
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19582  | https://doi.org/10.1038/s41598-020-76695-x

www.nature.com/scientificreports

Pattern formation 
in reaction–diffusion 
system on membrane 
with mechanochemical feedback
Naoki Tamemoto & Hiroshi Noguchi*

Shapes of biological membranes are dynamically regulated in living cells. Although membrane 
shape deformation by proteins at thermal equilibrium has been extensively studied, nonequilibrium 
dynamics have been much less explored. Recently, chemical reaction propagation has been 
experimentally observed in plasma membranes. Thus, it is important to understand how the 
reaction–diffusion dynamics are modified on deformable curved membranes. Here, we investigated 
nonequilibrium pattern formation on vesicles induced by mechanochemical feedback between 
membrane deformation and chemical reactions, using dynamically triangulated membrane 
simulations combined with the Brusselator model. We found that membrane deformation changes 
stable patterns relative to those that occur on a non-deformable curved surface, as determined by 
linear stability analysis. We further found that budding and multi-spindle shapes are induced by Turing 
patterns, and we also observed the transition from oscillation patterns to stable spot patterns. Our 
results demonstrate the importance of mechanochemical feedback in pattern formation on deforming 
membranes.

Membrane deformation is a fundamental biological process involved in many cellular functions such as vesicular 
 transport1, cell  division2, and cell  motility3. To understand these phenomena, the mechanism of membrane defor-
mation by intracellular proteins has been investigated in  detail4–8. Recently, it has been shown that the deforma-
tion of biological membranes is not just a passive phenomenon but also plays physiological  roles8–15. For example, 
membrane curvature induces localization of membrane proteins in highly curved  domains9 and phase separation 
of lipid  membranes10–12. This clustering can lead to the emergence of lipid rafts, which are believed to play impor-
tant roles in cell signaling and membrane  trafficking12,13,16. Membrane binding by curvature-inducing proteins 
that are involved in vesicular transport is also regulated by membrane curvature and by various  proteins7,17,18. 
For example, recruitment of curvature-inducing protein FBP17, involved in endocytosis, onto the membrane is 
regulated by the local membrane curvature, membrane tension, and endocytic  proteins17–19. This mechanism is 
suggested to play important roles in cell  polarization19,  endocytosis20, and cell  division21.

To understand pattern formation on curved surfaces, several types of studies have been  conducted22–32. One 
typical approach is to analyze pattern formation at thermal equilibrium based on phase  separation22–26. This 
type of study has shown that membrane shapes and domain patterns of equilibrium states are affected by the 
line tension of domain boundaries, bending rigidity, and local  curvatures22–26. Such studies have successfully 
described the experimentally observed patterns of multi-component lipid vesicles. However, studies pertaining 
to kinetics are limited to the dynamics of relaxation toward an equilibrium  state22–26,31,33.

Most of previously conducted theoretical and numerical studies have examined only the effects of protein 
binding; however, in living cells, it is known that many proteins typically work in concert to regulate biological 
functions. Propagation waves in membranes are often observed during cell migration, spreading, growth, or 
 division34–41. Such waves and chemical patterns can be reproduced through activator-inhibitor systems of reac-
tion–diffusion  models42. The reaction–diffusion system was first proposed by Turing to describe the symmetry 
breaking of  morphogenesis43, and has been applied to curved surfaces such as animal skins and  tissues44–46. These 
studies have shown that geometry affects pattern formation and domain  localization29; however, the conclusions 
of such studies are limited by the fact that the surface shape is fixed, although the effects of size increase have 
been  investigated27,28. Recently, the propagating waves of F-BAR protein and actin growth have been explained 
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by the reaction–diffusion systems of five chemical reactants on a quasi-flat  membrane18. As large membrane 
deformations caused by the coupling of curvature and reaction–diffusion systems have not yet been  studied41, 
the effects of membrane deformation on reaction–diffusion systems have not been elucidated.

In this study, we investigated the coupling effects between membrane deformation and reaction–diffusion 
systems by simulating vesicle deformation through curvature-inducing proteins and also chemical reactions 
using a reaction–diffusion model. Our model accounts for the mechanochemical feedback between membrane 
curvature and protein concentration. We employed a dynamically triangulated surface model to represent the 
membrane and calculated the curvature energy to solve the membrane deformation  dynamics47–49. We employed 
the Brusselator  model50, one of the simplest reaction–diffusion systems, modifying it to include the mechano-
chemical feedback from membrane curvature. As the dynamics of a non-deformable surface are well understood, 
we were able to analyze the evident membrane-deformation effects. We describe how this coupling changes the 
vesicle shape and pattern formation.

Results
Reaction–diffusion model and stability analysis. A two-dimensional reaction–diffusion system with 
two reactants is written as τ ∂u

∂t = Du�u+ f (u, v) and τ ∂v
∂t = Dv�v + g(u, v), where τ is a time constant, Du 

and Dv are diffusion coefficients of reactants u and v , and � is a two-dimensional Laplace–Beltrami operator. In 
this study, we consider the Brusselator model, which is described by the reaction scheme below:

The reaction equations are given by f (u, v) = A− (B+ 1)u+ u2v and g(u, v) = Bu− u2v, where A and B 
are positive  parameters50.

In the coupling of the reaction–diffusion system with the change in membrane curvature, u represents the 
local area fraction covered by curvature-inducing binding proteins on the membrane (u ∈ [0, 1]), and v is the 
concentration of a protein to regulate the protein binding. The free energy in relation to curvature is expressed 
as Fcv =

∫

fcvdS, with

where κ0 and κ1 represent the bending rigidity without or with the bound proteins, respectively; C0 is the spon-
taneous curvature; S is the surface area; and H is the mean curvature, H = (C1 + C2)/2, where C1 and C2 are 
two principal curvatures. The corresponding curvature term A′ is added to the reaction equation (u, v); thus the 
reaction–diffusion equations are written as

where G is the mechanochemical feedback magnitude of the reaction ( G ≥ 0 ), and ku is a normalization factor 
expressed as kuu, used to obtain Turing and oscillation phases at u ∈ [0, 1]. To maintain 0 ≤ u ≤ 1, u is restricted 
between the lower and upper bounds: it is set to u = 0 or u = 1 when the time evolution of Eq. (2) crosses those 
bounds. The first reaction becomes A+ A′ → u, which can be considered to represent the binding of protein 
u from the solution surrounding the membrane. Thus, the binding of u is enhanced at a membrane curvature 
H ≃ C0/2, where ∂fcv

∂u < 0 so that A′ > 0. On the other hand, the time evolution of v is not directly dependent on 
the local membrane curvature. Note that the mixing-entropy term of the protein concentration is not accounted 
to reproduce the normal Brusselator dynamics when the membrane shape is fixed. In this study, we use A = 4.5, 
B = 2.02, η =

√
Du/Dv = 0.1, and ku = 4.52 for all simulations.

Based on the linear stability analysis around the fixed point, (us, vs) =
((

A+ A
′
)

/ku,B/
(

A+ A
′
))

51, the 
conditions for Hopf and Turing bifurcations with a membrane curvature effect A′ on a fixed spherical surface 
are B > 1+

(

A+ A′
)2 and B >

(

1+
(

A+ A′
)

η
)2
, respectively; and temporal oscillations and spatial patterns 

appear above these. The membrane curvatures for Hopf and Turing bifurcations are given below, respectively:

where Ecv = κ1(C0/H)2 − 4κ1C0/H + 4(κ1 − κ0) . At A+ A
′
< 0, i.e., 2A < GH2Ecv , a homogeneous phase 

is formed, because us < 0 . The phase stability diagram is shown in Fig. 1. This diagram shows that bifurcations 
occur as the magnitude of the spontaneous curvature C0 and mechanochemical coupling magnitude G increase 
at A+ A′ ≥ 0.

A → u

B+ u → v

2u+ v → 3u

u → E.

(1)fcv = (1− u) κ0
2
(2H)2 + u κ1

2
(2H − C0)

2,

(2)τ ∂u
∂t = Du�u+ A+A′

ku
− (B+ 1)u+ kuu

2v and A′ = −G
∂fcv
∂u ,

(3)τ ∂v
∂t = Dv�v + Bkuu− k2uu

2v,

(4)2
(

A−
√
B− 1

)

< GH2Ecv and,

(5)2

(

A+
(

1−
√
B
)

/η

)

< GH2Ecv ,
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Pattern formation on membrane. The membrane motion is solved by the Langevin dynamics of dynam-
ically triangulated surface model, which formed a triangular network of spherical topology with N vertices, as 
described  previously47. In this study, the presence of curvature-inducing proteins is considered in addition to the 
model as given in Eq. (1). We use κ0/kBT = 20 and κ1/kBT = 40, where kBT is the thermal energy (see “Meth-
ods” for more details). The results are displayed with the length unit R =

√
S/4π  , energy unit κ0 , and time unit τ.

First, we analyzed the pattern formation on the fixed surface of a spherical vesicle at the reduced volume, 
V∗ = 3V/4πR3 = 1 , where V  is the vesicle volume (Fig. 2a,b,g). The results are consistent with those of the lin-
ear stability analysis (Fig. 2g). The effects of thermal fluctuations are discussed in the “Supplementary Material”. 
Figure 2a,b show typical snapshots. One large circular Turing domain appears at Gκ0/R2 = 0.061 and C0R = 8 
(Fig. 2b).

In contrast, membrane deformation changes the chemical patterns in deformable vesicles at V∗ = 0.8 
(Fig. 2c–f,h). The oscillation phase is suppressed, and Turing pattern is observed in a wider parameter region 
(Fig. 2h). At high spontaneous curvature C0 , budding and spicule shapes are formed, accompanied by Turing 
patterns (Fig. 2d,e). These spicule shapes only appear under conditions of Turing pattern formation, while bud-
ding can occur in homogeneous membranes. Moreover, budded spheres typically have a high value of u that is 
homogeneously distributed and form a Turing domain boundary separating two phases with higher or lower 
value of u at the narrow connective neck, as shown in Fig. 2f, because of the reduction in diffusion through the 
neck. Thus, the Turing pattern is modified by the membrane shape deformation. Bud formation is obtained for 
C0R ≥ 3 at V∗ = 0.8 (Fig. 2h). This is reasonable, as the curvature energy of a spherically shaped bud with a radius 
rb = 2/C0, which is fully covered by the curvature-inducing protein ( u = 1 ) is minimal. The condition of bud 
formation is given by V∗ ≤ (rb/R)

3 +
(

1− (rb/R)
2
)3/2 , since the volume of the rest of a vesicle of a spherical 

shape is maximal. In the case of V∗ = 0.8 , the threshold is R/rb ≥ 2.2.
For high values of C0 , different shapes can be formed depending on the initial shapes, such as the prolate and 

budded shapes shown in Fig. 2h. Figure 3 shows another example. Vesicles of three or four spicules are formed 
from prolate and oblate vesicles, respectively, with (u, v) ≃ (us, vs) (Fig. 3a,b). As pattern formation progresses, 
the vesicle shape changes according to the chemical pattern (Supplementary Movie S1). In order to evaluate the 
non-uniformity of u and the smoothed local curvature 

∼
H , we calculated separation metrics, su = σ b(u)

2/σw(u)
2 

and sH = σb

(∼
H
)2

/σw

(∼
H
)2

 , where σb2 and σw2 are the between-class variance and within-class variance, 

 respectively52 (The curvature smoothing method is described in the “Supplementary Material”). Each variance 
is calculated as below:

where ρi is the probability of each class, µi is the class mean value, and σi2 is the class variance. The threshold value 
to divide into two classes is determined to maximize the metric value. Therefore, the metrics su becomes large 
when Turing patterns are formed clearly, whereas su becomes small when the two phases are gently separated or 
not separated (i.e., homogeneous patterns). Figure 3c,d show that su increases as the Turing pattern develops, 
followed by an increase in sH ; this sequence is consistent with that depicted by the sequential snapshots and 
indicates that non-uniformity can be distinguished by calculating the separation metrics. We also calculated 
the time development of asphericity, α , to evaluate vesicle deformation (Fig. 3e). Asphericity is the degree of 
deviation from a spherical shape, calculated as below:

(6)σb
2 = ρ0ρ1(µ0 − µ1)

2and,

(7)σw
2 = ρ0σ0

2 + ρ1σ1
2,

Figure 1.  The phase diagram for the Brusselator, modified to include a membrane curvature effect, on a surface 
of a constant mean curvature H at A = 4.5 , B = 2.02 , η = 0.1, and κ1/κ0 = 2 . The purple and green lines are 
the Turing bifurcation curve and the Hopf bifurcation, respectively. These curves separate the regions in which 
the homogeneous stable patterns (H), stationary Turing patterns (T), or temporal oscillation patterns (O) occur. 
The red line indicates A+ A

′
= 0.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19582  | https://doi.org/10.1038/s41598-020-76695-x

www.nature.com/scientificreports/

where �i is the eigenvalue of the gyration tensor of the  vesicle47,53,54. For a sphere, α = 0 (�1 = �2 = �3) , and 
for the thin-rod limit, α = 1 ( �1 = 1 and �2 = �3 = 0) . As the vesicle forms three or four spindles, α decreases 
(Fig. 3e,f).

To further investigate the effect of coupling between the Brusselator and vesicle deformation, we conducted 
the simulation with different C0 and Du values at Gκ0/R2 = 0.046 (Fig. 4 and Supplementary Fig. S3). As C0 
decreases, the number of domains, Nd and sH decrease, whereas α increases (Fig. 4e–g). In addition, the domain 
size increases as Du increases. Therefore, higher Nd and sH values and a lower α are obtained at a lower Du 
(Fig. 4h–j). When Nd > 2 , convex regions are formed in various directions and the vesicle becomes nearly spheri-
cal, but when Nd = 2 , the vesicle becomes prolate in shape, and α increases (Fig. 4a–d). Thus, chemical pattern 
formation affects vesicle deformation and the relation between Nd and the preferred curvature of the domains 
is important in determining the stable shapes. The results do not significantly differ between simulations that 
start from prolate or oblate shapes, except under the condition at C0R = 7 and Du = 20 (Fig. 4a,f). Under that 
condition, with starting from a prolate-shaped vesicle, two domains arise at the pole of prolate, and the vesicle 
shape remains in the prolate shape. However, when the simulation starts from the oblate-shaped vesicle, mul-
tiple domains arise at the edge of oblate, and vesicle shape morphs into a multi-spindle shape (Fig. 4a,f,g). As 
well as the effect of chemical pattern formation to the vesicle deformation, vesicle shape can also affect chemical 
pattern formation.

A comparison of Fig. 2g with Fig. 2h shows that the region encompassing Turing patterns is enlarged in the 
phase diagram at V∗ = 0.8 from V∗ = 1 , as G increases. To investigate this change, we performed simulations at 
Gκ0/R

2 = 0.077 and C0R = 10 with different V∗ and Du (Fig. 5). For Du = 10 or 20 , Turing patterns occur instead 
of oscillations, whereas for Du = 50 , an oscillation occurs at V∗ = 0.95 , and the oscillating patterns transition 

(8)α = (�1−�2)
2+(�2−�3)

2+(�3−�1)
2

2(�1+�2+�3)
2 ,

Figure 2.  (a–f) Snapshots of the vesicles and (g,h) phase diagrams for A = 4.5 , B = 2.02 , η = 0.1, and Du = 20 . 
(a,b,g) V∗ = 1 (fixed shape). (c–f,h) V∗ = 0.8 . (a,c) Gκ0/R2 = 0.077 and C0R = 2 . (b) Gκ0/R2 = 0.061 and 
C0R = 8 . (d) Gκ0/R2 = 0 and C0R = 10 . (e) Gκ0/R2 = 0.046 and C0R = 8 . (f) Gκ0/R2 = 0.077 and C0R = 10 . 
The color in snapshots indicates the concentration of the curvature-inducing protein, u . Purple and green 
lines on the phase diagrams represent the Turing bifurcation curve and Hopf bifurcation, respectively, and the 
symbols represent the simulation results. The red line indicates A+ A

′
= 0 . Two or three overlapped symbols 

indicate the coexistence of multiple patterns.
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to the Turing pattern at V∗ = 0.8 and 0.65 (Fig. 5d,g,j, and Supplementary Movie S2). As shown in Fig. 5e,h,k, 
the maximum values of the local curvature 

∼
Hmax at V∗ = 0.8 and 0.65 eventually increase over time; this does 

not occur at V∗ = 0.95 . As the local curvature H increases, the position on the phase diagram shifts toward the 
upper left, as shown in Supplementary Fig. S5. Therefore, the transitions from an oscillation pattern to a Turing 
pattern is induced by a local increase in H.

At V∗ = 0.95 , a small domain is generated and stabilized by the local deformation of the vesicle at Du = 10 . 
In contrast, a large domain is temporarily generated at Du = 50, but is not stabilized, since the stable domain 
size is much larger than the sphere of preferred curvature C0/2; thus the vesicle cannot sufficiently deform (Fig. 6 
and Supplementary Movies S3 and S4). In addition, the oscillation period for Du = 50 is significantly longer 
for V∗ = 0.95 than for V∗ = 0.8 or for V∗ = 0.65 (Fig. 5). The oscillation period τos is calculated from the peak 
of the Fourier spectrum of su for the eight independent runs: τos/τ = 100 , 11 , and 8 at V∗ = 0.95 , 0.8 , and 0.65 , 
respectively. This fact and the time evolution of 

∼
Hmax indicate that membrane deformation is suppressed by the 

volume restriction for V∗ = 0.95 (Fig. 5e). In contrast, substantial membrane deformation occurs at the reduced 
volumes of V∗ = 0.8 and 0.65 , which enables frequent generation of domains. Thus, membrane deformation can 
change both oscillation period and stability.

Discussion
In this study, we have examined the coupling effects between a reaction–diffusion system and membrane defor-
mation by simulating membrane deformation using a dynamically triangulated surface model. We adapted the 
Brusselator model to include mechanochemical feedback between local membrane curvature and the concen-
tration of curvature-inducing proteins. Based on the linear stability analysis of the reaction–diffusion system 
with a membrane curvature effect on a fixed spherical surface, we have clarified that bifurcation curves depend 

Figure 3.  Examples of pattern formation and membrane deformation. (a,b) Sequential snapshots of the vesicles 
for A = 4.5 , B = 2.02 , η = 0.1 , Du = 20 , Gκ0/R2 = 0.046 , C0R = 8, and V∗ = 0.8 starting from (a) prolate and 
(b) oblate shapes. The color indicates the concentration of curvature-inducing protein, u . (c–e) Time evolution 
of (c) the separation metric of the protein concentration, su , (d) that of the local curvature, sH , (e) asphericity, 
α , and (f) the number of domains, Nd . The purple and green lines indicate the simulations starting from prolate 
and oblate shapes, respectively. Results are presented as the mean ± standard error (n = 8).
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Figure 4.  (a–d) Snapshots of vesicles for A = 4.5 , B = 2.02 , η = 0.1 , Gκ0/R2 = 0.046 , and V∗ = 0.8 for 
two values of Du and C0 starting from prolate and oblate shapes. (a) Du = 20 and C0R = 7 . (b) Du = 20 
and C0R = 5 . (c) Du = 10 and C0R = 8 . (d) Du = 50 and C0R = 8 . The color indicates the concentration of 
curvature-inducing protein, u . (e–j) Time evolution of (e,h) the separation metric of the local curvature, sH , (f,i) 
asphericity, α , and (g,j) the number of domains, Nd . The data for C0R = 7 and 5 at Du = 20 are shown in (e–g), 
and the data for Du = 10 and 50 at C0R = 8 are shown in (h–j). The orange and red lines indicate simulations 
starting from prolate shapes, and the purple and green lines indicate simulations starting from oblate shapes. 
Results are presented as mean ± standard error (n = 8).
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on the mechanochemical coupling magnitude G and the value of spontaneous curvature of curvature-inducing 
proteins C0 with respect to the local membrane curvature (Fig. 1). Thus, the stability of both Turing and oscil-
lation dynamics depend on the membrane shape. We have shown that various shapes, such as buds and multi-
spindles, depend on G , C0 , and the diffusion constant Du (Figs. 2, 3, 4). In addition, since the domain formation 
of curvature-inducing proteins is promoted at regions with high local curvature, the initial shape of the vesicles 
affects the dynamics of pattern formation (Fig. 4a). Therefore, the dynamics of protein pattern formation change 
the shape of vesicles, while membrane deformation simultaneously affects pattern formation. This feedback loop 
can drastically alter the chemical reaction patterns from those on non-deformable surfaces (Fig. 2g,h). A dynamic 
transition from an oscillating pattern to a Turing pattern is induced by membrane deformation (Fig. 5g–i, and 
Supplementary Movie S2). Such transitions have not been reported in previous studies.

In the context of living cells, many kinds of proteins and other molecules function interdependently on 
membranes, where the function of one protein is often activated or inhibited by those of others. Membrane 
deformation brought about by competing forces of protein-induced curvature changes and surface tension 
changes impelled by actin growth has been  studied4,8,18,19. By choosing not to consider the dynamics of actin in 

Figure 5.  (a–c) Snapshots of the vesicles for A = 4.5 , B = 2.02 , η = 0.1 , Gκ0/R2 = 0.077 , and C0R = 10 for 
three values of V∗ and Du . (a) V∗ = 0.95 . (b) V∗ = 0.8 . (c) V∗ = 0.65 . The color indicates the concentration 
of curvature-inducing protein, u . (d–l) Time development of (d,g,j) the separation metric of the protein 
concentration, su , (e,h,k) the maximum value of the local curvature, 

∼
HmaxR , and (f,i,l) the mean area ratio of 

one domain 〈Sd/S〉 . The data for V∗ = 0.95 , 0.8 , and 0.65 are shown in (d–f), (g–i), and (j–l), respectively. The 
purple, green, and orange lines indicate the simulation data for Du = 10 , 20, and 50 , respectively. Results of 
one typical simulation run are shown. The results averaged from eight independent simulations are shown in 
Supplementary Fig. S4.
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this study, we demonstrated that various membrane deformations, accompanied by Turing patterns and oscil-
lations, can be produced by one curvature-inducing protein and one or a small number of regulatory proteins 
without actin interactions.

Here, we analyzed the coupling of a reaction–diffusion system with membrane deformation utilizing the 
fixed parameters A , B , and η , focusing primarily on Turing patterns, and oscillatory conditions to a lesser extent. 
The experimental results indicate that observed patterns, which include a feedback loop between curvature-
inducing proteins and membrane deformation, are not only stable spot patterns, such as those observed dur-
ing cell  polarization19, but are also propagating  waves18. Similarly, the reconstituted Min system in liposomes, 
which regulates bacterial cell division, has been shown to exhibit propagating wave  patterns38–40. These pat-
terns, which induce oscillating membrane deformation, are also described by reaction–diffusion systems. The 
system developed in this paper can also be applied to these patterns observed in living systems, by adjusting 
the parameters. Other chemical reaction models, such as the  Oregonator55, which was developed to model the 
Belousov–Zhabotinsky reaction, and the F-BAR-actin  model18, are also easily applied. Thus, the present model 
system is a powerful tool that can be used to study a wide range of chemical reaction systems that are coupled 
with membrane deformation.

Methods
Membrane model. Membrane contains N = 4000 vertices connected by bonds of an average length a , with 
volumes and masses, m , excluded. The local curvature energy fcv in Eq. (1) is discretized using dual lattices. The 
surface area S = 0.41a2(2N − 4) ≃ 3280a2 and volume V  of a vesicle are kept constant at about 0.01% accuracy 
by harmonic constraint potentials. Details of the potentials are described in Ref.47. For the coefficients of area 
and volume constraint potentials, four times greater values are employed than those in Ref.47. To produce mem-
brane fluidity, bonds are flipped to the diagonal of two adjacent triangles using the Monte Carlo method. The 
membrane motion is solved by molecular dynamics (MD) with the Langevin thermostat:

where ζ is the friction coefficient, and g i(t) is Gaussian white noise, which obeys the fluctuation–dissipation theo-
rem. The hydrodynamic interactions are not considered. The time unit in MD is τmd = ζa2/kBT based on diffu-
sion, and m = ζ τmd is used. To allow membrane deformation followed by concentration changes in u , τmd = 0.1τ 
is employed. Equation (9) is numerically integrated by the leapfrog algorithm with time steps �tmd = 0.001τmd.

Discretization of reaction–diffusion equations. We developed a finite volume method to discretize 
Eqs. (2) and (3). Since the Kelvin–Stokes theorem holds for curved surfaces, it is straightforwardly applicable, as 
employed on a flat surface. A vertex-centered finite volume approach is applied to the dual lattices used for the 
calculation of membrane  curvature47. The time evolution of u of the ith vertex is discretized using the following 
forward difference method:

where Si is the vertex area, lij is the side length between neighboring vertex cells, and rij is the distance between 
the neighboring vertices. The effect of curvature on diffusion is included as the variation of side lengths. Similarly, 
Eq. (3) is discretized. In this study, �trd = 0.1�tmd is used. The initial concentrations for the simulations are 
set around the fixed point (us, vs) , with small random perturbations. When us < 0 or us > 1, u = 0 or u = 1 are 
taken, respectively, as the initial concentration instead.

Received: 20 July 2020; Accepted: 2 November 2020

(9)m ∂2ri
∂t2

= − ∂U
∂ri

− ζ ∂ri
∂t + g i(t),

(10)ui(t +�trd) = ui(t)+ f (u, v)�trd + Du�trd
∑

j

(

uj−ui
) lij
rijSi

,

Figure 6.  Sequential snapshots of the vesicles for A = 4.5 , B = 2.02 , η = 0.1 , Gκ0/R2 = 0.077 , C0R = 10 , and 
V

∗ = 0.95 for (a) Du = 10 and (b) Du = 50 . The videos are shown in Supplementary Movies S3 and S4.
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