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The chordless cycle sizes of spatially embedded networks are
demonstrated to follow an exponential growth law similar to ran-
dom graphs if the number of nodes Nx is below a critical value N*.
For covalent polymer networks, increasing the network size, as
measured by the number of cross-link nodes, beyond N* results
in a crossover to a new regime in which the characteristic size
of the chordless cycles h* no longer increases. From this result,
the onset and intensity of finite-size effects can be predicted from
measurement of h* in large networks. Although such informa-
tion is largely inaccessible with experiments, the agreement of
simulation results from molecular dynamics, Metropolis Monte
Carlo, and kinetic Monte Carlo suggests the crossover is a fun-
damental physical feature which is insensitive to the details of
the network generation. These results show random graphs as
a promising model to capture structural differences in confined
physical networks.
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Physical interaction networks are a central concept in the char-
acterization of disordered materials. Examples from materi-

als science span van der Waals networks in glasses (1), hydrogen
bond percolation (2), contact networks in jamming and glass
transition (3, 4), and transient networks (5) such as polymer
entanglements (6). Such materials are often found in confined
environments where the equation of state differs strongly from
the bulk behavior, such as those networks confined in holes,
slabs, and films, and on periodic surfaces. For polymers in par-
ticular, links are well established between the connectivity of
polymer chains and the physical properties of the bulk mate-
rial. The design of new polymer network structures to exploit
topological differences is undoubtedly a rapidly emerging area
(7), and recent progress in the characterization of bulk mate-
rials has been made through network disassembly spectroscopy
(8), nuclear magnetic resonance spectroscopy (9), and analyti-
cal work to predict the elasticity of gels and elastomers (e.g., see
ref. 10). Nonetheless, experiments have, so far, been unable to
characterize the network structure in the general terms of graph
theory, and the most accessible features involve low-order cycles
that strongly influence rubber elasticity, such as loops composed
of one or two molecules.

Here, a systematic study of finite-size networks from simula-
tions is presented, where we consider covalent polymer networks
as representative spatial networks with intermediate order. Com-
pared with random networks, introducing spatial (e.g., polymer
chains) or chemical (covalent network junctions) constraints has
the effect of lowering the number of accessible topological states
and the corresponding measures of entropy (11). In what follows,
a crossover is identified between two regimes, one consisting of
small random-like networks that are seemingly unaffected by the
spatial constraints of the polymer chains and the other consist-
ing of larger networks having the structure of the bulk material.
An analogy of the structure of small physical and random net-
works is explored, where the structural measure is taken as the
mesh size of the network, that is, the size of cycles without a
bisecting chord.

Results and Discussion
A number of simulation methods have been used to model the
covalent structure of polymer networks, both with and with-
out explicit spatial embedding. These include kinetic Monte
Carlo (12–14) (kMC), graph-driven statistical models (15, 16),
Metropolis Monte Carlo (17, 18) (MMC), and molecular dynam-
ics (MD). In this work, end-linking polymer networks were
generated with a quenched MMC approach, which creates a spa-
tially embedded network by assigning edges that have a small
length in Cartesian distance and simultaneously satisfy the chem-
ical constraints of the polymer chains and cross-linker molecules.
That is, a regular network is created where edges (polymer
chains) are assigned to nodes (cross-linker molecules) such that
each node has the same degree (covalent bonds per molecule)
of fx . An example snippet of a polymer network is shown in
Fig. 1A. The influence of finite-size effects was then studied with
a series of simulations where the number of nodes Nx is varied
from 50 to 5,000. The values of fx and Nx were independently
varied, while the number of edges was fixed as Nx fx/2 to main-
tain a stoichiometric mixture of polymer chains and cross-linker
molecules. The size of the simulation cell was scaled to main-
tain a constant monomer density of ρ=0.85 for all simulations.
Five independent replicas of each fx–Nx pair were created, and
the chordless cycles were determined for each network. Refer-
ence calculations with kMC and MD were carried out to verify
the MMC predictions. For further comparison, random networks
were generated with similar values of fx–Nx , in which the only
constraints were a regular distribution of the node degree. For
all networks, we take the maximum of the distribution of chord-
less cycle sizes as a characteristic mesh size h∗ (19) and study
the relationship of h∗ with Nx . (See Materials and Methods
for details.)

The mesh size of random and polymer networks is shown in
Fig. 1B for fx in the range of three to eight (20). For small values
of Nx , both types of networks are seen to follow an exponential
law of the form Nx (h∗)=αβh∗, where the parameters α and β
depend strongly on the node degree fx . Increasing fx leads to a
rapid decrease of h∗, which is consistent with analytical predic-
tions for other measures of shortest cycles in random networks
(21). As Nx increases, the physical constraints of the polymer
networks enforce a crossover to the bulk behavior in which h∗
reaches a plateau value at y∗ and the corresponding number of
nodes N∗. Increasing Nx beyond N∗ does not change the mesh
size. The mesh size distributions corresponding to the arrest of
h∗ are shown in Fig. 1B, Insets, where each curve is found for
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Fig. 1. Summary of high-order chordless cycles found in polymer networks. (A) The structure of polymer networks. (B) Relationship of the characteristic
cycle size h* and the number of cross-linkers Nx for random (RAN) networks, MMC, kMC (KMC), and dynamic simulations (DYN). Numerical fits of random
networks to Nx(h*) =αβh* and h* = y* are shown (dashed lines) for fx = 3− 8. (Insets) Approximate mesh size distributions, where each curve is taken as a
Gaussian fit to five MMC simulations of size Nx . The distribution corresponding to N* and the characteristic mesh size y* are shown in red. (C) Relationship
of the junction functionality fx with the crossover cycle size y* and the corresponding number of nodes N*.

one value of Nx ; the relations of fx with y∗ and N∗ are shown
in Fig. 1C.

Importantly, correlations can be established between the bulk
mesh size y∗ with the number of nodes at the crossover N∗ as
well as the parameters of the exponential law (α and β). This
connection is widely useful, as it allows the presence of finite-size
effects to be predicted from the number of nodes in the physical
network, a quantity that can be estimated from experiments. Fur-
ther, the intensity of the finite-size effect (for those networks with
Nx <N∗) can be understood by treating the small physical net-
work with the exponential law given above for random networks.
As demonstrated in Fig. 2, both N∗ and parameters α and β are
related to y∗ through a power law dependence. For the regular
spatial nets considered here, the minimal number of nodes to
capture the bulk structure is in the range of about 400 to 16,000,
depending on the bulk mesh size, and follows a power law of the
form N∗≈ yc

∗ with c≈ 1.70.
In the case of polymer networks, the effect of a related mea-

sure of chordless cycle size, the smallest loop size, has been
shown analytically and numerically as a negative correction (e.g.,
see ref. 22) to the elastic modulus. In other materials, the nature
of the physical constraints can be expected to change the details
of the finite-size behavior, particularly if the mesh size or other
topological features cannot be reduced in size due to chemical
considerations such as unfavorable bond angles, steric hindrance,
or chain stiffness. Nonetheless, the result given here suggests that
descriptions of random networks, like those given in Fig. 2, can
incorporate confinement effects into equations of state or con-
stitutive laws that explicitly include the topological structure of
the forces. Thus, continued work in this area has potential for
a broad analogy of small physical and random networks that
informs material properties under confinement.

Materials and Methods
Simulation Details. Polymer networks use the usual freely jointed bead–
spring model for polymer chains with Langevin dynamics described by
Kremer and Grest (23). The beads of each linear chain interact through
the truncated shifted Lennard-Jones potential ULJ(r) = 4ε[(σ/r)12− (σ/r)6−
(σ/rc)12 + (σ/rc)6], where ε and σ are chosen as unity, and the force cutoff

rc is 21/6. All bonds were represented with the finite extensible nonlinear
elastic (FENE) potential, UFENE(r) = (−KR2

0/2) ln[1− (r/R0)2], with R0 = 1.5σ
and K = 30εσ2. Each system was created with a self-avoiding random walk
of monodisperse chains of length N = 32 mixed with a stoichiometric num-
ber of single cross-linker beads at a density of ρ= 0.85. The systems were
then equilibrated with dynamics under periodic boundary conditions for
104τ + 1,000N2τ with a time step of 0.005τ . The chain ends form, at most,
one new bond (fm = 2), while each cross-linker bead can form a bond with
as many as fx linear chains, where fx is varied from three to eight. These
systems correspond to cross-link densities, taken as 2ρ/(Nfx), in the range
of 0.0066σ−3 to 0.0177σ−3, where σ is the monomer size. The system size
was varied by creating a series of 21 networks with values of cross-linker
number Nx spanning the range 50 to 5,000 and a corresponding number of
beads ranging from 2,450 to 645,000. The ratio of the edge length of the
simulation cell to the chain radius of gyration was between 5 and 40 for all
networks. (24).

Fig. 2. Relation of the parameters α (Top) and β (Middle) to the bulk mesh
size y*. The minimal number of nodes N* needed to converge the network
to the bulk mesh size, as a function of the bulk mesh size (Bottom).
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Simulation Methods.
Random networks. The method of Steger and Wormald (25) was used to
generate networks with a uniform degree d equal to the cross-linker func-
tionality. 1) A network of Nx nodes is created with no edges. 2) A list of
unique pairs of nodes is created and maintained such that the degree of
any node is at most d− 1. 3) A pair of nodes u,v is selected from the list
with probability proportional to (d− d(u))(d− d(v)). 4) The edge is added
to the network. 5) Steps 1 to 4 are repeated until all nodes have the same
degree d.
Simulated annealing optimization. A tempered MMC optimization was
used to generate network structures (18). Stoichiometric mixtures of Nx

cross-linkers and Nl linear chains were relaxed at constant volume with
a density of 0.85. The network connectivity was then assigned using the
simulated annealing method, which minimizes the total length of the
newly created bonds. Bond swap and bond translation moves were con-
sidered. Both moves were accepted with probability taken from a harmonic
energy penalty, P(∆L) = min[exp(−∆L2), 1]. No other restrictions were con-
sidered. Five independent structures with different network connectivity
were prepared for each pair of fx−Nx .
Other reference calculations. A rejection-free kMC algorithm was adapted
from recent work of Wang et al. (14). The algorithm checks the probability
of closing a chain between cross-linker molecules under the assumption of
Gaussian behavior, including self-connections.
Dynamics. Networks were grown with reactive, dynamic simulations based
on local bonding rules. The bonding rule was chosen strictly such that
cross-link bonds are created only if reactive monomers directly contact one
another, that is, the collision cross-section is chosen as a fixed value of

R = 21/6σ (26, 27). A stoichiometric mixture of Nm chains and Nx cross-linker
beads was distributed in the simulation box; the mixture was equilibrated
well above the glass transition temperature at T = 1.0ε/kB; cross-link bonds
were formed during dynamics when the reactive sites approached within
21/6σ until the system reached 97.7% cure. All dynamic simulations used
the Large-scale Atomic/Molecular Massively Parallel Simulator package (28).
Cycle counting. Chordless cycles were taken as a closed walk on nonrepeat-
ing nodes in which no interior edges serve as a shorter chord connecting two
nodes of the cycle. The identified chordless cycles are identical to the irre-
ducible shortest path rings identified by Matsumoto et al. (29). In practice,
this was carried out by recording, for each node, the shortest paths between
all pairs of the node neighbors that are closed without a chord, up to a cut-
off distance varied between 10 and 25 edges. Redundant instances of the
same cycle were eliminated with homology tests, resulting in a single record
of each chordless cycle and its size h. Self-loops and second-order cycles were
directly counted as h = 1 and 2, respectively. Multiple edges were considered
as follows: A node i with one or more repeating edges Ne to a neighbor-
ing node creates at least one second-order cycle, where the number of
induced cycles is related to the number of redundant edges as N2,i =

(Ne
2

)
.

For cycles of order three or more, any second-order cycles internal to the
main cycle were treated as a single edge. Supporting data and procedures
can be accessed at http://doi.org/10.6084/m9.figshare.12276626.
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