
biology

Review

Connexins and the Epithelial Tissue Barrier: A Focus on
Connexin 26

Laura Garcia-Vega, Erin M. O’Shaughnessy, Ahmad Albuloushi and Patricia E. Martin *

����������
�������

Citation: Garcia-Vega, L.;

O’Shaughnessy, E.M.; Albuloushi, A.;

Martin, P.E. Connexins and the

Epithelial Tissue Barrier: A Focus on

Connexin 26. Biology 2021, 10, 59.

https://doi.org/10.3390/biology

10010059

Received: 21 December 2020

Accepted: 12 January 2021

Published: 14 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian
University, Glasgow G4 0BA, UK; v.lauramaria.garcia@gmail.com (L.G.-V.);
Erinoshaughnessy@rocketmail.com (E.M.O.); albuloushi87@gmail.com (A.A.)
* Correspondence: patricia.martin@gcu.ac.uk

Simple Summary: Tissues that face the external environment are known as ‘epithelial tissue’ and
form barriers between different body compartments. This includes the outer layer of the skin, linings
of the intestine and airways that project into the lumen connecting with the external environment,
and the cornea of the eye. These tissues do not have a direct blood supply and are dependent on
exchange of regulatory molecules between cells to ensure co-ordination of tissue events. Proteins
known as connexins form channels linking cells directly and permit exchange of small regulatory
signals. A range of environmental stimuli can dysregulate the level of connexin proteins and
or protein function within the epithelia, leading to pathologies including non-healing wounds.
Mutations in these proteins are linked with hearing loss, skin and eye disorders of differing severity.
As such, connexins emerge as prime therapeutic targets with several agents currently in clinical trials.
This review outlines the role of connexins in epithelial tissue and how their dysregulation contributes
to pathological pathways.

Abstract: Epithelial tissue responds rapidly to environmental triggers and is constantly renewed.
This tissue is also highly accessible for therapeutic targeting. This review highlights the role of
connexin mediated communication in avascular epithelial tissue. These proteins form communication
conduits with the extracellular space (hemichannels) and between neighboring cells (gap junctions).
Regulated exchange of small metabolites less than 1kDa aide the co-ordination of cellular activities
and in spatial communication compartments segregating tissue networks. Dysregulation of connexin
expression and function has profound impact on physiological processes in epithelial tissue including
wound healing. Connexin 26, one of the smallest connexins, is expressed in diverse epithelial
tissue and mutations in this protein are associated with hearing loss, skin and eye conditions of
differing severity. The functional consequences of dysregulated connexin activity is discussed and
the development of connexin targeted therapeutic strategies highlighted.

Keywords: epithelial tissue; connexin; gap junction; purinergic signaling

1. Introduction

Epithelial tissues line the outer surface of organs and the inner surface of cavities such
as the digestive tract and secretory glands, where they project into the lumen connect-
ing with the external environment. Thus, the epithelium separates tissue compartments
forming barriers, regulates molecule exchange between those compartments and protects
from biological, physical and chemical aggressions [1]. The integrity of the epithelium is
maintained by intercellular junctional complexes composed of tight junctions (TJs), ad-
herens junctions (AJs), and desmosomes [2,3]. These junctions aide in the formation of
tight seals or barriers between the external environment. Since the epithelium is avascular,
it is believed that the delivery and co-ordination of intercellular signals directly between
cell layers is conducted via gap junction intercellular communication channels (GJIC) and
paracrine signalling pathways [4,5].
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Connexins (CXs) are the structural building blocks of gap junctions, four-transmembrane
domain spanning proteins with intracellular N- and C-tails (Figure 1). In humans, con-
nexins are encoded by a multigene family containing twenty-one members classified by
their molecular weight ranging from 23 to 62 kDa in size (CX23-CX62) [6]. Six connexins
oligomerise forming hemichannels or connexons linking the cytoplasm with the extracellu-
lar space. Two connexons from adjacent cells connect head-to-head to form an axial channel
or gap junction, thereby allowing the interchange of ions and water-soluble molecules
with a relative molecular mass up to 1.2 kDa. They play a central role in control of tissue
development, homeostasis and a diverse range of cellular functions [7–10].
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The Epithelium and the Tissue Barrier

The structure of epithelial tissue depends on its function. In general, epithelial tis-
sues are classified by their stratification, being simple, transitional or stratified. Simple
epithelium composes surface-forming epithelia in contact with the basement membrane
(e.g., epithelium of nephric tubules, trachea and secretory glands). The transitional ep-
ithelium has some cells in contact with the basement membrane and are surface-forming
(e.g., epithelium of urinary bladder). Stratified epithelium is composed of a basal layer,
in contact with the basement membrane and the only cells which can divide, and a su-
perficial stratum, where the cells undergo two processes of differentiation: keratinisation
non-cornification (e.g., epithelium of oral cavity, oesophagus, vagina) or keratinisation and
cornification (e.g., epidermis, nail plate) [1]. The epithelium also plays a central role in
body fluid secretions including heat and emotional responses via eccrine, apocrine and
sebaceous glandular secretions that are tightly regulated and express a range of connexin
proteins [11–13]. Skin appendages including the hair follicles and nails also extend from
the stratified epidermis where connexins play a significant role in the hair follicle cycle
and reviewed elsewhere [13,14]. This review will focus primarily on examples the role of
CX26 and CX43 in epithelial tissue including stratified epithelium such as the epidermis
and cornea and simple epithelium including the lining of the respiratory and intestinal
tracts. Table 1 summarises the expression profile of CX26 in human tissue.
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Table 1. Expression of CX26 in human tissue.

System or Organ Tissue or Structure Cell Type References

Skin
Epidermis

Keratinocyte [13,15]Spinous layer
Granular layer

Appendages

Sebaceous gland

[13,15]

Eccrine sweat gland and ducts
Hair follicle.

Outer root sheet
Inner root sheet: Henley and

Huxlye
Hair shaft: Cortex and Medulla

Matrix

Brain

Occipital cortex Astrocyte (glia)

[16]
Diencephalon Leptomeningeal cells

Medulla oblongata
Caudate nucleus

Digestive system
Stomach Epithelial cells

[17]Small intestine Muscularis externa cells
Colon

Endocrine and exocrine glands

Salivary glands Acinar cells

[18–20]

Pancreas (serous acini) Beta cells
Pituitary (adenohypophysis)

Parathyroid Principal cells
Thyroid (follicles)

Preputial ducts
Lacrimal (serous acini)
Parotid (serous acini)

Liver Periportal hepatocytes

Kidney Proximal tubule [21]

Reproductive system

Endometrium (luminal epith.) Basal glandular cells

[22,23]
Preimplantation embryo Blastocysts

Placenta Syncytiotrophoblasts
Myometrium Uterine myocytes

Endocrine system Adrenal cortex [24]

Ear

Spiral limbus Fibrocytes

[25]

Spiral ligament
Striavascularis

Cochlea Claudius cells
Hensen’s cells

Inner sulcus cells

Lung Alveolar epithelium [26]

2. Connexins and the Skin

The skin is the human body’s largest organ and is composed of three layers: the
hypodermis, dermis and epidermis. The hypodermis and the dermis are connective tissues,
while the epidermis is epidermal tissue composed mainly of epithelial cells known as
keratinocytes. Keratinocytes are subclassified into four layers: basal (proliferative cells),
spinous, granular and corneous (anucleated squamous cells) [27]. The skin provides four
different types of barrier: physical, redox, bio-chemical (innate immunity) and the adaptive
immune barrier. The physical barrier consists of protein enriched cells and is mainly
located in the stratum corneum and the granular layer, with strong adhesive interactions
via tight, adheren and gap junctions. The bio-chemical or antimicrobial barrier consists
of lipids, acids, lysozymes and antimicrobial peptides. These two barriers protect from
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external aggressions (outside-inside barrier), while also avoiding loss of water and solutes
(inside-outside barrier) [28,29] (Figure 2).
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The epidermis is composed by four layers of keratinocytes at different stages of
differentiation and connexin pattern expression. The epidermis is a two sided barrier: the
outside-inside barrier protects from environmental aggression, while inside-outside barrier
protects from water loss.

The epidermis, like all other stratified epithelial tissues, is avascular so gap junctions
play an important role in cell-to-cell communication and coordination. Up to 10 different
connexins are differentially expressed throughout the epidermis, each presenting a char-
acteristic expression profile dependent on the species and conditions. These Connexin
profiles allow the establishment of specific gap junction communication compartments
in the different strata. Alteration of connexin activity and compatibility may provoke
problems in keratinocyte differentiation [5,30,31]. Several studies have demonstrated that
connexins are involved in skin conditions such as chronic non-healing wounds, psoriasis
and a variety of genetically related skin syndromes (e.g., [32–34]).

Within normal healthy human skin CX30.3, CX31 and CX43, and at lower levels CX26,
C31.1, CX40 and CX45 are expressed in the granular layer. In the spinous layer, CX26, CX30,
CX30.3, CX31, CX31.1, CX40, CX43 and CX45 are expressed with CX43 the predominant
CX in the basal layer [5,30,35] (Figure 2). Cx26 is expressed at low levels in proliferating
keratinocytes in tissue culture and readily expressed in stratified 3D epidermal cultures by
immunocytochemistry [36–38].

2.1. Connexin 26, Trafficking and Assembly

CX26, a 26 kDa protein consisting of 226 amino acids, is encoded by the GJβ2 gene,
located on Chromosome 13q12.11 in Homo sapiens [39]. The gene is formed by the non-
coding exon 1 (160 bp), an intron (3 kb) and exon 2 containing the complete connexin coding
region and the subsequent 3′-UTR [40]. The promoter P1 (−128 bp:+2 bp) upstream of
exon 1 has a number of transcription regulatory domains including SP1/SP3 and AP1 [39].
CX26 is also responsive to the NFkB transcription factor, which plays a role in inflammation
and immunity, as well as in cell proliferation, differentiation and survival [41,42]. Human
CX26 has a short C-terminal tail, with only 18 amino acids, this characteristic is relevant
because it affects its interactome and post-translational modification, where CX26 interacts
with a variety of proteins including those associated with the tight junction network [20].
Gap Junction assembly depends on the oligomerisation of Connexins to form a closed
hexameric Connexon or hemichannel in the ER-Golgi environs, which are then escorted and
inserted into the plasma membrane via the microtubule network, in association with motor
proteins such as consortin [7,43,44]. Evidence suggests that CX26, and closely related CX30,



Biology 2021, 10, 59 5 of 18

can also follow an alternative Golgi-independent trafficking pathway, possibly providing
a means for translation on free ribosomes and an ability to be rapidly translated at site
specific plasma membrane locations when required [45–50]. Entire gap junction plaques
are removed from the plasma membrane by the formation of annular gap junctions [4,51]
(Figure 3). In addition, CX26 is unique to the connexin family as it does not contain
phosphorylation sites in its C-terminal tail that play a significant role in protein turnover,
particularly well characterised for Cx43 [51]. Nevertheless, CX26 presents a variety of
putative post-translational modifications, including carbamylation [52], hydroxylation,
phosphorylation and methylation, some of which happen at sites of deafness-causing
mutations and may be associated with CX26 biogenesis and channel function [53,54]. Fur-
thermore, hemichannels are normally closed during normal conditions; however, human
CX26 hemichannels are an exception as they tend to be open under basal conditions. The 3D
molecular structure of CX26 suggests this could be because, in contrast to other species,
human CX26 presents an asparagine (uncharged) at amino acid position 159 in place of
aspartic acid found in other species [55,56].
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Figure 3. Life cycle of CX26: CX26 can be co-translated and trafficked through the secretory route
(standard life cycle). It can also be post-translationally incorporated into ER microsomes and traf-
ficked by Golgi-independent pathway (alternative CX26 life cycle). GJIC mediated communication
is indicated between cells and paracrine signalling permitting ATP release indicated via the open
hemichannels.

2.2. The Effects of CX26 Mutations

Many diseases have been linked with mutations in connexins, commonly termed
connexin channelopathies [57–60]. CX43 is the most abundant connexin in the human
skin; however, mutations and dysregulation of CX26, which is expressed at very low levels
in healthy human epidermis, are related with skin disease characterised by abnormal
keratinisation and hyperproliferation of the stratum corneum. Mutations in CX26 are
among the most prevalent mutations associated with inherited non syndromic deafness
(see Section 4.1) [61–63]. In addition to deafness, dominant mutations are also linked with
a range of skin conditions of differing severity, suggesting a complex interrelationship
between functional changes in connexin genotype and the phenotypic outcome [59,64–66]
(Figure 1). Other mutations in the beta connexin subgroup including CX31 and CX30 cause
similar epidermal dysplasia [59].

Mutations fall into four main classes. Class 1: trafficked to the plasma membrane
with non-functional channels; Class 2: non-functional channels and protein trafficking
deficiencies; Class 3: mutations associated with ‘leaky’ hemichannels and inflammatory
skin disease; Class 4: trafficking deficiency and cell death, associated with mucositis, in-
flammatory disease and deafness. Class 1 mutations tend to be linked with non-syndromic
deafness and have limited skin pathology and may be related with heterozygous ad-
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vantage (see Section 4.1). Class 2 mutations align with non-inflammatory skin disorders
such as Bart-Pumphrey and Vohwinkel syndrome and deafness. Vohwinkel syndrome
(OMIM#124500) is a non-inflammatory disorder caused by CX26 mutations located predom-
inantly on the first portion of EL1 (e.g., D66H). The disease is characterised by keratodermas
with constriction bands around the phalanges, which induces autoamputation of the dig-
its [67–69]. Class 3, gain of CX26 function mutations, are associated with inflammatory
disorders such as Keratitis ichthyosis deafness (KID), Hystrix-like ichthyosis-deafness
(HID). KID syndrome (OMIM#148210) is caused by CX26 mutations on the N-terminal tail,
the EL1 (e.g., G12R, N14Y, G45E and D50N) [70–72]. In addition to hearing loss, the disease
is characterised by: hyperkeratosis of the palms and soles, erythrokeratoderma on the ex-
tremities and face, follicular hyperkeratosis, photophobia and corneal vascularisation that
ultimately leads to blindness. Patients experience severe and chronic bacterial and fungal
skin infections and are susceptible to the development of squamous cell carcinoma [73,74].
The molecular mechanisms underlying the condition likely relate to “leaky” hemichannels,
with differing sensitivities to pro-inflammatory mediators, and ionic sensitivity including
calcium and zinc levels thereby altering channel function [66,75–82]. Several mutations
induce lethal phenotypes and are associated with loss of cell viability [83–85]. Recently,
we proposed a further Class 4 mutation group associated with hyperkeratosis, mucositis
and deafness, where cell model studies revealed cell death and a collapse of the microtubule
network, but limited connexin channel function (e.g., F142L, CX31G45E) [86,87].

Accumulating evidence suggests that, in addition to changes in CX26 trafficking and
channel behavior, a key pathological trigger in the diverse CX26 mutations is alteration
in CX oligomerization compatibility. Normally, oligomerization is CX subtype specific
with ‘alpha’ and ‘beta’ subgroups being incompatible. As such, CX26 and CX43, critical
connexins in epithelial tissue are unable to form heterotypic structures [88,89]. Recent
studies report changes in CX26 mutation oligomerization compatibility, allowing aberrant
interactions with CX43 with exacerbated hemichannel activity but non-functional gap
junction channels [78,86,90], with each mutation uniquely altering the 3D structure in
terms of charge, pore size, hydrophobicity, etc. It is also conceivable that altered CX43:CX26
heteromeric channels influence unique metabolic exchange and influence asymmetric
cell division required for the stratification of the epidermis, thereby contributing to the
hyperproliferative status of the skin [91]. Further characterisation and understanding of
the impact of such aberrant CX signalling is required to enhance understanding of these
complex conditions. Interestingly, a recent report by Laird and colleagues suggest that
hearing loss caused by CX26 mutations does not depend on any interaction with CX43 [92].

2.3. The Effects of CX26 Dysregulation

Up-regulation of CX26 is a characteristic of hyperproliferative epidermis in physiolog-
ical conditions, such as vaginal and buccal epithelium, which shows a high proliferation
rate, and pathological conditions, such as psoriatic epidermis, chronic non-healing wounds
epidermis and viral warts [93–96]. CX26 expression is also induced during wound healing
and skin hyperplasia stimulated by tumor promoters [40]. Transgenic mice over-expressing
CX26 in the suprabasal layer developed a hyperproliferative phenotype, providing models
for several epidermal human CX26 diseases, such as psoriasis [97].

2.3.1. Connexins and Wound Repair

Connexins are closely involved in normal wound repair and show dynamic changes
in expression after wounding. After 6 h of injury, CX43 is down-regulated in keratinocytes
and fibroblast at the wound edge to allow cell migration followed by recovery of CX43
levels [95]. In contrast, CX26 and CX30 are up regulated in keratinocytes until the wound
is closed [96,98,99] in the granular cell layer near the wound margins and in the basal
cell layer at some distance from the wound [95]. Thus, Connexins play a pivotal role in
a variety of aspects of the acute wound healing process and each step is associated with
a different connexin environment [51].
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At the edge of chronic wounds, epidermal CX43, CX26 and CX30, and dermal CX43
are strikingly up-regulated around wound margins and at some distance from the chronic
wound [95]. The up-regulation of CX43 may disrupt fibroblast migration to the wound
bed and as a result failure of granulation tissue formation occurs [100–104]. The up-
regulation of CX26 may contribute to the inflammatory and hyperproliferative status of
the wound [95,105]. The overexpression of Cx26 in mouse skin (under the control of the
involucrin promoter) kept wounded epidermis in a hyperproliferative state, blocked the
transition to remodelling, and led to an infiltration of immune cells. This overexpression
also induced ATP release from keratinocytes, which delayed epidermal barrier recovery
and promoted an inflammatory response in resident immune cells [97].

2.3.2. Connexins and Psoriasis

Psoriasis is a chronic hyperproliferating skin disorder that manifests sporadic skin
lesions characterised by loss of the granular layer and incomplete keratinocyte differen-
tiation associated with a thickened cornified layer. Overexpression of CX26 in psoriatic
lesions was originally reported by Labarthe and Lucke in the late 1990s [93,94]. Subsequent
studies in mouse models overexpressing Cx26 in the skin showed a mildly acanthotic and
hyperkeratotic skin, with a thicker and more compact cornified layer. Areas with frictional
trauma, such as axillary areas, presented with scaling and desquamation and hyperkera-
totic plaques developed [97]. Other studies revealed that tape stripping of normal human
epidermis induced CX26 expression and hyperproliferation [106]. More recently, publica-
tion of the psoriatic transcriptome permitted in depth RNAseq analysis [107] and many of
the upregulated genes are related with cell-to-cell adhesion complexes. GJB2, encoding
CX26 was the 98th most up-regulated gene detected and its over expression is used as
a marker of genetic predisposition in psoriasis [108,109]. A variety of other transcriptomic
studies confirm this overall increase in CX26 expression in psoriatic tissue yet no changes
in CX43 gene expression are reported [110,111].

3. Connexin 26 and Other Epithelial Tissue: A Link with Heterozygous Advantage
3.1. Connexin 26 in Intestinal Epithelia

The intestinal epithelium is lined with a single layer of polarized cells where the tight
junction network, located at the interface between the apical and basolateral membranes,
plays a pivotal role in maintaining the mucosal barrier and regulating selective paracellular
transport [112]. The intestinal connexins display cell type-specific expression patterns,
delineating physiological compartments with specific functions. Up to 11 different isoforms
are expressed in the intestinal system: CX26, CX32, CX37 and CX43 are notably expressed
in the epithelial cells of the small intestine and colon [17]. CX26-related GJIC plays a role
in the maintaining epithelial barrier function by affecting the production of TJ proteins.
For example, in Caco-2 cells, a human colorectal epithelial cell line, CX26 expression
increased gradually while cells reached confluency. Overexpression of CX26 resulted
in enhanced tight junction formation with lower levels of mannitol flux and increased
claudin-4 protein expression [113]. Recent studies also indicate that the CX26 interactome
includes components of the tight junction network [20].

3.2. Connexin 26 in the Auditory System

As mentioned in Section 2.2, mutations in CX26 are a leading cause of deafness.
The auditory canal surface is covered by a simple nonkeratinized squamous epithelium
continuous with the lining of the tympanic cavity where CX29 is the predominant connexin
expressed. This protein does not form functional gap junctions and is believed to act as
a hemichannel in association with voltage-dependent K+ channels [114]. CX26 is expressed
in the organ of Corti, the spiral limbus, the stria vascularis, and fibrocytes of the spiral
ligament [114]. The intrical auditory connexin circuit is critical in maintaining the recycling
of K+ ions in the endolymph enabling auditory function. As discussed multiple recessive
mutations in CX26 are associated with hearing loss with a relatively high carrier frequency
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(1–3%), suggesting the possibility of heterozygous advantage [115–122]. Within different
ethnic groups there are specific common recessive mutations that account for most of the
CX26-related hearing loss, e.g., 35delG, 235delC and R143W, a typical ‘class 1 mutation’ in
the European, Japanese and African populations, respectively [116–118,122].

3.3. Connexin 26 and Heterozygous Advantage

The mutations CX26-R134W and 35delG are reported to produce a thicker epider-
mis [119,120]. Organotypic co-culture skin models with keratinocytes expressing CX26-
R134W showed a thicker epidermis, suggesting an increase in cell proliferation, a delay in
terminal differentiation, and higher cell migration than CX26WT-models, possibly reflecting
a greater protection against environmental damage [120]. CX26 is also expressed in intesti-
nal epithelial cells and several studies suggest that ‘Class 1’ heterozygous CX26-mutation
status may decrease susceptibility to enteric pathogens. For example Shigella flexneri causes
bacillary dysentery in humans and it invades intestinal epithelial cells inducing an acute
inflammatory reaction destroying the colonic epithelium [123]. This pathogen can open
CX26 hemichannels, in an actin-phospholipase C-dependent manner, allowing ATP release,
which induces the retraction of filopodial extensions, subsequently bringing the bacteria
into contact with the cell body being invaded [124]. In vitro experiments with human in-
testinal cell lines showed a reduction of both cellular invasion by S. flexneri and adherence
by enteropathogenic E. coli following treatment with CX26 siRNA, suggesting that the loss
of functional CX26 provides protection against gastrointestinal bacterial pathogens [125].
Further population studies on the health of CX26 carriers in relation to epithelial disorders
are certainly warranted, with recent evidence suggesting a link between CX26 and psoriatic
hearing loss [126].

3.4. The Airway Epithelium

The air-conducting portion of the lung is lined by a pseudostratified epithelium, which
is referred to as the airway epithelium. CX26 and CX43 are expressed in the undifferenti-
ated human airway epithelium in conductive airways, but upon differentiation they rapidly
disappear. As with respiratory airways, CX26 and CX43 have been detected in human
lung epithelial cells [127,128]. Upon wounding, CX26 expression is transiently induced in
activated basal cells and strongly decreased after wound closure. Activation of cell prolifer-
ation upon injury is required to trigger CX26 expression in repairing cells. Thus, induction
of CX26-mediated intercellular communication by proliferative signals in repairing basal
cells may represent a feedback mechanism to repress their proliferation and progressively
promote differentiation [129]. Other studies suggest a role for CX26 in barrier adhesive
complexes. For example, Calu-3 cells, a human transformed bronchial epithelial cell line,
do not express CX26. Treatments with ouabain, a Na+/K+-ATPase inhibitor, disrupted
barrier function, causing a down-regulation of occludin, JAM-1, claudin-2, and -4 expres-
sion and up-regulation of ZO-1 and claudin-14. However, when the cells were transfected
to express CX26 they were not affected by ouabain, TJ proteins remain unchanged and
CX26 co-localised with claudin-14. Pre-treatments with GJIC inhibitors did not affect CX26
changes, suggesting that CX26 expression but not GJIC regulates the TJ barrier in human
epithelial cells [130]. Some of these concepts were recently reviewed by Chanson et al.,
2018 [5].

3.5. The Cornea

The cornea is a transparent avascular tissue that acts as a barrier protecting the eye
from infections. The corneal epithelium is composed of 5–7 layers of three types of non-
keratinised stratified squamous cells: superficial cells, wing cells and basal cells [131].
CX26, CX30, CX31.1 and CX43 are the predominant connexins in human cornea [132,133],
their mutation results in ocular disorders such as oculodentodigital dysplasia, produced
by mutations in CX43 and KID syndrome related to CX26 mutations, where keratitis is
a major pathology [73,134,135]. Zhai et al. determined the connexin expression in 10 human



Biology 2021, 10, 59 9 of 18

diseased corneas: five injured by chemical burns and five infected [133]. They determined
by flow cytometry that only 0.5% cells in normal corneal tissue expressed CX26; however,
this percentage increased in chemical burn and infected corneas, being 15.6 and 34.2%,
respectively. On the other hand, CX43 was expressed in 3.1% of normal cells, while its
expression was 23.4 and 40% in chemically burned and infected cells [133]. As such,
Connexins emerge as a prime therapeutic targets and treatments with the synthetic CX43
mimetic peptides and SiRNA technologies are proving successful in clinical trials (see
Section 5) [136–138].

4. Connexins and Inflammation

4.1. Molecular Mechanisms: ATP, Ca2+ and the Pro-Inflammatory Response

Formation and maintenance of barrier function is affected by cytokines, ATP and
Ca2+ gradients throughout the stratified layers of the epidermis. Ca2+ levels are highest
in the granular layer and almost disappear in the stratum corneum and is an important
regulator in epidermal differentiation, protein synthesis and cell-to-cell adhesion [28,139].
Furthermore, keratinocytes in each layer of the epidermis show distinct characteristics
in response to ATP. Purinergic signalling, an extracellular signalling pathway triggered
by purine nucleotides including ATP passively released via hemichannels, participates in
multiple physiological processes (e.g., proliferation and differentiation), activates nerve
cells and attracts immune cells. Dysregulation of ATP results in pathological conditions
including chronic inflammation. Keratinocytes release ATP in a critical gradient depending
on the differentiation status of the cell and the distribution of purinergic receptors is
different in each layer of the epidermis, thus the response to ATP is different in different
epidermal compartments [140,141]. Exposing keratinocytes to stress induced both elevation
of intracellular Ca2+ and ATP release [141]. Furthermore, the use of gap junction blockers
significantly reduced Ca2+ wave propagation in differentiated keratinocytes, suggesting
the participation of gap junctions in the induction of Ca2+ waves in response to stress
in the epidermis [140,142]. A wide variety of stimuli, including mechanical stimulation,
induce ATP release through hemichannels that subsequently interacts with purinergic
receptors promoting the propagation of Ca2+ signals, from the ER. These signals can be
directly propagated to neighbouring cells via gap junction channels [143] or through the
extracellular space via hemichannels [34,144]. The increase in intracellular Ca2+ in response
to ATP varies in each layer of the epidermis and is reported to be higher in the basal than in
the outer layers [141]. Such events enable a rapid and co-ordinated spatio-temporal signal
propagation throughout tissues.

Human CX26 hemichannels can be opened under resting conditions [55]. Mutations
in CX26 affect hemichannel permeability. As discussed, CX26 KID syndrome mutations
provoke ‘leaky’ hemichannels and allow the aberrant formation of CX43-CX26 hetero-
hemichannels presenting abnormal permeability [66,78,86,145–147]. Some of these muta-
tions also alter CX26 PCO2 gating sensitivity, which may contribute to CO2-dependent
regulation of breathing in mammals [148–151]. Other examples of dysregulation of epi-
dermal calcium gradients were observed in a transgenic KID syndrome mouse model,
Cx26-S17F, where intra- and extracellular Ca2+ levels were maintained in the corneous layer,
proposed to be a consequence of hyperactivation of heteromeric hemichannels. The epi-
dermis of these mice had altered lipid profiles, developed both hyperproliferation and
hyperkeratosis which negatively affected epidermal water barrier [152].

TNFα, IL-1 and IL-6 are potent mitogens and stimulators of lipid synthesis crucial
to respond to and repair barrier disruption; however, the chronic expression of these
cytokines lead to inflammation and epidermal proliferation, an end result in epidermal
dysplasia including conditions such as dermatitis and psoriasis [28]. ATP induces IL-6
production in HaCaT cells, a model keratinocyte cell line, via P2Y receptors, and it is critical
for the wound repair process. Mechanical stimulation of HaCaT cells, such as the change
of medium or silica nanoparticle 30, induced release of ATP and the activation of P2Y
receptor provoked an increase in intracellular Ca2+ concentration causing the induction
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of IL-6 mRNA and protein levels [144,153]. This response was inhibited by suramin (a P2
purinergic receptor antagonist) [154,155].

The deregulation and persistent production of IL-6 contributes to chronic inflammation
and autoimmunity. An example is psoriasis, of which transcriptome analysis determined
that IL-6 is up-regulated 4.3-fold in psoriatic lesions [107]. In addition, ATP increases
proliferation in HaCaT cells and maybe a mechanism for the hyperproliferation that occurs
in psoriasis. Both, IL-6 production and proliferation in HaCaT cells were inhibited by
blocking purinergic receptors with blockers such as suramin [154–156].

There is extensive evidence to suggest that a double positive feedback between con-
nexin channels and purinergic signalling exists. The opening of connexin channels allows
the release of ATP which is an agonist of purinergic signalling leading to the opening of
hemichannels and the subsequent amplification of purinergic signalling (more ATP release
and Ca2+ waves) via a positive signalling feedback loop, giving rise to the concept of ATP-
induced ATP release [157]. Mugisho and colleagues propose the inflammasome pathway
is amplified in an autocrine manner through ATP released via CX43 [158]. Evidence builds
that other connexins, including overexpression of CX26 in the epidermis may contribute
to this cycle of events with ATP released feeding into purinergic signalling pathways and
associated with exacerbated inflammation and hyperproliferation linked with psoriasis.

4.2. Connexins and Gram-Positive Bacteria

Study of the microbiome have suggested a further contributing trigger to Psoriasis is
as a dysbiosis from commensal microflora colonisation (e.g., Staphylococcus epidermidis) to
opportunistic colonisation (e.g., S. aureus), i.e., an ‘outside-in’ trigger [159,160]. Such a mi-
crobiome shift would lead to altered innate immune signalling patterns and may contribute
to the pathogenesis. A similar shift is also observed in KID syndrome and chronic wounds
where connexin dysregulation is also evident [73].

Peptidoglycan (PGN) from S. aureus regulates connexin gene and protein expression in
diverse tissues. In the HaCaT keratinocyte cell model system it induced CX26 gene expres-
sion [42,81]. A similar response was observed in mouse astrocytes; however, in microglia
and endothelial cells increased Cx43 gene and protein levels were observed [161–163].
PGN is a potent inducer of the innate immune response recognised by Toll-like receptor 2
(TLR2), which is the prime receptor for PGN [164]. PGN interaction with TLR2 triggers
a downstream signalling cascade by initiating Ca+2 fluxes which finally activates NF-kβ
and, subsequently, pro-inflammatory cytokine expression such IL-6, IL-8, TNF-α and IL-
1β, [165–167]. Gap junctions are involved in the initial spread of Ca+2 fluxes generated
by TLR2 in mucosal epithelium. Further, connexin-mediated pathways transduced the
signalling triggered by an infection and provoked gene expression changes including
cytokine expression. For example, Pseudomonas aeruginosa activated TLR2 and triggered
a Ca2+ wave, that passed through gap junction channels, subsequently activating NF-kβ
and inducing IL-8 secretion in airway cells [165–167]. Furthermore, in HaCaT cells ex-
posed to PGN from S. aureus, there was an increase in ATP release and TLR2 expression.
TLR2, via NF-kB, induced the up-regulation of CX26, IL-6 and IL-8, and this response
was inhibited by connexin channel blockers [42]. In other studies, PGN evoked hemichan-
nel activity and induced a pro-inflammatory response in HaCaT cells expressing class 3
CX26 mutations associated with KID syndrome (Section 2.2), events that were inhibited by
carbenoxolone, a connexin channel inhibitor. This did not occur in cells expressing non-
functional mutations such as D66H associated with the non-inflammatory skin disorder
Vohwinkel syndrome [81].

5. Future Directions and Connexins as Therapeutic Targets

Dysregulation of connexin expression is thus associated with a wide range of ep-
ithelial tissue events. This tissue, particularly the stratified epidermis and the cornea,
is readily accessible and prime for therapeutic intervention [168,169]. A range of connexin
mimetic peptide and SiRNA technologies continue to be developed targeting connex-
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ins with evidence amounting of their considerable therapeutic benefit, most of which
are based on CX43 [170,171]. Initial studies included antisense oligonucleotides targeted
to CX43 [172–174]. This was successfully taken forward by Professor Colin Green and
colleagues to clinical trials with exciting evidence in wound healing scenarios (https:
//ocunexus.com/nexagon). Recently antisense technologies targeting CX26 were re-
ported to reduce pro-inflammatory ATP release within the skin and were beneficial in
in vivo wound healing studies, preventing CX26 upregulation at the wound edge, re-
ducing inflammation, epidermal thickening and improving wound closure events [96].
Short connexin mimetic peptides targeting CX43, based on the original work pioneered
by Professor Howard Evans and colleagues during the 1990s, provided a platform for
peptide design effectively inhibiting both Gap Junction and Connexin hemichannels ac-
tivity. The ‘GAP27’ domain targets amino acid sequence SRPTEKTIFFI located on the
distal domain of EXL2. This sequence is highly conserved between Cx43 and Cx37 with
a variety of studies revealing Connexin subtype specificity [37,175–178]. Various platforms
have now taken this work forward with the success of extracellular loop peptides, ana-
logues of GAP27, targeting CX43 being successful in clinical trials for patients with ocular
conditions including diabetic retinopathy and age related macular degeneration [179,180]
(https://ocunexus.com/peptagon). Although there is currently no published informa-
tion on Cx26 specific peptides, it is likely that targeting this domain could yield peptides
capable of uniquely blocking Cx26 activity. The peptide ACT-1, targeting the carboxyl
tail region of CX43 shows exciting possibility in phase 3 clinical trials in wound healing
and in tailored targeting of cardiac disease by Prof Rob Gourdie and colleagues [181,182]
(https://firststringresearch.com/).

Finally, allele specific SiRNA therapies, targeting specific CX26 mutations, show early
promise in advancing personalised medicine approached for patients with conditions such
as KID syndrome [183,184].

In conclusion, Connexins are dynamically expressed within epithelial tissue with
CX26 being highly responsive to environmental stimuli. Further studies are warranted
on the interplay of the CX26:CX43 nexus in epithelial networks and may enable tailored
targeting of both Connexins to resolve a range of pro-inflammatory epithelial conditions.
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