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ABSTRACT

Understanding the transcriptional regulation of
microRNAs (miRNAs) is extremely important for
determining the specific roles they play in signaling
cascades. However, precise identification of tran-
scription factor binding sites (TFBSs) orchestrating
the expressions of miRNAs remains a challenge.
By combining accessible chromatin sequences of
12 cell types released by the ENCODE Project,
we found that a significant fraction (�80%) of such
integrated sequences, evolutionary conserved and
in regions upstream of human miRNA genes that
are independently transcribed, were preserved
across cell types. Accordingly, we developed a
computational method, Accessible and Conserved
TFBSs Locater (ACTLocater), incorporating this
chromatin feature and evolutionary conservation
to identify the TFBSs associated with human
miRNA genes. ACTLocater achieved high positive
predictive values, as revealed by the experimental
validation of FOXA1 predictions and by the compari-
son of its predictions of some other transcription
factors (TFs) to empirical ChIP-seq data. Most
notably, ACTLocater was widely applicable as
indicated by the successful prediction of
TF!miRNA interactions in cell types whose chro-
matin accessibility profiles were not incorporated.
By applying ACTLocater to TFs with characterized
binding specificities, we compiled a novel reposi-
tory of putative TF!miRNA interactions and dis-
played it in ACTViewer, providing a promising
foundation for future investigations to elucidate
the regulatory mechanisms of miRNA transcription
in humans.

INTRODUCTION

Transcriptional regulation is mediated by cis-elements and
the transcription factors (TFs) that bind to these elements
(1). Precise identification of cis-elements or transcription
factor binding sites (TFBSs) is fundamentally important
to decipher the complex transcription regulatory
networks. Chromatin immunoprecipitation (ChIP)
followed by high-throughput sequencing (ChIP-seq) has
become the most powerful tool to profile TFBSs (2,3).
Cis-elements are, however, often active only in specific
cell types or during certain development stages; therefore,
a comprehensive catalog of all cis-elements would require
a thorough investigation of various physiological condi-
tions. Current applications of ChIP-seq are limited by the
availability of ChIP-grade antibodies, and the reported
binding sites cannot be determined at nucleotide-level
resolution. Computational methods have long been
sought as an alternative to time-consuming experimental
studies; however, owing to the short, degenerate nature of
TFBSs, predictions usually contained an overwhelming
number of false positives (FPs), which has been termed
the ‘futility theorem’ (4). To improve the accuracy of pre-
dictions, existing methods often focus on promoter
regions of protein-coding genes and have employed
other criteria, such as conservation, co-operation and
co-regulation (4,5). Recently, owing to the rapid progress
in measures of chromatin accessibility by DNase-seq (6,7)
and FAIRE-seq (Formaldehyde Assisted Isolation of
Regulatory Elements) (8,9), as well as the elucidation of
histone modification profiles based on ChIP-seq (10,11),
chromatin accessibility and histone modification profiles
of human cell lines have been cataloged (12,13). The ac-
cumulation of these data has provided an unprecedented
opportunity to improve TFBS predictions in humans
and methods incorporating such information have been
successfully developed to work in a cell-specific manner
(14–16). However, the human body contains more than
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200 unique cell types, which could be under various
physiological and pathological conditions. It is unpracti-
cal to thoroughly profile the chromatin accessibility and
histone modification of all types of human cells under all
conditions, and thus the applicability of such methods is
limited to cell types whose experimental data are available.
Currently, the major computational problem to solve is to
enhance the applicability of predictions.
While the methods for predicting TFBSs associated

with protein-coding genes are fairly comprehensive,
unfortunately, transcriptional regulation genomics of
non-coding RNAs (ncRNAs), such as microRNAs
(miRNAs), which have been found to collaborate with
proteins in essential biological processes, have been
much less investigated. Accurate maps of TFBSs associa-
ted with ncRNA genes will be essential for a comprehen-
sive understanding of protein-coding and ncRNA genes
coordinate regulation network. miRNAs are a class of
small ncRNAs, which are expressed in a spatio-temporal
manner and play key roles in diverse biological processes
through targeting and suppressing the expression of
protein genes (17–19). Extensive studies have been per-
formed on miRNA gene identification, expression
analysis and function. For example, more than 1000
human miRNA genes have been documented in
miRBase (20); expression patterns have been profiled
from about 200 major human organs and cell types (21)
and more than 3000 confirmed target genes of human,
mouse or rat miRNAs are included in miRWalk (22).
Although previous studies have shown that miRNAs
were under tight transcriptional regulation (23–27), only
few investigations have been conducted on the transcrip-
tional regulation of human miRNA genes. Currently, only
221 human TF!miRNA (miRNA regulation by TF)
interactions have been reported in TransmiR (28). This
certainly represents only a small fraction of the total
number of regulatory networks, and large-scale investiga-
tions are needed to decode the full set of pathways gov-
erning the expression of human miRNAs. Human
miRNAs are either located in the introns of protein-
coding genes (intronic miRNAs) or between protein-
coding genes (intergenic miRNAs). Intronic miRNAs are
likely to be transcribed along with their host genes (29,30),
and existing TFBS prediction techniques for
protein-coding genes can be used for these systems.
However, for intergenic miRNAs, which are independ-
ently transcribed, the distances between transcription ini-
tiation sites (TSSs) and miRNA-coding regions
dramatically vary, ranging from a few hundred bases
(31) to 30-kb upstream (32). Also, TFs might not almost
exclusively bind at proximal promoters (12); it is likely
that a sufficient number of distal TFBSs would locate in
regions between miRNA promoters and their coding
regions providing additional regulatory information. To
fully explore the transcriptional regulation of human
intergenic miRNAs, it is necessary to examine large
genomic regions to locate all the possible TFBSs, and
thus existing methods employing only simple pattern
matching (33,34) would lack a reasonable accuracy.
Even filtered out with significant conservation (such as
Conserved TFBS track in UCSC human genome

browser and its web interface, PuTmiR) (35,36), there
would be still a large amount of FPs due to the presence
of slowly evolving neutral regions (37). On the other hand,
recent methods based on cell-specific experimental
data (38) have improved in accuracy, but the scope of
their applicability is limited. Prediction methods that are
suitable for human intergenic miRNAs, particularly those
with high accuracy and a wide applicable range, are still
lacking.

Here, we showed that the conserved and accessible
chromatin sequences integrated from 12 cell types,
immediately upstream of human intergenic miRNAs
found also in the mouse and rat (referred as HMR
intergenic miRNAs), were highly preserved across cell
types. Therefore, we developed ACTLocater (Accessible
and Conserved TFBSs Locater) incorporating known
chromatin features to identify TFBSs associated with
HMR intergenic miRNAs. Applying ACTLocater to
selected TFs showed that the positive predictive values
(PPVs) of predictions were greatly improved compared
to conventional methods based on sequence conservation
alone. Although ACTLocater was based on information
from a limited number of cell types, it successfully pre-
dicted TF!miRNA interactions in cells whose chromatin
accessibility information was not incorporated, suggesting
that ACTLocater could be applied to a wide range of cell
types. By using ACTLocater for TFs with known binding
specificities, we established a comprehensive human
TF!miRNA interaction database, ACTViewer. The re-
sultant maps provided a solid foundation for understand-
ing the regulatory pathways underlying HMR intergenic
miRNA expression.

MATERIALS AND METHODS

HMR intergenic miRNA identification and TSS prediction

All human miRNAs and genome annotations were
obtained from the UCSC Genome Browser (35) hg18
assembly. We considered miRNAs that reside between
the protein-coding genes as intergenic miRNAs and
identified human intergenic miRNAs conserved in mice
and rats by the miRviewer (39). We next adopted the
TSS predictions of these miRNAs from previous studies
(26,40,41) and manually calibrated them according to the
full-length cDNA data, SwitchGear TSS predictions and
ENCODE promoter-associated histone mark (H3K4me3)
on nine cell lines track in the UCSC Genome Browser.
If any full-length cDNAs overlapped with the miRNAs,
the 50-terminal region of the full-length cDNA was used as
the TSS for the corresponding miRNA; or if SwitchGear
TSS prediction in the miRNA upstream region coming
along with H3K4me3 peaks present in multiple cell lines,
the SwitchGear prediction was used; otherwise, TSSs for
the corresponding miRNAs were directly adopted from
previous studies. Same-strand miRNAs with common pre-
dicted TSSs were considered as one transcriptional unit.

HMR accessible alignments extraction and shuffling

We extracted the genomic coordinates of the upstream
40-kb flanking regions or truncated flanking regions
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of genes upstream of HMR intergenic miRNAs from
human genome. For clustered miRNAs, the regions
upstream of each individual sequence were merged. We
collected a total of 14 DNase-seq and four FAIRE-seq
datasets (as listed in Supplementary Table S2) from
the Data Coordination Center (http://genome.ucsc.edu/
ENCODE/) of the ENCODE Project (12,13) and
merged them as chromatin accessibility reference. We
then extracted Human/Mouse/Rat alignments within the
chromatin accessibility reference and in the regions
upstream of HMR intergenic miRNA units from 17-way
genome-wide multiple alignments using Galaxy (42).

To calculate the signal-to-noise ratios of FOXA1 pre-
dictions by ACTLocater and the Conservation method,
we shuffled (99 runs) HMR accessible alignments and
Human/Mouse/Rat alignments to generate alignments
with the same length, base composition and patterns of
gaps and conservation (43), respectively. The signal was
defined as the number of FOXA1-binding sites predicted
with the true alignments, whereas the noise was defined as
the number of sites predicted with the shuffled alignments.

TFBSs prediction by ACTLocater

To locate the TFBSs from the HMR accessibility align-
ments, we implemented two searching methods, CScanner
and MScanner, based on the consensus model and the
PSSM model (44).

We designed CScanner to search both strands of
every human sequence for sequence windows, and its cor-
responding orthologous sequences in mouse and rat
matched the consensus. We implemented MScanner to
score sequences on both strands as potential TFBSs
using the formula (44):

species scoreðiÞ ¼
X

b

fb,i log2
fb,i

pb

where i is the position within the site, pb is the relative
frequency of base b in the genome and fb,i is the
observed relative frequency of base b at that position
(from the matrix).

For each species, scores were normalized to a 100-point
scale. The average score was defined as the arithmetic
mean of the species scores. Predictions were based on
the thresholds of the species scores and the corresponding
average score.

PSSMs and/or consensus sequences used for selected
TFs predictions by ACTLocater were as follows:
for FOXA1, M00131 from TRANSFAC (45), MA0148
from JASPAR (46) and consensus sequence
TRTTKRYTY (47); for c-Myc, M00118, M00123 and
M00615 from TRANSFAC, MA0059 and MA0147
from JASPAR, and consensus sequence CACGTG (48);
for the E2F family, M00024, M00050 and M00516 from
TRANSFAC, MA0024 from JASPAR and consensus
sequence TTTSCGC (49); for MyoD, a PSSM derived
from ChIP-seq data (50) (details in ‘Supplementary
Methods’ section); for NRSF, M00256 from
TRANSFAC, MA0138 from JASPAR and two PSSMs
from previous studies (51,52); for Oct4, M00135,

M00138, M00161, M00195 and M00210 from
TRANSFAC, MA0142 from JASPAR and consensus
sequence ATGCWAAT (53). The cutoff values for
species scores and average score for MScanner were set
to 80 and 85, respectively, for all the PSSMs except
NRSF. Because this protein recognized a long motif, its
species and average score cutoffs were set to 75 and 80,
respectively.

Validation of predictions by genome-wide ChIP data

We collected the binding peaks from the ENCODE
Project (12,13) and previous genome-wide ChIP experi-
ments (54–56) to evaluate the TFBS predictions. ChIP
peaks of NRSF have been identified by MICSA (57)
using the raw data from the ENCODE Project. For each
TF, we merged all ChIP peaks. We next assessed all pre-
dictions for FOXA1, c-Myc, the E2F family and NRSF by
comparing the TFBSs predicted in the human genome
with the corresponding genome-wide ChIP datasets
generated by using human cell lines. A prediction was
considered as a true positive (TP) if the predicted site
was inside a merged ChIP peak; otherwise, the prediction
was considered as a FP. We calculated the PPV as
TP/(TP+FP). A merged ChIP peak was successfully
predicted (TP) if there was at least one predicted TFBS
within it; otherwise, the peak was annotated as a false
negative (FN). And we calculated the sensitivity as TP /
(TP+FN).
We assessed the evidence supported MyoD-binding

sites by comparing the TFBSs predicted in the mouse
genome with ChIP-seq datasets obtained from mouse
cells (50) (ChIP-seq peaks were identified as described in
‘Supplementary Methods’ section). And we assessed
evidence supported Oct4-binding sites by comparing the
TFBSs predicted in the human and mouse genomes with
ChIP-seq datasets obtained from human and mouse em-
bryonic stem cells (26), respectively.

Definition of accessible chromatin regions for skeletal
muscle and embryonic stem cells

We defined accessible chromatin regions of skeletal muscle
cells by merging the DNase-seq peak regions of HSMM,
HSMMtube and SKMC skeletal muscle cells and defined
those of embryonic stem cells by merging the DNase-seq
or FAIRE-seq peak regions of H1-hESC, H7-hESC and
H9ES embryonic stem cells. All the DNase-seq and
FAIRE-seq datasets were obtained from the Data
Coordination Center of the ENCODE Project, as listed
in Supplementary Table S2.

ACTViewer construction

To construct the ACTViewer database, we collected
PSSMs from TRANSFAC, JASPAR and UniPROBE.
Then, we applied MScanner to the HMR accessible align-
ments for each PSSM. Thresholds for species and average
scores were set to 80 and 85, respectively. ACTViewer
database was developed as described previously (58).
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Cell culture and stable cell line generation

MDA-MB231 cells were a gift from Prof. Yan Zhang
(Sun Yat-sen University, Guangzhou). MCF-7 cells and
HEK293T cells were obtained from the Shanghai Cellular
Institute of Chinese Academy of Sciences (Shanghai,
China). All cells were grown in Dulbecco’s modified
Eagle’s medium (GIBCO) supplemented with 10% fetal
bovine serum (GIBCO) and were cultured in a 37�C incu-
bator with 5% CO2.
The FOXA1 cDNA lentiviral vector and control empty

vector were purchased from Fulengen Corporation
(Guangzhou, China). To produce the lentivirus, we tran-
siently co-transfected FOXA1 cDNA lentiviral vector
or empty vector with the ViraPowerTM Lentiviral
Packaging Mix (Invitrogen) into HEK293T cells using
Lipofectamine 2000 reagent (Invitrogen). MDA-MB231
cells were infected and then selected with puromycin
(Sigma–Aldrich).

Chromatin immunoprecipitation assay

We performed ChIP assays in MCF-7 cells by using a
chromatin immunoprecipitation kit (Millipore) according
to the manufacturer’s instructions. Protein–DNA
complexes were precipitated with a control IgG or an
anti-FOXA1 antibody (ab5089, Abcam). PCR primers
are listed in Supplementary Table S5.

Western blotting analysis

Proteins were extracted with RIPA lysis buffer. FOXA1
protein was revealed with a polyclonal antibody (C-20,
Santa Cruz). Signals were detected by the Super Signal
Western Pico chemiluminescent substrate (Pierce).
Western blotting of GAPDH on the same membrane
was used as a loading control.

miRNA microarray

miRNA microarrays were performed at the Beijing
CapitalBio Corporation. Total RNA content extracted
by TRIzol reagent (Invitrogen) from MDA-MB231 cells
stably overexpressing FOXA1 or control cells was labeled
with biotin. Labeled samples were hybridized to
GeneChip�miRNA Array (V2.0). Raw data were
normalized and analyzed using the miRNA QC tool
software (Affymetrix). We considered the HMR intergenic
miRNAs with a fold change >1.5 or <0.75 in the FOXA1
overexpressing MDA-MB231 cells as FOXA1-affected
HMR intergenic miRNAs.

Real-time RT–PCR

Total RNA content was reverse-transcribed to cDNA
using the Primescript RT reagent kit (Takara). Real-time
PCR was carried out using SYBR Premix ExTaq (Takara)
according to the manufacturer’s instructions. The relative
expression of FOXA1 was calculated using the compara-
tive 2���Ct method and was normalized to GAPDH. The
following primer sets were used: for FOXA1, 50-GAAGAT
GGAAGGGCATGAAA-30 (forward) and 50-GCCTGA
GTTCATGTTGCTGA-30 (reverse); for GAPDH, 50-CC
ATGGGGAAGGTGAAGGTC-30 (forward) and 50-GA

AGGGGTCATTGATGGCAAC-30 (reverse). To detect
the miRNA expression levels, Bulge-LoopTMmiRNA
qPCR primer sets and U6 primer sets were purchased
from RiBoBio Corporation (Guangzhou, China). The
relative expression levels of miRNAs were normalized to
U6 snRNA. We performed all real-time RT–PCR experi-
ments in triplicate.

RESULTS

ACTLocater: integrating evolutionary conservation and
chromatin structure to predict TFBSs associated with
HMR intergenic miRNAs

As components of conserved regulatory systems (59), we
reasoned that HMR intergenic miRNAs rely not only on
the conservation of the miRNA sequences but also on the
transcriptional regulation elements. Via sequence examin-
ation and homology searches, we identified 203 HMR
intergenic miRNAs, which were grouped into 106 tran-
scriptional units (Supplementary Table S1). We arbitrarily
chose a 40-kb region upstream of miRNA as the
TFBS search area, such space was sufficient as indicated
by the fact that a significant fraction of TSSs of human
intergenic miRNAs are within 10-kb upstream regions
(60,61).

To explore the features of accessible chromatin se-
quences upstream of HMR intergenic miRNAs, we
mapped chromatin accessibility information of 12 cell
types (Supplementary Table S2) obtained from the
ENCODE Project (12,13) to the search area. In humans,
mice and rats, 63.7% of the accessible sequences were
conserved, whereas only 43.0% of the inaccessible se-
quences were conserved, indicating that accessible
regions are rich in functional elements. Conserved access-
ible sequences were found upstream of 101 HMR
intergenic miRNAs (Figure 1A and Supplementary
Dataset S1). We next employed a leave-one-out
cross-validation method to evaluate the conserved access-
ible chromatin information across cell types. Each round,
conserved accessible sequences of one cell type were left
out, and the sequences of left-out cell type recovered from
those of the remaining cell types were then examined. The
percentages of sequences recovered ranged from 74.7% to
90.0% (Figure 1B). On average, for each examined cell
type, 79.7% of the conserved accessible sequences could
be recovered from the remaining cell types. Such high
values were not due to the similarities across cell types
(Supplementary Table S3). SK-N-SH_RA and SKMC,
which did not have any similar cell types in our collection,
still had high sequence recovery values (80.2% and 78.5%,
respectively). These results indicated that a significant
fraction of conserved accessible sequences integrated
from diverse sources were preserved across cell types and
also implied that such integrated sequences may provide
valuable clues for other cells whose chromatin accessibility
has not been investigated.

Based on these observations, we designed the
ACTLocater algorithm to incorporate chromatin accessi-
bility and evolutionary conservation profiles, as shown in
Figure 1C. First, we constructed a reference for accessible
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chromatin in the human genome by merging the DNase-
seq and FAIRE-seq peak regions of 12 cell types. Then,
we extracted multiple alignments within the accessible ref-
erence regions (referred to as HMR accessible alignments)
from the Human/Mouse/Rat genome alignments. Finally,
we identified TFBSs in HMR accessible alignments by
CScanner and/or MScanner (details in ‘Materials and
Methods’ section).

Initially, the search area contained 9750 conserved
sequence blocks (�1.45Mb human DNA sequences).
When restricted to the accessible chromatin reference
regions, only 3217 blocks (�0.34Mb human sequences)
remained. As the search area was reduced by 76.6%, the
prediction specificity was greatly improved. To illustrate,
we made a simple prediction of the Twist!hsa-miR-10b
interaction similarly to that in Ma et al. (24) and
visualized it in the UCSC genome browser (Figure 1D).
Within the 4-kb region upstream of hsa-miR-10b, we
identified 12 E-boxes (CANNTG), of which 5 were
conserved. By comparing the predictions against the
accessible chromatin reference, only one E-box

remained, which was the proven Twist-binding site (24),
demonstrating the high efficiency of ACTLocater.

Prediction and experimental validation of
FOXA1-targeted miRNAs

To assess the performance of its predictions, we applied
ACTLocater to predict HMR intergenic miRNAs
regulated by FOXA1. A total of 52 binding sites were
predicted (Supplementary Table S4). In contrast, the
Conservation method (applying ACTLocater without
considering chromatin accessibility) predicted 223 sites,
indicating that incorporating chromatin accessibility in-
formation can greatly reduce the number of predictions.
To evaluate the significance of the predicted FOXA1-

binding sites, we repeated predictions with shuffled in-
put alignments. As shown in Figure 2A, the predictions
of ACTLocater had significantly higher signal-to-noise
ratios than those of the Conservation method
(Two-sided two-sample Student’s t-test, P=2.2� 10�19).
We then used FOXA1-binding peaks from previous

Figure 1. Development of the ACTLocater method. (A) Summary of conserved accessible sequences upstream of 101 HMR intergenic miRNA units.
The 101 regions upstream of miRNA units were arranged side by side. Within each region, conserved accessible sequences of 12 cell types were
aligned according to their genomic coordinates. (B) Results of the leave-one-out cross-validation performed in 12 cell types. The horizontal axis
shows the cell type left out. The vertical axis shows the percentage of conserved accessible sequences recovered by the remaining cell types. The
average is marked by the dashed line. (C) Flowchart for the ACTLocater method. PSSMs—position specific scoring matrices. (D) The screenshot
shows genome browser tracks for E-boxes (in human genomic sequence), conserved E-boxes (found in human, mouse and rat), verified E-boxes
[two E-boxes verified as negative result and positive result in Ma et al. (24), respectively], accessible regions (accessible chromatin regions merged
from 12 cell types) and placental mammal basewise conservation profile (35) for the 4-kb flanking region upstream of Hsa-miR-10b.
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Figure 2. Prediction and validation of FOXA1-targeted HMR intergenic miRNAs. (A) A boxplot shows the signal-to-noise ratios of FOXA1
predictions by the Conservation method and ACTLocater method, respectively. ***P< 0.001. (B) Examples of ChIP assays in MCF-7 cells.
Primers against predicted regions were used to amplify DNA immunoprecipitated with FOXA1 antibody (lane 3) or control rabbit IgG (lane 2).
Genomic DNA was used as a positive control (lane 1). Site P2 validated by previous studies (54–56) and site NC with no evidence of FOXA1 binding
(54) were used as a positive and a negative control for ChIP enrichment, respectively. (C) Real-time RT–PCR and (D) western blotting analysis
of FOXA1 from MDA-MB231 cells stably expressing empty vector or FOXA1. Error bars indicate s.e.m.; *P< 0.05. (E) Venn diagram of
FOXA1-targeted HMR intergenic miRNA units identified by ACTLocater or previous genome-wide ChIP studies. miRNA units found only in
the genome-wide ChIP studies were classified according to the chromatin accessibility and conservation of corresponding ChIP peak regions. (F) Fold
changes of randomly selected and negative control miRNAs in FOXA1 overexpressing MDA-MB231 cells relative to the empty vector controls.
miRNAs with multiple locus in the human genome are marked underlines. Hsa-miR-147a and hsa-miR-150-3p, which there were no FOXA1-binding
sites associated with, were used as negative controls. Error bars indicate s.e.m.; two-sided one-sample Student’s t-test; *P< 0.05; **P< 0.01;
***P< 0.001. (G) Classification of predicted FOXA1-binding sites. Sites overlapped with ChIP peaks of H3K4me1, H3K4me3 or Pol II are
marked as solid circles, otherwise are marked as unfilled circles. The plot shows the distances (absolute value) between sites and their corresponding
TSSs. The TSS of the first miRNA unit is not available. **P< 0.01.
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genome-wide ChIP studies (54–56) to evaluate the quality
of these predictions. Of the binding sites predicted by the
Conservation method, 13.9% (31/223) could be validated
against the known set of binding sites. For ACTLocater,
the number of predicted sites reduced to 52, 15 of which
were known binding sites and the PPV increased to
28.8%. The sensitivities of the Conservation method and
ACTLocater were 15.6% and 8.4%, respectively.
ACTLocater demonstrated substantially higher specificity
than the Conservation method, while reducing the sensi-
tivity. We next conducted ChIP assays in MCF-7 cells to
verify predictions, which were not validated by previous
genome-wide ChIP studies. Representative examples of
ChIP results are shown in Figure 2B, and full results can
be found in Supplementary Figure S1. 81.1% (30/37) of
these sites were confirmed in MCF-7 cells, and thus the
overall PPV of ACTLocater predictions was 86.5% (45/
52), emphasizing its specificity in predicting FOXA1-
binding sites. Furthermore, these results also indicated
that ACTLocater could discover novel sites which were
missed by high-throughput experimental methods.

To examine the functional importance of the pre-
dicted sites, we employed miRNA arrays to monitor the
miRNA expression changes in FOXA1 overexpressed
MDA-MB231 cells (Supplementary Table S6). FOXA1
overexpression was validated by real-time RT–PCR
(Figure 2C; two-sided two-sample Student’s t-test,
P=0.0048) and western blotting (Figure 2D). We found
that 50.0% (20/40) of the HMR intergenic miRNA units
predicted by ACTLocater and 46.3% (31/67) of those
found by previous genome-wide ChIP studies (54–56)
showed a change in expression. 90.0% (18/20) of the
FOXA1-affected HMR intergenic miRNA units predicted
by ACTLocater were also identified by the genome-wide
ChIP studies, indicating that the miRNA units detected by
ACTLocater correlate well with those found by previous
genome-wide ChIP studies. However, 13 miRNA units
detected by the genome-wide ChIP studies were not pre-
dicted by ACTLocater. A detailed examination of the
genomic features of the corresponding ChIP peak
regions showed that these sequences lacked a conserved
FOXA1-binding motif (Figure 2E), which is necessary for
ACTLocater prediction. Finally, we used a more sensitive
method, real-time RT–PCR, to further investigate the
effect of ectopic expression of FOXA1 on miRNAs. We
randomly selected 22 miRNA units and chose one
member miRNA for testing from each unit. 77.3%
(17/22) of the randomly selected miRNAs showed sig-
nificant changes in expression levels, while two negative-
control miRNAs showed no significant changes
(Figure 2F). Hsa-miR-130a, of which the predicted site
was not experimental supported, was likely regulated by
FOXA1 indirectly. It should be noted that some of the
examined miRNAs have multiple copies in the human
genome, and the detection of real-time RT–PCR cannot
ensure that the expression changes of multi-locus miRNAs
were from the locus with predicted FOXA1-binding sites.
When considering the miRNAs associated with experi-
mental supported FOXA1-binding sites and derived
from a unique locus, there are still 73.3% (11/15)
miRNAs showed significant changes. These results

indicated that most of the predicted FOXA1-binding
sites were functional. Hsa-miR-202, hsa-miR-129-3p and
hsa-miR-24, members of three miRNA units uniquely pre-
dicted by ACTLocater, all showed a significant change in
expression levels, suggesting that ACTLocater could
predict novel functional FOXA1-binding sites missed by
genome-wide experimental assays.
Distinct histone signatures have been found for

proximal promoters and distal enhancers. Previous
studies have shown that strong H3K4me1 and
H3K4me3 signals were associated with promoters,
whereas strong H3K4me1 and weak H3K4me3 signals
were associated with enhancers (10,62). To examine
whether ACTLocater could predict not only proximal
but also distal FOXA1-binding sites, we collected
ChIP-seq peaks of histone modifications from various
cells released by the ENCODE Project (12,13) (datasets
are listed in Supplementary Table S2) and used them to
classify the FOXA1-binding sites. Of the 51 predicted
binding sites with histone modifications available, 37
were classified as proximal TFBSs and 14 were classified
as distal TFBSs (Figure 2G). These classifications were
supported by the fact that proximal TFBSs were usually
associated with the Pol II ChIP-seq peaks, but not the case
for distal TFBSs (Two-sided Fisher’s exact test,
P=0.00044; Pol II ChIP-seq datasets were obtained
from the ENCODE Project, as listed in Supplementary
Table S2). Moreover, the distances of proximal TFBSs
from the corresponding TSSs were significantly less than
distances between distal TFBSs and their TSSs (Two-sided
two-sample Student’s t-test, P=0.0028). These data
indicated that ACTLocater predicted both proximal and
distal FOXA1-binding sites. Six sites were found to be
located in genomic regions between TSSs and miRNAs,
suggesting that these regions could contain additional
functional regulatory elements.

Evaluation on other selected TFs

To further assess its performance, we applied ACTLocater
to identify the target miRNAs of c-Myc, the E2F family
and NRSF (also known as REST). The program predicted
29 c-Myc, 25 E2F and eight NRSF-binding sites
(Supplementary Table S7, S8 and S9), corresponding to
22 c-Myc!miRNA, 18 E2F!miRNA and seven
NRSF!miRNA interactions, respectively. The PPVs of
these predictions based on ACTLocater were all superior
to that of the Conservation method, while the sensitivities
of these two methods were comparable (Table 1). In
previous studies (23,25), 10 HMR intergenic miRNA
units have been identified as directly transcriptional
targets of c-Myc in P493-6 cells. ACTLocater successfully
predicted 50% (5/10) of these miRNA units. As the c-Myc
binding was assayed in conserved regions without con-
sidering the presence of a binding motif in Chang et al.
(25), we examined the binding regions (PCR regions in the
previous study spanned 1 kb) of the missing units and
found that c-Myc binds to these regions via non-canonical
motifs, causing them to be overlooked by ACTLocater.
Additionally, some c-Myc predictions not validated by
ChIP-seq were supported by other studies. For example,
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H19 RNA, the precursor of hsa-miR-675 and hsa-miR-9-3
have been found to be direct targets of c-Myc (63,64).
These results showed that ACTLocater can yield consist-
ent high-specificity predictions.

Assessment of the applicability of ACTLocater

To determine the scope of our method, we used
ACTLocater to predict cell-specific MyoD!miRNA
and Oct4!miRNA interactions that occur in skeletal
muscle and embryonic stem cells, respectively.
Meanwhile, we generated two predictions with the chro-
matin accessibility data of skeletal muscle and embryonic
stem cells and used them as independent verifications of
the ACTLocater predictions.
To test whether MyoD!miRNA interactions could be

predicted by the chromatin accessibility data of
non-muscle cell types, we removed the chromatin accessi-
bility data of SKMC cell from our chromatin accessibility
reference. A total of 22 MyoD-binding sites were pre-
dicted by ACTLocater (Figure 3A and Supplementary
Table S10). Also, we made a similar prediction with the
chromatin accessibility data of skeletal muscle cells and
yielded 26 MyoD-binding sites (Figure 3A and
Supplementary Table S11). To avoid the potential differ-
ences in FP predictions between two datasets, we only
considered sites with evidence supported. As shown
in Figure 3B, 71.4% (10/14) of evidence supported sites
(50) made with the chromatin accessibility data of skeletal
muscle cells could be successfully predicted with those of
non-muscle cells.
We next performed a similar analysis between the two

Oct4 predictions, which were made with chromatin acces-
sibility data of non-stem cells (our chromatin accessibility
reference) and embryonic stem cells, respectively. Both
predictions reported 16 Oct4-binding sites (Figure 3C;
Supplementary Table S12 and S13). As shown in Figure
3D, 77.8% (7/9) of evidence supported sites (26,65) made
with the chromatin accessibility data of stem cells could be
successfully predicted with those of non-stem cells.
Taken together, most cell specific TF!miRNA inter-

actions were successfully predicted, indicating that
ACTLocater could be applied to a wide range of cell
types, such as cells whose chromatin accessibility profiles
had not yet been characterized.

ACTViewer: regulatory map of HMR intergenic miRNAs

Given that ACTLocater achieved high PPVs and could
be widely applied, we constructed a regulatory map com-
posed of TFBSs associated with HMR intergenic miRNAs
by applying ACTLocater to the PSSMs from
TRANSFAC (45), JASPAR (46) and UniPROBE (66).
We found that different names in these database entries
sometimes corresponded to TF isoforms or even to the
same TF, which poses a serious challenge to consistent
TF nomenclature. For the present study, we separated
the predictions with the names and accession numbers
retained. We retrieved a total of 295 PSSMs from
TRANSFAC and predicted 13 688 TFBSs, corresponding
to 4085 TF!miRNA interactions. Additionally, we

Figure 3. Applicability assessment of ACTLocater. (A) Summary of
MyoD-binding sites predicted with chromatin accessibility data of
skeletal muscle and non-muscle cells, respectively. Sites are aligned ac-
cording to the genomic coordinates. (B) Venn diagram of evidence
supported MyoD sites. (C) Summary of Oct4-binding sites predicted
with chromatin accessibility data of embryonic stem and non-stem cells,
respectively. Sites are aligned according to the genomic coordinates. (D)
Venn diagram of evidence supported Oct4 sites.

Table 1. Summary of FOXA1, c-Myc, the E2F family and NRSF predictions by the conservation method and ACTLocater

TF Conservationa ACTLocater

No. sitesb PPVc (%) Sensitivityd (%) No. sitesb PPVc (%) Sensitivityd (%)

FOXA1 223 13.9 15.6 52 28.8 8.4
c-Myc 41 51.2 5.8 29 72.4 5.8
E2F 38 47.4 10.2 25 64.0 9.4
NRSF 17 52.9 33.3 8 87.5 25.9

aThe Conservation method was the same as ACTLocater but without considering chromatin accessibility reference.
bNumber of sites predicted by the Conservation method and ACTLocater, respectively.
cPPV and dSensitivity of FOXA1 predictions were assessed by the genome-wide ChIP studies (54–56) and that of remaining TFs were assessed by the
corresponding ChIP-seq datasets obtained from the ENCODE Project, as listed in Supplementary Table S2.
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retrieved 129 PSSMs from JASPAR and predicted 13 170
TFBSs, corresponding to 3320 TF!miRNA interactions.
Finally, we retrieved 389 PSSMs from UniPROBE and
predicted 938 TFBSs, corresponding to 724
TF!miRNA interactions. Although false predictions
could not be avoided, a large number of predictions
were assumed to be true TFBSs according to the high
precision of ACTLocater, indicating that a complex regu-
latory network governing the expression of HMR
intergenic miRNAs remains to be decoded.

To provide an effective view of the TFBSs predicted by
ACTLocater, we developed the ACTViewer database
(ACTViewer is accessible at http://deepbase.sysu.edu.cn/
ACTViewer/). We provided a genome browser and search
forms in ACTViewer to facilitate data access. Predictions
from ACTLocater could be viewed using the ACTViewer
browser (Figure 4A). The browser displayed annotation
tracks beneath genome coordinate positions, allowing
rapid visual correlation of different types of genome an-
notations. Zooming and scrolling controls helped to
narrow or broaden the displayed chromosomal range to
focus on the exact region of interest. We displayed
ACTLocater predictions as tracks according to the
PSSMs data sources and added secondary links from
entries within prediction tracks to lead to corresponding
details from each entry (Figure 4B). With the ACTViewer
browser, users can conveniently examine TFBSs that are
clustered, overlapping or located in special genomic
regions. To access the predictions made about a specific

TF or miRNA, we also provided a list of search forms
according to TF and/or miRNA. A query using a specific
TF could retrieve the miRNAs predicted as its target
genes, and using a specific miRNA could allow users to
find the predicted TFBSs associated with the miRNA
input (Figure 4C and D, respectively). Additionally,
users could retrieve interactions from ACTViewer by spe-
cifying a TF and a miRNA simultaneously (Figure 4E).
In conclusion, ACTViewer provided interfaces for
integrating visualization and rapid retrieval of the
ACTLocater predictions.

DISCUSSION

This work has presented a new computational method
called ACTLocater that integrates evolutionary conserva-
tion and chromatin structure to predict TF!miRNA
interactions with significantly improved PPVs. Most
notably, ACTLocater uses chromatin accessibility data
from a limited number of cell types for reference, but
could also be applied to other cell types whose chromatin
accessibility has not yet been characterized. Thus, the
ACTLocater method and the ACTViewer resource have
considerable potential to advance studies of the miRNA
transcriptional regulation that underlies diverse human
biological processes.
Previously, several studies have also attempted to

predict the TFBSs associated with human miRNAs. For
example, miRGen (33) has mapped all vertebrate TF

Figure 4. ACTViewer: a database documented the ACTLocater predictions on available PSSMs. (A) A snapshot of the ACTViewer genome
browser. The controls (at the top of the browser) position the browser over a specific region in the genome. Annotations are displayed as individual
tracks along the genomic regions. (B) A pop-up window containing detailed information about a predicted HNF4A-binding site. (C, D and E)
Snapshots of searching ACTViewer for target miRNAs of NF-kB (C), TFBSs associated with hsa-miR-101-1 (D) and c-Myc!hsa-miR-17 inter-
action (E). Search results for target miRNAs of NF-kB and TFBSs associated with hsa-miR-101-1 are partially shown.

PAGE 9 OF 12 Nucleic Acids Research, 2013, Vol. 41, No. 1 e5

http://deepbase.sysu.edu.cn/ACTViewer/
http://deepbase.sysu.edu.cn/ACTViewer/


matrices from TRANSFAC to the regions spanning 5-kb
upstream to 1-kb downstream of the miRNA TSSs.
MIR@NT@N (34) has predicted potential TFBSs in the
promoter regions of human miRNAs based on PSSMs
from JASPAR and the ‘CpG island’ signal. However,
these methods are based on simple pattern matching and
are thus prone to false predictions. Until this point, the
comparative genomics approach, such as the TFBS
conserved track in the UCSC genome browser (35), was
the most efficient method to predict potential TFBSs
associated with miRNAs. As shown by our results for
several TFs, ACTLocater yields a significant improvement
in PPV compared to the comparative genomics approach
using the same parameters (improvement in PPV could
also be observed by comparing selected TF predictions
to the UCSC conserved TFBS track, and the benefit of
incorporating chromatin structure features could be
noticed by comparing these predictions of the UCSC
conserved TFBS track before and after filtering by our
chromatin accessibility reference; see Supplementary
Figure S2). Owing to the accumulation of cell-specific ex-
perimental data, computational methods integrating this
information have also been developed to identify human
TFBSs associated with miRNAs or on a genome-wide
scale. For example, a method based on sequence
features, histone modifications, and DNase I hypersensi-
tivity has been developed and applied to human CD4+ T
cells (15). MITF-regulated miRNAs have also been suc-
cessfully identified by combining nucleosome information
and motif matching in human melanoma cells (38).
Furthermore, CENTIPEDE (16) has been used in
human lymphoblastoid cells by incorporating DNase I
hypersensitivity. In contrast to these cell-specific
methods, ACTLocater was based on a chromatin accessi-
bility reference, which was derived from a panel of cell
lines and was highly preserved across cell types, making
ACTLocater widely applicable.
ChIP-seq has been considered the state-of-the-art

experimental technique for profiling TFBSs including
species-specific and non-canonical binding sites.
Additionally, ChIP-seq has been able to avoid ambiguity
for TFs that share similar binding preferences; however,
ChIP-seq has to be carried out for only one TF using one
set of conditions at a time. Moreover, because of the
sequencing depth and performance of data analysis,
some true binding sites are likely to be missed (67,68).
ACTLocater, by contrast, can evaluate all TFs simultan-
eously, to provide nucleotide precision and to uncover
novel binding sites missed by ChIP-seq assays. Because
of these abilities, ACTLocater and ChIP-seq technology
could be complementary tools to provide exhaustive infor-
mation regarding cis-regulatory networks.
Although the performance of our method is

encouraging, integrating more source data is likely to
improve the ability of ACTLocater. Currently, chromatin
accessibility datasets from only 12 cell types were used; we
expect that by incorporating more chromatin accessibility
datasets from other cell types released by the ENCODE
Project (12,13), the coverage of all possible accessible and
conserved regions will increase (improvement in the
coverage of these regions by increasing cellular datasets

can be seen in Supplementary Figure S3), and thereby
improve the sensitivity of ACTLocater. Another limita-
tion of ACTLocater is its reliance on binding motifs for
the recognition of TFBSs. The human genome encodes
about 1400 TFs with sequence-specific DNA-binding
properties (69), and binding preferences were only avail-
able for a small proportion of these factors. Establishing
the binding specificities of these TFs using techniques such
as protein-binding arrays and high-throughput SELEX
(70) will undoubtedly expand the predictive ability of
ACTLocater.

Currently, ACTLocater focuses on the transcriptional
regulation of intergenic miRNAs in humans, but modified
algorithms based on the same principles could be applied
for other genes or on a genome-wide scale as long
as the required data are provided. Furthermore, the
multiple genome alignments of Drosophila and
Caenorhabditis species were already available (35), and
the monENCODE Project continues to produce a large
number of chromatin accessibility data of D. melanogaster
(71) and C. elegans (72). Integrating these datasets,
ACTLocater could also be expanded to these species.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–13, Supplementary Figures 1–3,
Supplementary Methods, Supplementary Dataset 1,
Supplementary Software 1 and Supplementary Reference
[73].
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