ycomb response element 2 (PRC2) complex, including JARID2,
SUZ12, and EZH2 in all the cell types in module 2, which lacks
only H3K27ac (Supplemental Fig. 5B). Since the PRC2 complex
catalyzes H3K27me3, this observation would imply that these re-

gions are likely to contain this repressive mark in addition to the
H3K4me3 mark, making them bivalent in nature.

Given thatmodule 15 had the largest number of common cis-
regulatory site enrichments, we next sought to determine the fac-
tors that may be important at the transition points of the hemato-
poietic lineage by identifying regions unique tomodule 15 in each
cell type. The number of unique regions inmodule 15 for each cell
type varied significantly, ranging from 113 to 7,536 regions, sug-
gesting that large transitions in module 15 membership occurred
only at certain points in the lineage (Fig. 5A). The largest number
of transitions occurred at the ST, MEP, GMP-GN-MF-Mono, and B-
CD4-CD8 cell types, suggesting that these could be control points
(Fig. 5A).Cis-regulatory element analysis (Fig. 5B) revealed that the
entire PRC2 complex and the transcription factor ERG are both en-
riched in the ST cluster. Since the PRC2 complex methylates
H3K27, during this transition, several regions are likely to be in a
bivalent state with H3K27me3 (a repressive mark), present along
withH3K4me3 (an activatingmark). In theMEP transition, several
important regulators of erythropoiesis, including TAL-GATA1 and
KLF1, are enriched. Similarly, the unique regions in B cells are en-
riched for BHLHE40 and FOXO1 motifs, and T cells are enriched
for STAT4 and STAT6 (Fig. 5B). Comparison of these enrichments
identified in cell-type–specific regions to those for entire modules
can postulate candidate cell-type–specific regulators. Although
some factors such as STAT6 are enriched in every module 15
(Supplemental Fig. S5B), they are enriched in the unique regions
ofmodule 15 only inCD8 T cells, a cell type inwhich STAT6 is like-
ly critical. This would suggest that the other factors enriched in
module 15 of CD8 T cells, such as GFI1B (Supplemental Fig.
S5B), are not specific to CD8 T cells as they are absent from regions
that are uniquely enriched in module 15 (Fig. 5B). Taken together,
these results imply that there are distinct transition points in chro-
matin state in the hematopoietic hierarchy and specific transcrip-
tion factors may be involved in setting up the chromatin state at
these points.

CMINT output identifies critical chromatin-level decision points

in hematopoiesis

Because several modules in the previous analysis had a complete
absence of one ormoremarks, we next applied CMINT to a smaller
set of 28,418 regions with non-zero values for all marks in all cell
types (Fig. 6A). Among modules learned from these regions,
some had lower presence of all the marks (0–4), whereas others
were associated with a subset of marks. For example, modules 13,
14, and 15 were associated with H3K27ac, H3K4me2, and
H3K4me3, but lower H3K4me1. Module similarity matrix based
on both an F-score (Fig. 6B) and statistical significance of overlap
(Supplemental Fig. S9) recapitulated the known lineage hierarchy
(Fig. 6B). In particular, EryA and EryB; GMP, MF and Mono; and
CD4 and CD8 were more similar to each other, respectively,
than other cell types (Fig. 6B). The most terminally differentiated
cell types EryA, EryB, CD4, and CD8 were most dissimilar from
other cell types (Fig. 6B).

To further examine the ability of CMINT to discriminate be-
tween different lineage structures, we considered eight alternative
tree topologies that differed from the original lineage structure at
the origin of specific subtrees (Supplemental Fig. S10). Among
the different tree topologies, the original tree ranked second, but
the likelihood of the first two trees were not significantly different
(t-test P-value <0.05). Three trees that had significantly lower like-
lihood compared to the original tree differed in the origin of GMP

Roy and Sridharan

1256 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1


(CLP,MEP, orMPP), suggesting that the transition toGMP requires
specific transcription programs to be triggered at the CMP state
that is removed later in the lineage (MEP) or has not occurred
yet earlier in the lineage (MPP or CLP). These results further high-
light the ability of CMINT to select among alternative tree topolo-
gies and suggest potential refinements to the tree based on the data
likelihood from chromatin marks.

We used CMINT’s inferred module assignments to find geno-
mic regions that transitioned between distinct modules at differ-
ent points in the lineage (Fig. 7). As a proof of principle, we
focused on transitions at two points in the tree: CMP versus CLP
and the erythroid (MEP) versus macrophage (GMP) lineages
(Supplemental Material). We looked for regions that were highly
enriched for the modifications in MEP module (>10) but not in

Figure 5. Cell-type–specific regions and decision points identified by CMINT in the hematopoietic hierarchy. (A, left) Regions that uniquely belong to
module 15 in Supplemental Figure S5 and their cluster assignments in other cell types; (right) enrichment of each histone modification in the regions
that uniquely belong to Module 15 in Supplemental Figure S5. (B) ORegAnno cis-regulatory element enrichment for factors (left) enriched in regions
uniquely assigned to module 15 in each of the cell types indicated on top.
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GMP (<4) (Fig. 7A), and those that followed the reciprocal rule (Fig.
7B). Both transitions had approximately 500 genes that followed
the rule but displayed interesting patterns in the other cell
types. For the regions that were in modules >10 in MEP, the chro-
matin state is established in the MEP cell type and gets much fur-
ther enhanced in the downstreamEryA and EryB lineages (Fig. 7A).
These regions are enriched inGATA1, KLF1,MYB, and TAL1motifs
(FDR < 0.05). In striking contrast, the regions that are found in
modules greater than 10 inGMP specifically lackmark enrichment

in the MEP lineage (Fig. 7B). For these regions, there is some en-
richment of the marks in precursor LT and CMP cells, with reten-
tion in the downstream cell types, but absence in the completely
differentiated lymphoid lineages. These regions were enriched
for motifs of the ETS1, SPI1, and ERG factors. We performed a sim-
ilar analysis for an earlier stage of the lineage, at the CMP versus
CLP transition and applied the same rule (Fig. 7C), which yielded
fewer regions (50–150) than the MEP/GMP transition. The chro-
matin state is set up in the CMP cell type and is then retained in

Figure 6. CMINTmodules identified on the hematopoiesis cell lineagewhen applied to a subset of regions containingmeasurements for all histonemod-
ifications. (A) Heatmaps of 16 chromatin modules numbered from 0 to 15, obtained from CMINT restricted to 2000-bp regions with a non-zero value for
each of the four histonemodifications. Each row in each heatmap represents one region; each column represents one histonemodification: (red) enriched;
(white) depleted. The height of each module is roughly proportional to the number of regions within it. (B) Plot of similarity of module membership of
regions, in which similarity was measured based on F-score, between each pair of cell types. Two different scales are used: (red) similarity for modules
with similar patterns (diagonal entries); (blue) similarity for modules with different patterns (off-diagonal entries). The more red or blue an entry, the
more similar are the matrices.
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the downstreamMEP andGMP lineages (Fig. 7C). In the reciprocal
transition, there seems to be a specific loss of modifications in the
CMP lineages from the earlier progenitors of LT, ST, and MPP and
retention in the CLP lineages (Fig. 7D). Taken together these tran-
sition patterns suggest that the chromatin state is retained in only
one or the other cell type, implicating a further selective process
for adding or removing chromatin marks or transcription factor
binding.

Discussion

Dynamics of chromatin state in complex cell-fate specification
problems is poorly understood. A significant advantage of our
new computationalmethod, CMINT, for studying chromatin state
is the ability tomodel the hierarchical relatedness among cell types
while simultaneously defining matched chromatin states across
multiple cell types. Therefore, from the output of CMINT, it is

Figure 7. Rule-based analysis of hematopoiesis CMINT modules identifies regions associated with chromatin state transitions at different lineage points.
(A, left) Regions that belong to modules enriched for marks (numbered greater than 10) in MEP and depleted for marks (less than 4) in GMP and their
module assignments in other cell types. (Right) Histone modification level in the regions that obey the MEP > 10 and GMP < 4 module membership
rule. (B) Similar to A, but for regions that obey the GMP > 10 and MEP < 4 rule. (C) As in A, but for regions that obey the CMP > 10 and CLP < 4 rule.
(D) As in A, but for regions that obey the opposite rule, CLP > 10 and CMP < 4.
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simple to query whether particular transitions occur by construct-
ing specific rules that capture patterns of module transitions
between the cell types, and to identify genes that exhibit such
patterns, as found for reprogramming (Fig. 4) and hematopoiesis
(Fig. 7).

In reprogramming, by examining modules for enrichment of
transcription factor binding, we identified specific divisions of
labor. MYC binding is enriched in clusters that are depleted
for H3K14ac and H3K18ac, but that contain H3K9ac and
H3K79me2. MYC is known to enhance the transcription elonga-
tion rate (Rahl et al. 2010), leading to the interesting insight that
perhaps rapid elongation is incompatible with high levels of
H3K14ac and H3K18ac. Multivalent module 7, which has the op-
posite epiphenotype of increased H3K14ac and H3K18ac, is en-
riched for CTCF, suggesting roles for these modifications in
setting up chromosome territories.

A current unanswered question in gene regulation is the
necessity or sufficiency of multiple activating modifications for
transcription. In theMEF state, Pou5f1,which encodes a key pluri-
potency transcription factor, is repressed by H3K27me3 and
H3K9me3 and does not have any activating marks. In pre-iPSCs,
where Pou5f1 is not expressed, all the repressive marks have been
erased and the activating H3K14ac and H3K18ac are enriched; in
iPSCs, all the activating marks are present. Thus erasure of repres-
sive marks and the gain of H3K14ac and H3K18ac are insufficient
to activate the gene. From this starting point, we can use the
CRISPR-Cas9 system to interrogate whether these two modifica-
tions set up a platform for recruiting the next set of chromatin
remodelers to activate Pou5f1 and result in an iPSC state.

Enrichment of transcription factors among transitioning
genes also enabled us to predict regulators that could accelerate
the reprogramming process. We have recently found that pre-
iPSC can be converted to iPSC by adding vitamin C and a MEK
and GSK inhibitor (2i) (Tran et al. 2015), which activate NANOG
and TCFCP2L1 expression, respectively. NANOG is enriched in a
gene set that acquires an activating state in iPSCs from a multiva-
lent state in pre-iPSCs, suggesting that the expression of Nanog
may make the chromatin state more conducive for high expres-
sion. TCFCP2L1, a component of LIF signaling (Martello et al.
2013; Ye et al. 2013), is enriched in genes that becomemultivalent
in iPSCs from a repressed state in pre-iPSCs, suggesting a function
in poising of gene expression.

In the hematopoiesis system, CMINT analysis revealed a re-
markable plasticity in chromatin state. CMINT’s outputs were use-
ful to identify both regions that were cell-type specific and
additionally identify important transition points in the hierarchy.
We found that the number of regions that transition depends
upon the point in the tree, with more differentiated terminal cell
types containing more regions that were distinct between alterna-
tive cell types derived from the same progenitor. Some transcrip-
tion factors (MEIS1 and ERG) that we found to be enriched at
the important decision points were also found in the original
Lara-Astiaso et al. (2014) work using ATAC-seq and motif enrich-
ment corroborating our conclusions. Interestingly, we found addi-
tional elements of the PRC2 complex that repress gene expression
at specific points in the lineage tree.

Our current study focused on relatively large genomic re-
gions, aggregating signals either 8 kb for the reprogramming
study or 2 kb for the hematopoietic lineage study. However, as
more deeply sequenced data become available, a future extension
of our work is to scale to higher resolution data to capture
more fine-grained interactions among chromatin marks. As more

epigenomes are measured for multiple cell types, time points,
and conditions (Roadmap Epigenomics Consortium et al. 2015),
approaches like CMINT will become increasingly useful to exam-
ine the chromatin state dynamics and identify important epige-
netic transitions changing global cellular states.

Methods

ChIP-chip experiments

ChIP-chip experiments were performed exactly as described in
Sridharan et al. (2009). Data for H3K4me3 and H3K27me3 for
the iPSC line has been previously published in Sridharan et al.
(2009). Antibodies used were H3K4me3 (Abcam ab8580),
H3K27me3 (Millipore 07-449); H3K9ac, H3K14ac, and H3K18ac
were kind gifts of Prof. Michael Grunstein at UCLA; H3K9me2
(Abcam ab1220), H3K9me3 (Abcam ab8898), H3K79me2 (Activ
motif-39143). Elutes were amplified using the Sigma WGA kit
and applied to Agilent mouse promoter array (G4490) according
to the manufacturer’s instructions. Average probe signals were ini-
tially extracted in a 500-bp window-stepwise manner as described
previously (Maherali et al. 2007) and then averaged across the en-
tire 8000-bp region and used as input for the CMINT algorithm.

Overview of the CMINT algorithm

CMINT uses a generative probabilistic model to jointly learn clus-
ters of genomic loci exhibiting similar chromatin mark combina-
tions in each cell type. The input to CMINT is genome-wide
chromatin mark measurements of m marks in each of n cell types
and a tree relating the cell types. There are two components to the
model: a mixture of k multivariate Gaussian distributions, each
Gaussian modeling one of k chromatin modules in each cell
type, and a set of transition probabilities to model the relationship
in chromatin state between a parent and a child cell type. The
number of dimensions of the Gaussian equals the number of
marks. The parameters of the model are the mean and covariance
of the k · nGaussians, the prior probability of modules at the start-
ing cell type and the k × k transition probability matrices for each
cell typewith a parent. The parameter estimation uses the expecta-
tion maximization algorithm (Dempster et al. 1977). Briefly, the
expectation step (E) step computes the probability of a gene’s chro-
matin profile in cell type c to be generated in the kth Gaussian. The
maximization step (M) estimates the mean and variance based on
the probabilities of chromatin profiles to be generated by a partic-
ular Gaussian, and the transition probabilities using the joint
probability of pairs of module assignments for each parent–child
cell-type pair. CMINT can also be used for selecting among differ-
ent tree topologies using the greatest data likelihood. Additional
mathematical details of the model are given in Supplemental
Methods.

Application of CMINT on mouse reprogramming data

We applied CMINT to eight chromatin mark profiles, and each
mark’s value was averaged across an 8000-bp region associated
with a gene promoter. For the array data, clustering the probe-level
data did not reveal additional patterns that were not already cap-
tured by the aggregated signal. To determine the number of mod-
ules, k, we used MDL penalized test data likelihood with fivefold
cross-validation to determine the best number of modules for
each cell type by varying k from 3 to 25 in increments of 2
(Supplemental Fig. S11). We selected k = 15 as the best because it
represented the average of the number of clusters. In addition,
we also examined CMINT modules for k = 20, 25, and 30 and did
not find any increase in the number of patterns detected.

Roy and Sridharan

1260 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.215004.116/-/DC1


We used CMINT’s data likelihood to examine multiple possi-
ble topologies that could relate the MEF, iPSC, and pre-iPSC cell
types. In one, we had a branching topology in which MEF led to
pre-iPSC and iPSC as two independent branches. In the remaining,
we examined multiple linear trajectories in which each cell type is
treated as the starting cell type. We computed the average likeli-
hood of the CMINT models learned in each setting from 40 runs
and used the topology with the data likelihood that was signifi-
cantly higher than other topologies. The linear topology with
MEF as the starting cell type to iPSC as the ending cell type, or
the exact reverse, had a significantly greater likelihood. We there-
fore used the linear topologyMEF, pre-IPSC, and iPSC topology for
our downstream analysis because this also reflects the direction of
the reprogramming process.

To interpret the modules and gene sets with module transi-
tions, we assessed enrichment of Gene Ontology processes
(Ashburner et al. 2000), curated gene sets from the MSigDB data-
base (Liberzon et al. 2011), and ChIP-seq peaks of known pluripo-
tency factors (Chen et al. 2008). We used an FDR < 0.05 calculated
using the Benjamini-Hochberg procedure on hypergeometric test
P-values to call a module or gene set enriched in a curated set
(for details, see Supplemental Methods).

Application of CMINT to Hematopoiesis cell lineage data

We obtained raw fastq files for four chromatin marks, H3K4me1,
H3K4me2m, H3K4me3, and H3K27ac generated by Lara-Astiaso
et al. (2014). Readswere aligned to themm9mouse genome assem-
bly using Bowtie 2with default options (Langmead et al. 2009) and
filtered using SAMtools with –q3 option for read quality (Li et al.
2009). The counts were aggregated in 2000-bp regions based on
Lara-Astiaso et al. (2014), and the data were normalized for se-
quencing depth.We excluded theNK cell type due to low sequenc-
ing depth. Replicates, where available, were collapsed by taking the
median. CMINT was applied on a set of 1,189,496 regions that
had one chromatin mark in at least one cell type and on a set of
28,418 regions that had a non-zero read count for all cell types
and marks. We applied CMINT with 16 modules after log trans-
forming the normalized data. To interpret the clusters, we calculat-
ed enrichments of ORegAnno sequence elements in each module
(FDR < 0.05) by mapping module regions to sequence elements
(Supplemental Methods).

Software availability

The CMINT software can be downloaded from the CMINT
Supplemental Website (http://pages.discovery.wisc.edu/~sroy/
CMINT) and also on Bitbucket (https://bitbucket.org/roygroup/
cmint),where future releases of the softwarewill bemade available.

Data access

The CMINT code, associated scripts, input data sets, and results
from this study are available on the CMINT website (http://pages
.discovery.wisc.edu/~sroy/CMINT) as well as Supplemental
Material. Processed data sets are available at the CMINT Supple-
mental Website. Raw data sets have been submitted to NCBI
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.
gov/geo/) under accession number GSE97222.
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