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Abstract
Skull structure is intimately associated with feeding ability in vertebrates, both in terms of

specific performance measures and general ecological characteristics. This study quantita-

tively assessed variation in the shape of the cranium and mandible in varanoid lizards, and

its relationship to structural performance (von Mises strain) and interspecific differences in

feeding ecology. Geometric morphometric and linear morphometric analyses were used to

evaluate morphological differences, and finite element analysis was used to quantify varia-

tion in structural performance (strain during simulated biting, shaking and pulling). This data

was then integrated with ecological classes compiled from relevant scientific literature on

each species in order to establish structure-function relationships. Finite element modelling

results showed that variation in cranial morphology resulted in large differences in the mag-

nitudes and locations of strain in biting, shaking and pulling load cases. Gracile species

such as Varanus salvadorii displayed high strain levels during shaking, especially in the

areas between the orbits. All models exhibit less strain during pull back loading compared

to shake loading, even though a larger force was applied (pull =30N, shake = 20N). Rela-

tionships were identified between the morphology, performance, and ecology. Species that

did not feed on hard prey clustered in the gracile region of cranial morphospace and exhib-

ited significantly higher levels of strain during biting (P = 0.0106). Species that fed on large

prey clustered in the elongate area of mandible morphospace. This relationship differs from

those that have been identified in other taxonomic groups such as crocodiles and mam-

mals. This difference may be due to a combination of the open ‘space-frame’ structure of

the varanoid lizard skull, and the ‘pull back’ behaviour that some species use for processing

large prey.
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Introduction
The varanoid lizards comprise three modern genera (Varanus, Heloderma and Lanthanotus)
and make up important components of various modern predator guilds [1,2]. For example, the
monsoonal tropics of Northern Australia contain up to 11 sympatric varanoid species [2] that
function as apex predators, mesopredators, insectivores and scavengers [2,3]. Despite having a
conserved body plan, varanoids exhibit considerable variation in body size [4,5], limb dimen-
sions [6] and skull structure [7]. Whilst the influence of varanid (referring to the genus Vara-
nus) body size on locomotion and ecology has been explored, the consequences and
contribution of skull variation for biomechanical and ecological performance have received
less attention [5,8,9]. Here we quantify variation in cranial morphology between a number of
extant varanoid species and examine the biomechanical and ecological consequences of these
differences.

Varanoid lizards were previously considered a monophyletic group [10] however some
recent phylogenetic analyses group Varanus and Lanthanotus together with Shinisaurus in
Paleoanguimorpha, and find Heloderma to be a member of a sister group (the Neoanguimor-
pha) to these [11]. Within a phylogenetic context, the inclusion of Heloderma represents an
outgroup to the other specimens included in the study (which are all part of the Paleoangui-
morpha). Recent revisions of squamate relationships indicate that the phylogeny may still not
be completely resolved [12,13]. Here we use the term varanoid to refer to Varanus, Lanthano-
tus andHeloderma as a useful ecological or functional grouping, but note that future consensus
of phylogenetic analyses may find it to be polyphyletic.

Varanoid lizards exhibit a range of behaviours during capture and processing of prey. Prey
is predominantly killed using a bite. If too large to be swallowed whole, prey must be processed
into manageable pieces for consumption. To do this varanoid species can shake prey from side
to side to tear off chunks [14], or use a sawing pull-back movement where the teeth are drawn
back through the item [15,16]. From a biomechanical perspective, a major role of the skull is to
transmit the force generated by jaw and postcranial musculature to the prey whilst resisting the
loads induced by these behaviours.

Identifying mechanistic links between form and function is challenging because the com-
plex morphology of biological structures, as well as often complex interplay between morphol-
ogy and performance, makes analytical approaches difficult [17]. Simulation based techniques,
such as finite element analysis (FEA), provide a valuable methodology to investigate the effect
of complex differences in cranial structure on performance measures [18]. When combined
with modern morphometric analyses, these structural models represent a powerful method for
predicting the influence of morphology on mechanical performance [19,20,21,22,23]. Palaeon-
tologists and biologists have gained great insights by utilizing FEA to explore how variations in
morphology influence structural performance [21,23,24,25,26,27,28,29,30,31,32,33,34,35].
These studies have greatly increased understanding of how (and to what degree) biological
form relates to the structural performance (ability to resist loading) of the skull and the influ-
ence this has on the animal’s ecology.

The cranial design of varanoid lizards is highly fenestrated compared to mammalian and
crocodilian skulls [36]. In engineering design a highly fenestrated structure is termed a “space
frame” in contrast to a “shell” construction. In the context of cranial mechanics, it is not clear
whether space frame structures exhibit the same form-function relationships as shell construc-
tions. Logically the strength of space frame constructions will be dictated to a high degree by
the thickness, position and orientation of the struts, whereas in shell constructions it will be
determined by the thickness of the continuous wall that is used to distribute loads. Presumably
space-frame skulls are expected to work in a different manner to shell structured skulls with
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load being transferred through the struts perpendicular to its long axis. The mechanics of shell-
type skulls have been investigated a number of times using finite element analysis
[24,26,31,32,33,34,37,38,39,40,41,42,43,44]; space-frame skulls have not been examined to the
same degree, with only single specimen studies [45,46,47,48,49].

Here we present a comparative cranial FEA of varanoid species, with the aim of quantita-
tively assessing the relationship between the shape of varanoid lizard crania and mandibles,
their structural performance to biologically relevant loading (biting, shaking and pulling
forces) and the dietary ecology of the species. Our study includes high resolution models of 13
skulls, making it one of the largest three dimensional finite element analyses of cranial mechan-
ics performed to date.

Beam theory provides a means of calculating the load carrying characteristics of a simple
beam structure [50]. Based on beam theory we predicted that:

1. Lower strain levels will occur in taller craniums and mandibles during bite loading.

2. Lower strain levels will occur in wider craniums and mandibles during shake loading.

3. Lower strain levels will occur in taller and wider craniums and mandibles during pull
loading.

When comparing performance and ecology it is predicted that:

1. Species that feed on hard prey items will exhibit less strain during bite loading than other
species.

2. Species that feed on large prey items will exhibit less strain during shake and pull loading
than other species.

Methods

Data acquisition and morphometric analysis
Computer tomography (CT) scans of 13 varanoid skulls, representing 12 species, were
obtained from online libraries (www.digimorph.org) or through scanning (at either Newcastle
Mater Hospital using a Toshiba Aquilion 64 slice CT or at Sydney University using an Xradia
MicroXCT-400 micro CT). The specimens were selected from the approximately 79 possible
varanoid species to maximise phylogenetic and morphological variation (Fig 1). These speci-
mens are housed in a number of repositories (Table 1). Two of the specimens (V. gouldii and
V. komodoensis) represent sub-adult specimens. Mimics V13 (MATERIALISE, Belgium) was
used to convert scan data into three dimensional surface geometry of the cranium and mandi-
ble. Morphometrics were undertaken using both 3D and linear methods. Thirteen linear mea-
surements were taken in the 3D CAD software package Rhino [51] (Fig 2). LANDMARK [52]
was used to select the location in 3D space of a series of 24 landmarks and 11 curves on the cra-
nium and 14 landmarks and 22 curves on the mandible for geometric morphometric analysis
(Fig 2). These locations were exported as.pts files, manually reformatted, and then imported
into MOPHOLOGIKA [53] where Procrustes superimposition and principle component anal-
ysis were undertaken (S1 File).

Finite element analysis
High resolution versions of the geometries used in the morphometric analysis were converted
into solid meshes composed of simple tetrahedral elements (tet4s), here termed bricks, using
Harpoon (http://www.sharc.co.uk). Each surface.stl file was imported before being meshed
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firstly using the “wrapping” function and secondly the “all tet” function. The wrapping func-
tion allowed for surface and internal geometry to be standardised between models through
adjusting the surface cell size and with it the degree of captured geometry. Only major internal
geometry such as the mandibular cavity was included. The solid mesh of each cranium con-
sisted of 1 million bricks (±4%). The mandible was then meshed so that the tetrahedral bricks
were approximately equal in size to those of the cranium (±1%). These solid models were
imported into Strand 7 V2.4.4 (www.strand7.com) for FEA. Isotropic homogeneous material
properties (Young’s Modulus = 22.8 GPa, density = 1050 kg/m3) were used for bone in all mod-
els based on published data of a Varanus exanthematicus femur [54]. Homogeneous material
properties were chosen over heterogeneous material properties because of: 1) a general lack of
data on varanoid bone properties and 2) to better isolate biological shape as a variable within
the analysis. A hinge system was implemented to allow the mandible to pivot in relation to the
cranium [27] and the gape angle was set to 10 degrees. The jaw hinge was created by extruding
beams in the x axis from the lateral side of the bottom of the quadrate. These beams were then
subdivided into two equal parts. The end furthest from the skull was released in rotation in the
x axis to allow for the jaw to pivot in relation to the cranium. Rigid links were then created to
take the place of the half of the beam closest to the skull and to join the freed end to the mandi-
ble. A user defined cylindrical co-ordinate system was created around the jaw hinge axis for
use in defining the loads (applied forces) and freedoms (used to constrain the model) of each
load case.

Fig 1. Phylogenetic sampling. Phylogeny of Paleoanguimorpha and Neoanguimorpha showing the taxa
used within this study in red text. Labels on timescale: K, Cretaceous; Pg, Paleogene; Ng, Neogene. Adapted
from Vidal [11]. Note that the lateral views of the skulls are not to scale.

doi:10.1371/journal.pone.0130625.g001
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Muscles were simulated by attaching 120 truss elements between muscle attachment loca-
tions based on the diagrams presented in Holliday [55]. The number of truss elements used to
represent each muscle was calculated based on the bone surface areas of the various muscles on
Varanus panoptes horni (the species of median volume). Muscle elements were defined as
either being part of the temporal or pterygoid muscle groups which resulted in 56 temporal
truss elements and 64 pterygoid truss elements. Each truss element was assigned a diameter of
1.944423 cm and applied with a tensile force based on the cross sectional area of the two major
muscle groups outlined in Walmsley et al.[21] and McHenry [56]. The numbers of beams used
to represent each muscle were selected based on the relative surface area of the muscle attach-
ment areas in Varanus panoptes panoptes. Table 2 displays which muscles were classified into
each of these groups as well as the number of beams used to represent the muscle. Muscle ele-
ments were evenly distributed over the attachment areas. The same force was applied to each
truss within its respective muscle group (temporal or pterygoid). Data on the forces calculated
for the muscles can be found in S1 Table. In whole, this method of model construction assumes
that the muscle attachment sites of the various species are identical whilst including differences
in the relative size of the two muscle groups. Load cases were used to simulate the forces gener-
ated by relevant feeding behaviours. Each model was scaled to the same volume as V. panoptes
horni, following the methods used in Walmsley et al.[21,57]; applied forces were not scaled.
The three load cases simulated were:

1. Bite loading, where pretension was applied through muscle beams. The occipital condyle
was restrained in all 6 degrees of freedom and the four largest teeth in the middle of the
tooth row were restrained in circumferential translation centred on the jaw hinge axis. The
right upper and lower teeth were also restrained in medial-lateral translation. The magni-
tude of force applied through each muscle beam (constructed as a “truss” element in

Table 1. Specimens used in this study.

Taxon Specimen
number

Repository of original specimen Source of digital
data

Dorsal cranial
length (cm)

Heloderma horridum TNHC 64380 Texas Memorial Museum Digimorph online
library

5.7

Lanthanotus
borneensis

YPM 6057 Yale Peabody Museum of Natural History Digimorph online
library

1.8

Varanus acanthurus UTA 13015 The Amphibian and Reptile Diversity Research Centre at the
University of Texas at Arlington

Digimorph online
library

2.7

Varanus
exanthematicus

FMNH 58288 Florida Museum of Natural History Digimorph online
library

4.9

Varanus gouldii AMR 142826 The Australian Museum Digimorph online
library

4.0

Varanus komodoensis AMR 106933 The Australian Museum Sydney University 11.2

Varanus panoptes
panoptes

AMR 75084 The Australian Museum Newcastle Mater
Hospital

7.4

Varanus panoptes
horni

TMM-M-1295 Texas Memorial Museum Newcastle Mater
Hospital CT

5.3

Varanus prasinus AMR 166380 The Australian Museum Sydney University 3.2

Varanus salvadorii QMJ 14498 Queensland Museum Newcastle Mater
Hospital

11.2

Varanus salvator FMNH 35144 Florida Museum of Natural History Digimorph online
library

11.9

Varanus storri AMR 143912 The Australian Museum Sydney University 2.2

Varanus tristis AMR 143919 The Australian Museum Sydney University 3.1

doi:10.1371/journal.pone.0130625.t001
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Strand7) was standardised as to generate the same node reaction forces at the teeth (i.e. the
same resultant bite force) of 47.8 N (Predicted bite force for the Varanus panoptes horni

Fig 2. Linear measurements and landmarks used in morphometric analysis.Morphometric information used in this study. Top: linear measurements
taken from specimens. Bottom: Points and curves used in geometric morphometric analysis. Point landmarks are shown in red and curves are shown in blue.
Abbreviations and definitions for linear measurements can be found in S1 File. The specimen shown is Varanus acanthurus: UTA 13015.

doi:10.1371/journal.pone.0130625.g002

Table 2. Functional classification of jawmuscles into twomuscle groups (temporalis and pterygoid).

Individual muscle Abbreviation Muscle group Number of elements

m. pterygoideus mPT Pterygoid 34

m. levator pterygoideus mLPt Pterygoid 4

m. protractor pterygoideus mPPt Pterygoid 26

m. adductor mandibulae posterior mAMP Temporalis 6

m. adductor mandibulae externus superficialis mAMES Temporalis 16

m. adductor mandibulae externus medialis mAMEM Temporalis 10

m. pseudotemporalis superficialis mPSTs Temporalis 16

m. pseudotemporalis profundus mPSTp Temporalis 2

m. adductor mandibulae externus profundus mAMEP Temporalis 6

doi:10.1371/journal.pone.0130625.t002
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model)(Fig 3). The muscle beam forces applied to each model to give that standardised
resultant bite force are shown in S1 Table.

2. Shake loading, where a force of 20N was applied in a lateral direction using a system of
beams connecting the four middle teeth. Muscle beams were set with a Young’s Modulus of
15 MPa with no pretension applied to simulate the muscles bracing the skull [21,56]. The
occipital condyle was restrained in all 6 degrees of freedom and the centre of the beams con-
necting the middle teeth was restrained in an arc around the jaw hinge axis (Fig 3).

3. Pull back loading, where a force of 30N was applied in an anterior direction using a system
of beams connecting the four middle teeth. Muscle beams were again set with a Young’s
Modulus of 15 with no pretension applied to simulate the muscles bracing the skull. The
occipital condyle was restrained in all 6 degrees of freedom and the centre of the beams con-
necting the middle teeth was restrained in an arc around the jaw hinge axis (Fig 3).

A series of beams were also used to reinforce areas where artificial (high) strain was
expected. These areas include the restrained teeth, the occipital condyle (also a site of restraint),
the jaw hinge surfaces and small areas around the site of each muscle beam attachment.

Ecological classifications
Data on the diet of species was compiled from relevant scientific literature [58,59,60,61,62,63,
64,65,66,67,68,69,70,71,72]. Because of the nature of much of the published data, we were only
able to draw broad categories based on the presence or absence of prey items with certain char-
acteristics (Tables 3 and 4). The two categories were: 1) whether the diet of the species included
prey items considered as hard, or harder, than a bird egg (e.g. crabs) and 2) whether the diet of
the species included prey items larger than could be swallowed whole (e.g. large mammals such
as wallabies).

Statistical analysis
The resulting strains for each brick, in either the cranium or the mandible, during each load
case were exported to and analysed in R [73]. R was then used to identify the 95% von Mises
(VM) strain values of each case following the methods of Walmsley et al. [21,73]; this 95% von
Mises strain constitutes the largest elemental (individual brick) value of strain in the model if
the highest 5% of all elemental values are removed. The R code has been uploaded as a

Fig 3. Load cases. The three load cases undertaken in this study: 1. Biting where the models are constructed to bite with the same resultant force of 47.8 N;
2. Shaking where a force of 20N is applied laterally to the middle teeth and 3. Pulling where a force of 30N is applied anteriorly to the middle teeth. Note that
within the Shake and Pull load cases muscles do not apply force but brace the skull. The model also shows muscle beams that were used to apply loads in
biting (pink), H beams (orange) that were used to apply load to the teeth during shake and pull load cases and surface beams (green) that distribute load
across the restrained teeth, jaw hinge surface and occipital condyle. The specimen shown is Varanus exanthematicus: FMNH 58288.

doi:10.1371/journal.pone.0130625.g003
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supplementary file (S2 File) as well as instructions on its use (S3 File). Examination of resulting
strain values using mean, 25%, 50%, 75%, 90%, 95% and 98 values all showed similar patterns
in results between models. Patterns between models using 99, 99.9 and maximum values did
however vary slightly to the others indicating that localised peaks may be affecting these values
(Fig 4). The 95% value presumably represents a way to compare the performance of the models
whilst ignoring peak loading artefacts.

Tests for phylogenetic signal in the morphometric results (using the phylogeny presented in
Vidal [11]) were undertaken using a permutation test with 10000 randomisation rounds in
MorphoJ. Partial least squares analysis (PLS) was undertaken in JMP V11 to test the relation-
ship between morphology and the strain levels resulting from FEA load cases. Only one latent
variable was included in each comparison because the addition of extra variables did not
greatly improve the percentage of variation explained. Variable importance values and percent-
age variation values were also calculated in JMP. In the case of linear variables, the analysis was
run between each single performance measure (VM strain during biting, shaking and pulling)
and all morphological variables of the mandible or cranium, the percentage variation explained
is only presented for the best correlated morphological variable. We also tested for intraspecific
allometry using the same PLS method, comparing centroid size and PC1 and PC2 of the cra-
nium and mandible. Multivariate analysis of variance (MANOVA), with a repeated measures
response specification, was undertaken in JMP V 11 to test the relationship between ecological
variables and performance. Univariate tests (ANOVA) were then used to test each individual
combination of variable after the initial analysis.

Results

Ecological classification
All species are opportunistic predators, feeding on a range of vertebrate and invertebrate prey
including small lizards, small and large mammals, bird and lizard eggs, amphibians, worms,
beetles, centipedes, spiders, crabs, fish and birds. However, noticeable variation in diet is also
reported in the published literature [58,59,60,61,62,63,64,65,66,67,68,69,70,71,72]. This varia-
tion appears to reflect both habitat and capabilities in prey capture (Tables 3 and 4). No species
solely feed on invertebrates, however V. acanthurus and V. storri were found to prey on insects
along with small prey such as lizards. Other notable specialisation included H. horridum,

Table 3. Ecological classifications.

Species Hard Prey Large Prey

Heloderma horridum Y N

Lanthanotus bornensis Y N

Varanus acanthurus Y N

Varanus exanthematicus Y N

Varanus gouldii N Y

Varanus komodoensis Y Y

Varanus panoptes horni Y Y

Varanus panoptes panoptes Y Y

Varanus prasinus N Y

Varanus salvadorii Y Y

Varanus salvator Y Y

Varanus storri N N

Varanus tristis N N

doi:10.1371/journal.pone.0130625.t003
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which preys primarily on eggs and juvenile birds, and V. komodoensis and V. salvadorii, the
only species within this analysis to feed on large mammals (Tables 3 and 4).

Morphometrics. Qualitatively, species of varanoid lizards differ substantially in cranial
and mandibular morphology (Fig 5). Linear measurements taken on volume scaled models are
shown in Table 5. Geometric morphometric analysis provided a more comprehensive picture
of morphological variation. Within the cranium, Principal Component (PC) 1 and PC2
together only explained 58.26% of the differences in shape. PC1 was composed of differences
in the height, width, length and curvature of the rostrum as well as the width of the skull roof.
PC2 was represented by the height of the back of the skull and the area of the skull roof (Fig 6).
Within the mandible, PC1 and PC2 together explained 65.07% of the variation in shape. PC1
was composed of differences in the overall width and height of the mandible as well as the posi-
tion and height of the coronoid process. PC2 represented changes in the height of the coronoid
process and comparative length of the tooth row (Fig 7).

Both phylogenetic and functional patterns are present within the results; a permutation test
using a time calibrated phylogeny produced a P value of 0.0402 in the cranium and a P value of
0.0018 in the mandible indicating that the dataset contains significant phylogenetic influence
[74].Heloderma horridum, Lanthanotus borneensis and Varanus exanthematicus clustered in
each of the PC plots, the Australian dwarf monitors (subgenus Odatria; included here are V.
acanthurus, V. storri, and V. tristis) also clustered, occupying the top of the mandible morpho-
space. The test for interspecific allometry using PLS identified one pair of singular warp vectors

Table 4. Diet of the study species.

Food item H.hor L.bor V.exa V.slt V.pra V.sdi V.kom V.gou V.pan V.stor V.aca V.tri

worms 1

other insects 1 1 1 1 1 1 1 1 1 1 1

beetles 1 1 1 1 1 1 1 1

orthopterans 1 1 1 1 1 1 1

centipedes 1 1 1

spiders 1 1 1 1 1

scorpions 1

snails 3 3

mussels 3

crabs 3 3

fish 1 2

small lizards 1 1 1 1 1 1 1

large lizards 1 1 1

snakes 1

lizard eggs 1 1 1 1 1 1

amphibians 1 1 1

birds 1 1 1 1 1

bird eggs 3 3 3 3 3 3

small mammals 1 2 1 1

large mammals 2 2

carrion 2 2 2 2

1 = normal prey item

2 = food items too large to be eaten whole

3 = hard prey items. Data was compiled from relevant scientific literature. Note that dietary record for several species were incomplete.

doi:10.1371/journal.pone.0130625.t004
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that were poorly correlated (Total variation explained for Y effects = 13.467), indicating that
allometric trends in shape are small. The species that fed on prey larger than can be swallowed
whole clustered in the centre left of the cranial morphospace and in the bottom left of the man-
dible morphospace. This morphospace is associated with thin and shallow mandibles and thin,
long crania with comparatively long tooth rows. The species that feed on large prey items occu-
pied a larger area of morphospace in the mandible analysis than in the cranial analysis (Figs 6
and 7).

Fig 4. Comparison of possible summary values used as performancemeasures. Comparison of the pattern between models using various summary
values. These were generated from von Mises strain values for each brick within the models. Note that all values, apart from the maximum, 99th and 99.9th

values, depict a similar pattern in the results.

doi:10.1371/journal.pone.0130625.g004
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Finite element analysis
Finite element modelling results showed that variation in cranial morphology resulted in large
differences in the magnitudes and locations of strain in each load case (Figs 8–11). During bite
loading, strain occurred in high levels within the pterygoid, epipterygoid, sides and front of the
rostrum as well as in the mandible anterior to the jaw hinge axis (Fig 8). Low magnitudes of
strain were observed in the crania of H. horridum, L. borneensis and V. salvator and the mandi-
bles of H. horridum, L. borneensis, and V. exanthematicus in this load case.

There was considerably less strain associated with the mandible in shake loading compared
to bite loading (Fig 11). Patterns of strain are similar in each model during shaking with high
levels in the anterior of the mandible and across parts of the cranium, specifically in-between
the orbits, the posterior part of the pterygoid bone, the epiterygoid, and the opisthotic and in
localised areas close to the teeth at which forces were applied (Fig 9). The magnitude of strain
within these areas varied considerably between species (Figs 8, 9 and 10). Gracile species such
as V. salvadorii displayed high strain levels during shaking, especially in the areas between the
orbits. V. salvadorii displayed strain values substantially higher than the other models. The V.
salvadorii, V. komodoensis and V. gouldiimodels exhibited high VM strain values within the
cranium. Considerably less variation in strain was observed in mandibles as opposed to the cra-
nia during this load case (Fig 11).

The areas of high strain during pull back loading include the pterygoid, epipterygoid and
opisthotic bones as well as the sides of the rostrum and areas surrounding the teeth where
forces were applied (Fig 10). All models exhibit less strain during pull back loading compared
to shake loading, even though a larger force was applied (pull = 30N, shake = 20N). During
pull back load cases strain values varied between each model. Within the cranium the highest
observed strain values were in V. acanthurus followed by V. komodoensis, V. salvadorii and V.
gouldii. Within the mandible strain magnitudes were high in the V.gouldii and V.tristismodels

Fig 5. Visual comparison of cranial andmandibular morphology between specimens. The morphology of each specimen is shown in dorsal and lateral
view for both the cranium and mandible. Species are ordered by cranial PC1 values. Abbreviations: H.hor,Heloderma horridum; L.bor, Lanthanotus
borneensis; V.aca, Varanus acanthurus; V.exa, Varanus exanthematicus; V.gou, Varanus gouldii; V.kom, Varanus komodoensis; V.pan h, Varanus panoptes
horni; V.pan p, Varanus panoptes panoptes; V.pra, Varanus prasinus; V.sdi, Varanus salvadorii; V.slt, Varanus salvator; V.stor, Varanus storri; V.tri, Varanus
tristis.

doi:10.1371/journal.pone.0130625.g005

Table 5. Linear measurements (cm) from volume scaledmodels.

Species BSL DCL CH CW RH RW TRL IOD ML MH MW MHD MWD

Heloderma horridum 4.11 3.97 3.77 3.06 2.69 3.57 3.11 3.17 4.11 2.58 3.73 2.38 3.20

Lanthanotus bornensis 4.30 4.02 3.83 3.03 2.47 3.49 3.27 2.77 4.22 2.55 3.78 2.37 3.41

Varanus acanthurus 4.53 4.37 3.83 3.40 2.90 3.54 3.54 2.18 4.50 2.72 3.80 2.28 3.41

Varanus exanthematicus 4.20 4.02 3.80 3.19 2.90 3.46 3.37 2.27 4.22 2.73 3.78 2.11 3.38

Varanus gouldii 4.55 4.40 3.81 3.32 2.93 3.51 3.72 2.14 4.51 2.72 3.91 2.24 3.51

Varanus komodoensis 4.39 4.26 3.65 3.17 2.79 3.55 3.62 2.37 4.48 2.57 3.71 2.33 3.23

Varanus panoptes horni 4.45 4.30 3.68 3.37 2.94 3.45 3.61 2.13 4.45 2.66 3.68 2.10 3.30

Varanus panoptes panoptes 4.50 4.35 3.59 3.31 2.91 3.44 3.73 2.25 4.51 2.76 3.75 2.35 3.32

Varanus prasinus 4.52 4.35 3.53 3.17 2.81 3.41 3.73 2.37 4.45 2.46 3.74 2.08 3.40

Varanus salvadorii 4.55 4.39 3.54 3.15 2.75 3.30 3.78 2.10 4.52 2.46 3.59 2.22 3.01

Varanus salvator 4.38 4.23 3.71 3.15 2.72 3.33 3.60 2.31 4.41 2.64 3.69 2.41 3.24

Varanus storri 4.50 4.34 3.71 3.11 2.79 3.47 3.49 2.12 4.45 2.54 3.76 2.11 3.28

Varanus tristis 4.63 4.46 3.73 3.12 2.79 3.50 3.73 2.11 4.59 2.26 3.84 1.89 3.20

doi:10.1371/journal.pone.0130625.t005
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(Fig 10). Within intrinsic (bite) loading strain was higher in the mandible than the cranium. In
contrast extrinsic (shake and pull) load cases resulted in higher levels of strain in the cranium
than the mandible. Overall the results show that each species varies considerably in terms of its
ability to resist applied load and that, in some instances, the various structures are carrying
load in different parts of the skull.

The relationship between morphology and performance
Comparisons between linear measurements of shape and performance showed that, within the
cranium, tooth row length (TRL) was the best predictive variable for strain during bite and
shake loading whilst dorsal cranial length (DCL) was the best predictive variable for pull load-
ing. Mandible length (ML) was found to be the best predictor for strain levels during bite,
shake and pull loading in the mandible (Table 6). In all cases larger values corresponded with
higher levels of strain.

Partial least squares regression identified that the cranial shape was closely related to the
response of models to bite and shake loading (Table 7). The relationships were however less
strong in the mandible (Percentage variation explained for cumulative Y = 40.58 and 26.22 for
the cranium and mandible respectively). In both the cranium and the mandible shake loading
had a stronger relationship to shape than biting, and both of these were stronger than pulling

Fig 6. Cranial morphospace. Principal component plot of cranial morphospace. The diagrams at the end of each axis represent the theoretical geometry of
the cranium in dorsal and lateral view. Each marker depicts the location of that specimen in morphospace as well as whether the animal was classed as
feeding on hard prey (blue = yes, red = no) and whether the animal was classed as feeding on comparatively large prey (circle = yes, triangle = no).
Abbreviations: H.hor,Heloderma horridum; L.bor, Lanthanotus borneensis; V.aca, Varanus acanthurus; V.exa, Varanus exanthematicus; V.gou, Varanus
gouldii; V.kom, Varanus komodoensis; V.pan h, Varanus panoptes horni; V.pan p, Varanus panoptes panoptes; V.pra, Varanus prasinus; V.sdi, Varanus
salvadorii; V.slt, Varanus salvator; V.stor, Varanus storri; V.tri, Varanus tristis.

doi:10.1371/journal.pone.0130625.g006
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(Table 7). Variable Importance Values of 1.4130 and 1.4142 for the PC1 in the cranium and
mandible respectively, and 0.0582 and 0.0068 for PC2 in the cranium and mandible respec-
tively indicate that PC1 values were far more important in these relationships.

The relationship between performance and ecology
No relationships were observed between the presence of large prey in the diet of species and
the structural performance of either the cranium or the mandible in any type of loading
(Table 8). Relationships were observed between the presence of hard prey items within the diet
of the species and the structural performance of cranial and mandible models; species that fed
on hard prey items performed with less strain in bite loading than other species.

Discussion
We aimed to investigate the relationships between the cranial morphology, biomechanical per-
formance (VM strain under biting, pulling and shaking loads) and feeding ecology of varanoid
lizards. There were strong relationships between shape and performance; crania and mandibles
with larger widths and heights (high PC1 values) performed better at biting and shaking. Fur-
ther, there was some evidence for relationships between performance and diet; species that per-
formed well in bite loading were also found to have hard prey within their diet. However, the
relationships between morphology and performance were not as evident as that reported in

Fig 7. Mandibular morphospace. Principal component plot of mandibular morphospace. The diagrams at the end of each axis represent the theoretical
geometry of the mandible in dorsal and lateral view. Each marker depicts the location of that specimen in morphospace as well as whether the animal was
classed as feeding on hard prey (blue = yes, red = no) and whether the animal was classed as feeding on comparatively large prey (circle = yes,
triangle = no). Abbreviations: H.hor,Heloderma horridum; L.bor, Lanthanotus borneensis; V.aca, Varanus acanthurus; V.exa, Varanus exanthematicus; V.
gou, Varanus gouldii; V.kom, Varanus komodoensis; V.pan h, Varanus panoptes horni; V.pan p, Varanus panoptes panoptes; V.pra, Varanus prasinus; V.sdi,
Varanus salvadorii; V.slt, Varanus salvator; V.stor, Varanus storri; V.tri, Varanus tristis.

doi:10.1371/journal.pone.0130625.g007
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previous studies [21,75], and did not match predictions from mechanical first principles, or
those identified by FEA in other taxa [21].

Ecomorphology
Species that feed on large prey clustered together in the bottom right of both the cranial and
mandible morphospace (gracile with long rostrum). Species that do not feed on hard prey
items clustered in the centre top of cranial morphospace exhibiting low cranial height. There
was a clear relationship between prey size and mandible shape, with macrophagous species
having lower mandible PC1 and PC2 values. Phylogenetic patterns were also present, for exam-
ple dwarf monitor (subgenus Odatria) mandibles clustered together in the morphospace.

The most extreme form of feeding upon hard prey is durophagy, Varanus exanthematicus
and L. borneensis are both durophagous, feeding on hard prey items (molluscs and crabs
respectively) [59,76].Heloderma horridum, although not distinctively durophagous, does also
feed on harder prey items such as eggs. These three species have the highest PC1 scores for
both crania and mandibles (Figs 6 & 7), indicating that, as expected, the shortest and most
robust skulls are those suited for durophagy. Note, however, that phylogeny is also important
here; durophagy may be a plesiomorphic trait of the varanoid lizards as Varanus exanthemati-
cus and L. borneensis are basal species.

Loading type
In simulations of biting, the models consistently showed higher strain levels in the mandible
than the cranium. Biomechanical performance during biting may thus be limited primarily by
mandibular morphology, as has been suggested in previous analyses [77]. This may also be a
result of differing evolutionary forces influencing the two structures; as the cranium houses the
brain and capsules, its morphology is a result of multivariate selection, whereas the mandible is
principally involved in feeding [78]. The high strain levels observed in the brain case and in
between the orbits during shake loading indicate that these areas may be important in this
behaviour (Fig 9). This raises the possibility of a trade-off between eye size (sensory function)
and strength during shaking (structural function), consistent with a previous study on thero-
pod dinosaurs [79]. The two sub-adult specimens included within the analysis (V. komodoensis
and V. gouldii) exhibited higher magnitudes of strain than most other specimens. Eyes are pro-
portionately larger in juveniles, leaving less space for bone in the interorbital region, and that
region exhibits high level of strain during biting and shaking. Thus fine scale structural charac-
teristics such as allometric differences between juveniles and adults may be of particular impor-
tance to trade-offs in cranial structural performance and neurocranial anatomy.

We examined correlations between morphology and performance using two measures of
morphology: linear (euclidean distances), and multivariate (geometric morphometrics).

Linear morphometrics vs performance
Walmsley et al. (2013) found that relationships between linear morphometrics and perfor-
mance match well with predictions from mechanical first principles in a comparative analysis
of crocodile mandibles. However, relationships between linear measures of shape and

Fig 8. VM Strain plots: Bite loading.Cool colours (blues) represent areas of low stain, hot colours (reds) represent areas of high strain and white areas
represent areas where the upper strain threshold (1000 με) was exceeded. Load was applied through muscle beams at a magnitude that standardised bite
force at the teeth to 47.8 N (see S1 Table for muscle forces used for each model). Abbreviations: H.hor,Heloderma horridum; L.bor, Lanthanotus borneensis;
V.aca, Varanus acanthurus; V.exa, Varanus exanthematicus; V.gou, Varanus gouldii; V.kom, Varanus komodoensis; V.pan h, Varanus panoptes horni; V.pan
p, Varanus panoptes panoptes; V.pra, Varanus prasinus; V.sdi, Varanus salvadorii; V.slt, Varanus salvator; V.stor, Varanus storri; V.tri, Varanus tristis.

doi:10.1371/journal.pone.0130625.g008
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performance results from FEA in our study were inconsistent with our predictions: the length
of the tooth row and mandible correlated better with skull strength (Table 6) than the measures
we hypothesised a priori (i.e. rostral/mandibular height for biting, rostral/mandibular width
for shaking, and the combination of cranial/mandibular height and width for pull back loads).

Multivariate morphometrics and performance
In the principle components analysis of skull shape, PC1 values correlated negatively with skull
length and positively with skull width, so that species with high PC1 values had shorter, wider
skulls with taller snouts (Figs 3 and 4). A priori, these would be expected to be stronger under
biting and especially shaking loads, and the results agree; two blocked partial least squares
regression showed that crania and mandibles with high PC1 values performed better than oth-
ers, particularly in bite and shake loading (Table 7). Species with lower PC2 values have taller
skulls post-orbitally, which is also expected to increase skull strength, but this had a smaller
influence on strain levels as indicated by comparable lower variable importance values in the
2-block partial least squares analysis. The fact that there were higher explanation values for bit-
ing and shaking load cases may mean that performance in these behaviours is more important
than performance in pulling behaviours in driving patterns of morphological variation in the
varanoid skull.

Overall
The apparent mismatch between the linear measurements that were predicted to influence
skull performance, and those that actually do, may relate to the space frame structure of the
varanoid lizard cranial system [36]. Compared with the shell constructions, it seems that the
performance of varanoid skulls is difficult to predict from simple measurements chosen with
reference to basic beam theory. However, more complex multivariate measures of skull shape
do show correlations with performance that make sense in terms of fundamental mechanical
principles. If this is the case, then the landmarks used in the multivariate measures must some-
where incorporate aspects of shape that do influence performance. The higher correlation
between morphology and performance in the cranium than in the mandible may indicate that
the cranium is under a higher selective pressure for strength; intuitively this is difficult to
understand as cranial morphology is expected to represent compromise between various func-
tional demands (feeding, protecting the brain, olfaction etc.) whilst the mandible primarily
functions in feeding [78].

V. komodoensis exhibited high levels of strain to bite, shake and pull loading. This result is
may be a consequence of our model being constructed from a sub-adult specimen (a size that
cannot exploit large prey) that has no ecological need for a robust skull. Alternatively it is also
possible that the use of toxic effects (whether produced by bacteria or venom glands) to inca-
pacitate prey may free the Komodo dragon from the need to have a highly robust skull
[45,80,81]. Clearly further research that measures cranial performance across ontogeny may
detail allometric changes in performance consistent with dietary transitions from small prey in
hatchlings to large ungulates (e.g. water buffalo) in adults [82].

Fig 9. VM Strain plots: Shake loading.Cool colours (blues) represent areas of low stain, hot colours (reds) represent areas of high strain and white areas
represent areas where the upper strain threshold (500 με) was exceeded. An arbitrary load of 20N was applied laterally through H beams connecting the four
middle teeth. Abbreviations: H.hor,Heloderma horridum; L.bor, Lanthanotus borneensis; V.aca, Varanus acanthurus; V.exa, Varanus exanthematicus; V.gou,
Varanus gouldii; V.kom, Varanus komodoensis; V.pan h, Varanus panoptes horni; V.pan p, Varanus panoptes panoptes; V.pra, Varanus prasinus; V.sdi,
Varanus salvadorii; V.slt, Varanus salvator; V.stor, Varanus storri; V.tri, Varanus tristis.

doi:10.1371/journal.pone.0130625.g009
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Domacropredaceous varanoids have longer, weaker skulls?
Species that fed on large prey items compared to their size possess unique morphological char-
acteristics such as elongate crania and mandibles. Predatory mammals and crocodiles that feed
on large prey exhibit the opposite trend with shorter, more robust cranial structures [24,75].
This may be due to the influence of other performance considerations such as the need for a
long mandible to better tear flesh during pull back prey processing. At least some of the varanid
species that feed on large prey use pull back behaviours to process their food. In V. komodoensis
the tooth row acts as a saw blade which cuts food as the teeth are drawn back [15]. Logically, an
elongate mandible can carry more teeth and thus increases the efficiency of prey processing.
Many of these species also feed on carrion which may mean that the skull does not need to han-
dle the same level of extrinsic forces that can occur in high levels during prey capture [59].
Alternatively the elongate skulls could prove useful in allowing the predator to better access
hard to reach parts of the carcass.

Methodological limitations and agenda for future research
The complexity of varanoid morphology, behaviour and ecology represented a significant chal-
lenge for this study. The relationships identified between morphology and performance were
not as strong as those identified in other taxonomic groups [21,24,75]. Either there is only a
weak link between morphology, performance and ecology within the group (with behaviour
acting as a wild card), or there are limitations on the approach that we used here.

Sample size. Many previous FEA studies have characterised the biomechanics of a single
specimen or qualitatively compared between a small number of species [25,26,27,37,45,48].
The complex morphological differences that exist between the varanoid specimens mean that a
higher number of individuals are more suitable to tease apart the relationship between form
and function. Additionally, a limited sample size prevents us from characterising the effects of
intraspecific variation such as allometry or sexual dimorphism. Ontogenetic changes in skull
shape have been shown to be large within some varanid species [83]. Sample size thus repre-
sents a substantial hurdle for the area of ecological biomechanics given that finite element
models take considerable time to produce.

Structural complexity. The space-frame nature of the varanoid cranial system represented
another significant challenge for this study. The strength of a structure is dependent on many
characteristics of the shape such as the thickness of bones or their orientation. Gross morphol-
ogy was found to have a large influence (PC 1 correlated with some measures of performance).
However, subtler morphological characteristics, such as thicknesses of particular struts, that
were not measured, are likely to also be important in dictating strength. It is logical that finer
morphological characteristics also play a larger role in dictating strength in space frame struc-
tures compared to shell structures. This is because space-frame structures rely on fine scale and
localised morphological features more than shell structures that distribute load across a wide
surface. Sutures were not included in the analysis; these features have been found to have con-
siderable influence on FEA results in previous studies [40,49,84,85,86,87]. Due to a lack of
information on the nature and extent of cranial kinesis (movement between the bones of the
cranium) in varanoids it was excluded in FEA models and it is likely that this has also

Fig 10. VM Strain plots: Pull loading.Cool colours (blues) represent areas of low stain, hot colours (reds) represent areas of high strain and white areas
represent areas where the upper strain threshold (200 με) was exceeded. An arbitrary load of 30N was applied anteriorly through H beams connecting the
four middle teeth. Abbreviations: H.hor,Heloderma horridum; L.bor, Lanthanotus borneensis; V.aca, Varanus acanthurus; V.exa, Varanus exanthematicus; V.
gou, Varanus gouldii; V.kom, Varanus komodoensis; V.pan h, Varanus panoptes horni; V.pan p, Varanus panoptes panoptes; V.pra, Varanus prasinus; V.sdi,
Varanus salvadorii; V.slt, Varanus salvator; V.stor, Varanus storri; V.tri, Varanus tristis.

doi:10.1371/journal.pone.0130625.g010
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Fig 11. Magnitudes of strain.Comparative performance (95% von Mises strain levels) of the cranium (blue)
and mandible (red) models in bite, shake and pull loading. The species are in phylogenetic order with a
simplified phylogenetic tree based on Vidal [11] showing the relative position of each species.

doi:10.1371/journal.pone.0130625.g011
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influenced the results to some degree. The low percentage of total variance explained by the PC
analyses could also be due to the occurrence of cranial kinesis which would alter the relative
position of landmarks between specimens.

Muscle anatomy. Because detailed data on muscle activation and anatomy was not avail-
able for the majority of these species we were forced to assume that all species possess identical
muscle attachment sites and that each muscle is used at the same time in biting. This may not
be a realistic assumption; it would be useful for future studies to address the function of specific
muscles and the role of muscle activation patterns.

Loading conditions. Recent sensitivity studies have identified that biological assumptions
may have more influence on FEA results then those about material properties or scaling [57].
As no kinematic data was collected for this study it is possible that the forces applied were not
exactly biologically equivalent. Future studies should aim to collect data on the exact loading
conditions encountered in each species through observation of either wild or captive animals.

Ecological data. The performance and shape data used in this study are fine grained
whereas the ecological data are quite course, with only qualitative categories being drawn. It is
possible (even likely) that clear relationships between skull shape, biomechanics and ecology
do exists but that fine scale ecological data are required to demonstrate them statistically. How-
ever this hypothesis cannot be tested without improving the available ecological data, and so
quantitative studies of varanid ecology are a priority for investigating form-function relation-
ships in this taxon.

Table 7. Statistical comparison (PLS) betweenmorphology (PC1 and PC2) and Performance (Bite, Shake and Pull load cases).

Cranium n.o of factors % explained Mandible n.o of factors % explained

Bite 1 41.02 Bite 1 27.87

Shake 1 52.19 Shake 1 38.46

Pull 1 28.53 Pull 1 12.34

doi:10.1371/journal.pone.0130625.t007

Table 8. Univariate Statistical comparison (ANOVA) between ecological class and performance in each load case.

Cranium Mandible

Hard Prob>F Hard Prob>F

Bite 0.0106 Bite 0.0064

Shake 0.7469 Shake 0.1207

Pull 0.9016 Pull 0.1083

Large Prob>F Large Prob>F

Bite 0.1788 Bite 0.1636

Shake 0.0887 Shake 0.0886

Pull 0.2995 Pull 0.2660

doi:10.1371/journal.pone.0130625.t008

Table 6. Best linear morphometric predictor variables for each load case.

Cranium Mandible

Load Case Best Predictor n.o of factors % explained Load Case Best Predictor n.o of factors % explained

Bite TRL 1 90.24 Bite ML 1 69.96

Shake TRL 1 92.11 Shake ML 1 81.99

Pull DCL 1 83.28 Pull ML 1 65.68

doi:10.1371/journal.pone.0130625.t006
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Performance metrics. Within this study we have only examined strength (limited to three
load cases) as a performance measure. As a complex integrated system other factors such as the
ability of the skull to protect vital organs, the ability of the cranial system to produce bite forces
and for certain sensory organs to function, are likely to also influence the shape of the skull
[88].

Conclusions
This study identifies that varanoid lizards do exhibit considerable variation in cranial and man-
dibular morphology that has specific influences on structural performance during biologically
relevant loading. This could be an important characteristic that allows for these closely related
taxa to exploit diverse ecological habits. The relationships between the morphology of varanoid
lizard skulls, their structural performance and their ecology are not as would be predicted from
our previous knowledge of cranial form and function. The space frame structure of the vara-
noid lizard skull as well as the unique behaviours that are used by these species to capture and
process prey items may be the cause of this discrepancy. It is hoped that the insights gained
from this study will help to guide future research on space-frame skull structures and more
broadly in the area of ecological biomechanics. The results may also provide useful context for
future paleobiological studies on taxa such as theropod dinosaurs that may use varanoids as
extant morphological analogues.
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