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DNA damage-induced PARP1 activation confers
cardiomyocyte dysfunction through NAD+

depletion in experimental atrial fibrillation
Deli Zhang1, Xu Hu1, Jin Li1, Jia Liu2, Luciënne Baks-te Bulte1, Marit Wiersma1, Noor-ul-Ann Malik1,

Denise M.S. van Marion1, Marziyeh Tolouee3, Femke Hoogstra-Berends3, Eva A.H. Lanters4, Arie M. van Roon5,

Antoine A.F. de Vries2, Daniël A. Pijnappels2, Natasja M.S. de Groot4, Robert H. Henning3 &

Bianca J.J.M. Brundel 1

Atrial fibrillation (AF) is the most common clinical tachyarrhythmia with a strong tendency to

progress in time. AF progression is driven by derailment of protein homeostasis, which ulti-

mately causes contractile dysfunction of the atria. Here we report that tachypacing-induced

functional loss of atrial cardiomyocytes is precipitated by excessive poly(ADP)-ribose poly-

merase 1 (PARP1) activation in response to oxidative DNA damage. PARP1-mediated synthesis

of ADP-ribose chains in turn depletes nicotinamide adenine dinucleotide (NAD+), induces

further DNA damage and contractile dysfunction. Accordingly, NAD+ replenishment or PARP1

depletion precludes functional loss. Moreover, inhibition of PARP1 protects against

tachypacing-induced NAD+ depletion, oxidative stress, DNA damage and contractile dys-

function in atrial cardiomyocytes and Drosophila. Consistently, cardiomyocytes of persistent AF

patients show significant DNA damage, which correlates with PARP1 activity. The findings

uncover a mechanism by which tachypacing impairs cardiomyocyte function and implicates

PARP1 as a possible therapeutic target that may preserve cardiomyocyte function in clinical AF.
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Atrial fibrillation (AF) is the most common clinical
tachyarrhythmia. Over the past years, considerable pro-
gress has been made in unraveling mechanisms driving

the initiation and perpetuation of AF, providing targets to ground
novel therapeutic options in AF. The current insight is that
progression of AF is driven by the high-activation rate of atrial
cardiomyocytes, inducing their electrical, structural, and func-
tional remodeling, which renders them increasingly permissive to
the arrhythmia1. Principle factors governing the cardiomyocyte
remodeling, include derailments of Ca2+ homeostasis, proteos-
tasis, and the protein quality control system1–7. We recently
disclosed a prominent role of histone deacetylase 6 (HDAC6)-
driven deacetylation of cytoskeletal α-tubulin in structural and
functional remodeling of AF cardiomyocytes8. In the course of
this study, we also observed that nicotinamide (vitamin B3), an
HDAC class III (sirtuins) inhibitor9,10, offers complete protection
against cardiomyocyte remodeling in tachypaced cardiomyocytes
and Drosophila prepupae, by a mechanism unrelated to its inhi-
bition of sirtuins8. Thus, we set out to disclose nicotinamide’s
mode of action.

In addition to sirtuins, nicotinamide is a known inhibitor of
poly(ADP-ribose) polymerases (PARPs)11,12. PARPs constitute a
family of six nuclear enzymes whose activation is precipitated by
single- and double-stranded DNA breaks (SSBs and DSBs,
respectively), serving to recruit the DNA repair machinery by
synthesis of poly(ADP-ribose) chains (PAR)13. During the
synthesis of PAR chains, nicotinamide adenine dinucleotide
(NAD+) is consumed by PARP up to an extent that it depletes
cellular NAD+, leading to a progressive decline in ATP levels,
energy loss and cell death in case of excessive PARP activation14.
Moreover, PARP activation, especially of PARP1, was previously
found to be involved in various cardiovascular diseases other than
AF11,12,15–17, and both pharmacological and genetic inhibition of
PARP1 provides significant benefits in animal models of such
cardiovascular disorders12,18.

In the current study, we investigate the origin and con-
sequences of PARP activation in experimental AF by character-
izing the pathways involved and examine the therapeutic effects
of PARP inhibitors and NAD+ replenishment. The findings
reveal that tachypacing (TP)-induced cardiomyocyte dysfunction
is a consequence of DNA damage-modulated PARP1 activation,
which leads to depletion of nicotinamide adenine dinucleotide
(NAD+) and further oxidative stress and DNA damage and
implicate PARP1 as a possible therapeutic target that may pre-
serve cardiomyocyte function in AF.

Results
TP causes DNA damage, PARP activation, and NAD+ loss.
Previously, we observed nicotinamide to protect against contractile
dysfunction in tachypaced HL-1 cardiomyocytes and Drosophila
prepupae, independent of its ability to inhibit sirtuin activity8. As
nicotinamide is also known to inhibit the activation of PARP11,12,
we tested the level of PARP activity by measuring the amount of
PAR synthesis in normal and tachypaced cardiomyocytes. A gra-
dual increase in PAR levels was observed upon TP, which reached
significance after 8 h of TP and remained increased afterward
(Fig. 1a–d, Supplementary Figure 1a), while PARP1 protein
expression was unchanged during TP (Fig. 1a, Supplementary
Figure 1b, c). This observation indicates that TP induces PAR
synthesis, suggesting induction of PARP activation. Since PARP
gets activated by SSB and DSB in the DNA19, the level of DNA
damage was determined by comet assay (single-cell gel electro-
phoresis)20, and by measurement of phosphorylation of the Ser-139
residue of the histone variant H2AX, forming γH2AX. Four hours

of TP significantly increased both the amount of DNA in the comet
tail (Fig. 1e, f) and γH2AX levels of cardiomyocytes (Fig. 1g–j).

Upon activation, PARP consumes NAD+ to synthesize PAR.
Therefore, progressive and excessive activation of PARP results in
reductions in NAD+ levels, which finally results in the energy loss
and functional impairment of cardiomyocytes12. To study
whether TP-induced PARP activation depleted NAD+ levels in
HL-1 cardiomyocytes, NAD+ levels were measured in HL-1
cardiomyocytes in the course of TP. Eight hours of TP induced a
significant reduction in NAD+ levels (Fig. 1k). Normal pacing at
1 Hz did not reveal changes at PAR, γH2AX, or NAD+ levels
(Supplementary Figure 2a–e). Together, these findings reveal that
TP induces substantial DNA damage and consequently the
activation of PARP, resulting in depletion of the cellular content
of NAD+ in cardiomyocytes.

PARP1 is a key enzyme instigating contractile dysfunction.
Since NAD+ is an important constituent for proper cell function
and health21, we next investigated whether the decline in NAD+

levels is a driving mechanism for functional loss by testing the
effect of replenishment of NAD+ on contractile function in
tachypaced HL-1 cardiomyocytes. TP resulted in a significant
Ca2+ transients (CaT) loss, which was dose-dependently abro-
gated by preserving cellular NAD+ levels through exogenous
supplementation (Fig. 2a, b, Supplementary Figure 3a, b). This
observation was confirmed in tachypaced Drosophila prepupae5,
where TP resulted in loss of heart wall contractions and an
increase of arrhythmia incidence, which was dose-dependently
prevented by replenishment of NAD+ (Fig. 3c–e). Next, we
examined whether PARP mediates the NAD+ depletion, since
particularly PARP1 and to a lesser extent PARP2 isoforms con-
sume NAD+13. Hereto, HL-1 cardiomyocytes were transfected
with siRNA targeting PARP1 or PARP2, resulting in specific and
effective suppression of their expression in the cardiomyocytes
(Supplementary Figure 4a, b). Subsequent TP of siRNA treated
cardiomyocytes demonstrated that downregulation of
PARP1 significantly protected cardiomyocytes against CaT loss,
whereas downregulation of PARP2 did not (Fig. 3a, b).

To confirm that PARP1 is the key PARP enzyme driving TP-
induced contractile dysfunction, PARP1 expression was suppressed
specifically in the heart of Drosophila in two RNAi lines, as
confirmed by Western blotting (Supplementary Figure 4c, d). In line
with the findings in HL-1 cardiomyocytes, suppression of PARP1
resulted in protection against TP-induced heart wall dysfunction
(Fig. 3c–e, Supplementary Figure 4e and Supplementary Figure 5).

These results demonstrate that PARP1 is the key PARP enzyme
instigating TP-induced contractile dysfunction in cardiomyocytes.

PARP1 inhibition prevents NAD+ depletion and functional
loss. To further substantiate that PARP1 represents a drug target
to mitigate TP-induced functional remodeling, the action of
PARP1 inhibitors was examined in HL-1 cardiomyocytes. PARP1
inhibitors comprised the general inhibitors, nicotinamide and 3-
AB, and the specific PARP1/2 inhibitors ABT-888 and olaparib.
Both general and specific inhibition of PARP1/2 precluded TP-
induced PARylation of proteins and decrease in NAD+ levels
(Fig. 4a, b, and Supplementary Figure 6). Furthermore, the
PARP1 inhibitors ABT-888 and olaparib also significantly atte-
nuated TP-induced contractile dysfunction in HL-1 cardiomyo-
cytes and Drosophila without influencing the baseline contractile
function in cardiomyocytes (Fig. 4c–i, Supplementary Figure 3
and Supplementary Figure 7), as previously observed for nicoti-
namide8. In addition, TP of HL-1 cardiomyocytes resulted in
significant electrophysiological deteriorations, including
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alterations in action potential duration (APD), increased APD
dispersions, decreased area of excitability and ion channel
remodeling. All TP-induced electrophysiological alterations were
prevented by PARP1 inhibitors olaparib and/or ABT-888 (Fig. 5,
Supplementary Methods and Supplementary Figure 11). Since AF
is a progressive disease, it is of interest to study whether PARP1

inhibition accelerates recovery from TP-induced NAD+ depletion
and contractile dysfunction. Hereto, HL-1 cardiomyocytes were
tachypaced, followed by 24 h recovery under no pacing condi-
tions. In vehicle treated cardiomyocytes, no recovery from TP
induced CaT loss, NAD+ depletion or increased PAR levels was
observed. In contrast, tachypaced HL-1 cardiomyocytes post-
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Fig. 1 Tachypacing induces PARP activation, DNA damage, and NAD+ depletion in HL-1 cardiomyocytes. a Representative Western blot of PAR and PARP1
levels in control nonpaced (0 h) and tachypaced (TP) HL-1 cardiomyocytes for durations as indicated. b Quantified data of PAR expression levels from
three independent experiments. *P < 0.05 vs. 0 h, **P < 0.01 vs. 0 h. c, d Immunofluorescent staining and quantified data of PAR levels in control (0 h), and
in 12 h TP of HL-1 cardiomyocytes. **P < 0.01 vs. 0 h, n= 10 images for 0 h, n= 8 images for 12 h from over 200 cardiomyocytes. e Representative
immunofluorescence images of HL-1 cardiomyocytes with time-course TP (0–12 h), showing tail DNA. f Quantified percentage of tail DNA in HL-1
cardiomyocytes **P < 0.01 vs. 0 h, n= 49 cardiomyocytes for 0 h, n= 40 for 4 h, n= 33 for 8 h, n= 11 for 12 h. g, h Representative Western blot of γH2AX,
H2A, and quantified data of γH2AX during time-course of TP in HL-1 cardiomyocytes. **P < 0.01 vs. 0 h, n= 3 independent experiments. i, j Representative
immunofluorescent staining and quantified data of γH2AX levels in NP (0 h) and TP (12 h) HL-1 cardiomyocytes. **P < 0.01 vs. 0 h, n= 7 images for 0 h,
n= 6 images for 12 h from over 200 cardiomyocytes. k Relative NAD+ levels in HL-1 cardiomyocytes during time-course of TP (2–8 h) compared to control
(0 h). *P < 0.05 vs. 0 h. n= 2 independent experiments. Scalebar is 15 µm for c, e and i. Data are all expressed as mean ± s.e.m. Individual group mean
differences were evaluated with the two-tailed Student’s t test
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treated with ABT-888 revealed accelerated recovery at all end-
points (Supplementary Figure 8). These findings demonstrate that
PARP1 inhibitors not only prevent PARP1 activation, NAD+

depletion, CaT loss, and electrophysiological and ion channel
deteriorations, but also accelerate recovery after cessation of TP.

In line with the findings in tachypaced HL-1 cardiomyocytes,
TP of isolated adult rat atrial cardiomyocytes significantly
induced DNA damage and PAR levels, reduced NAD+ levels
and resulted in contractile dysfunction (Fig. 6 and Supplementary
Figure 2f–i). Importantly, all these effects were prevented by the
PARP1 inhibitors ABT-888 and olaparib (Fig. 6 and Supplemen-
tary Figure 7a, b).

PARP1 inhibition prevents oxidative stress-induced DNA
damage. Since NAD+ depletion is associated with the induction
of oxidative stress22, which may in turn leads to (further) DNA
damage, we tested whether PARP1 inhibition protects by redu-
cing oxidative stress-induced DNA damage23. TP of HL-1 car-
diomyocytes resulted in significant induction of oxidative damage
to proteins (Fig. 7a, b, Supplementary Figure 9) and DNA
(Fig. 7c, d), as evidenced by formation of 8-oxoguanine, a bio-
marker for oxidative DNA damage24. Inhibition of PARP1 by
ABT-888 prevented TP-induced oxidative protein and DNA

damage (Fig. 7a–d). In addition, the TP-induced γH2AX levels
were partly reduced by ABT-888 treatment (Fig. 7e, f). Together,
these data indicate that PARP1 inhibition precludes the initiation
of a vicious circle in which advanced PARP1 activation is driven
by depletion of NAD+, causing further DNA damage.

DNA damage-mediated PARP activation is the cause of NAD+

depletion. To study whether PARP activation is the cause of
NAD+ depletion and contractile dysfunction in cardiomyocytes,
cardiomyocytes were gamma-irradiated to induce DNA damage
and thereby PARP activation. As expected, irradiation resulted in
a significant induction of DNA damage and consequently an
increase in PAR levels, reduction in NAD+ levels, and finally loss
in CaT in both HL-1 and rat atrial cardiomyocytes (Figs. 8 and 9).
The PARP1 inhibitor ABT-888 prevented the increase in PAR
levels, NAD+ depletion and CaT loss (Figs. 8 and 9). These
findings confirm that DNA damage-mediated PARP activation is
the cause of NAD+ depletion and CaT remodeling in atrial
cardiomyocytes.

PARP1 is activated in human AF and correlates with DNA
damage. To extend our findings to clinical AF, we measured
DNA damage and PARP1 activation in right and/or left atrial
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samples (RAA and/or LAA) of (longstanding) persistent AF
patients and controls in sinus rhythm (SR). Compared to SR, AF
patients demonstrate a significant increase in PAR formation in
both RAA and LAA, while both groups show similar PARP1
protein expression (Fig. 10a–c). Furthermore, γH2AX levels were

significantly increased in patients with AF compared to SR
(Fig. 10d, e). Moreover, a significant positive correlation was
found between the amount of PAR and γH2AX (Fig. 10f, Sup-
plementary Figure 10), indicating that AF patients with high
levels of PAR also reveal more DNA damage. In addition, the
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amount of another DNA damage marker, 53BP1, was sig-
nificantly increased in AF patients compared to control SR
patients (Fig. 10g, h). Finally, we examined nuclear circularity, a
marker for oxidative stress-induced DNA damage25, showing that
nuclear circularity was significantly decreased in patients with AF
compared to controls in SR (Fig. 10i). Thus, patients with
(longstanding) persistent AF showed an increase in levels of PAR,
indicative for PARP1 activation, markers of DNA damage,
including γH2AX, 53BP1, and reduced levels of nuclear circu-
larity. The features found in patients thus match the observations
in tachypaced cardiomyocytes and Drosophila, indicating the
clinical significance of PARP1 activation in (longstanding) per-
sistent AF.

Discussion
In the current study, we identified PARP1 activation as a key
process in experimental AF by conferring depletion of the cellular
content of NAD+, an important component for cell function. Our
results show that AF is associated with DNA damage and sub-
sequent PARP1 activation. Activated PARP1 synthesizes PAR
and in turn consumes NAD+, resulting in functional loss in
tachypaced cardiomyocytes and Drosophila. Accordingly, both
inhibition of PARP1 and replenishment of NAD+ protect against
TP-induced NAD+ depletion, oxidative DNA damage and con-
tractile dysfunction in atrial cardiomyocytes and Drosophila.
Consistent with these findings, PARP1 is also activated in atrial
tissue of (longstanding) persistent AF patients, which correlates
with the level of DNA damage. Taken together, these findings
uncover a dominant role of PARP1 in TP-induced contractile
dysfunction and cardiomyocyte remodeling and disease pro-
gression, thus implicating PARP1 as a possible therapeutic target
in AF. We found PARP, specifically PARP1, to have a prominent
role in AF progression. Both in tachypaced atrial cardiomyocytes
and RAA/LAA tissue from persistent AF patients, we observed
that PARP1 activation is caused by DNA damage. Moreover, in
tachypaced atrial cardiomyocytes we showed that PARP1 acti-
vation results in the consumption of NAD+ to such an extent that
it depletes intracellular NAD+ levels, thereby exacerbating oxi-
dative damage to proteins and DNA. Activation of this sequel is
likely triggered by a substantially increase in myocardial energy
demand resulting from the four to sixfold increase in electrical
and contractile activity during AF episodes. Subsequent failure to
meet the increased energy demand results in progressive dys-
function of mitochondria and oxidative damage to proteins and
DNA. DNA damage then activates PARP1 initiating the depletion
of NAD+. A unifying concept exists that, dependent on the
amount of DNA damage, PARP1 activation initiates one of three
major pathways26. Mild stress facilitates PARP1 activation to
initiate DNA repair, without depleting NAD+ levels. Intermediate
stress conditions which induce more DNA damage, however, lead
to excessive activation of PARP1 and depletion of NAD+

resulting in energy depletion and functional loss, while even more
severe stress triggers PARP1 cleavage and programmed cell death
via apoptosis15. Importantly, both mild- and severe-stress con-
ditions are not accompanied with cellular NAD+ depletion.
Because of the notable decrease in NAD+ after TP of atrial car-
diomyocytes, our observations thus indicate that persistence of
AF represents an extensive stress condition. Interestingly, PARP1
cleavage was not observed at any stage in tachypaced cardio-
myocytes and clinical AF, which likely explains the absence of
apoptotic and/or necrotic cell death under these conditions27.
This is in line with the observation that AF induces hibernation
(myolysis) of the cardiomyocyte instead of cell death28. Our data
from tachypaced atrial cardiomyocytes reveal that excessive
activation of PARP1 and depletion of cellular NAD+, a key
coenzyme in cell metabolism21, induce further DNA damage, and
structural damage, and consequently electrophysiological and ion
channel deterioration and functional loss12. These findings offer a
novel paradigm to be tested in (longstanding) persistent AF
patients. In addition, our findings are consistent with previous
findings showing that structural remodeling underlies electro-
physiological deterioration, including prolongation of APD
(possibly via the reduction in potassium channel expression)29–33,
reduction in cardiomyocyte excitability and increased ADP dis-
persion, thereby creating a substrate for further arrhythmogen-
esis34–37. Although APD shorting was previously recorded in
models for TP-induced AF, APD prolongation was observed in
patients with lone paroxysmal AF, in atrial tissue of patients
predisposed to AF and in various patient and animal studies for
AF with underlying heart failure and structural changes in the
atria29–32,38,39, which is consistent with our current findings.
Taken together, these studies provide compelling evidence that
the predominant contributors to the substrate underlying AF are
the structural and associated conduction abnormalities rather
than changes in refractoriness. In addition, the studies may
explain why current drug treatment directed at modulation of
refractoriness shows limited efficacy, while its usage is further
limited by a pro-arrhythmic action and noncardiovascular toxi-
city40. As such, PARP1-induced depletion of NAD+ apparently
functions as a key feed-forward switch in this chain of events, as
PARP1 inhibition fully conserves NAD+ levels, precludes oxi-
dative protein and DNA damage and preserves structural, and
therefore electrical and contractile function in tachypaced atrial
cardiomyocytes. Consequently, in heart conditions associated
with extensive PARP1 activation and NAD+ depletion, as dis-
closed here in experimental AF, the pharmacological inhibition of
PARP1 may offer substantial therapeutic benefits.

The prominent role of PARP1 in experimental AF progression
thus extends previous observations in models of other cardio-
vascular disease, including heart failure models in mice, dogs, and
rats, where activation of PARP1-induced endothelial dysfunction,
myocardial hypertrophy, and remodeling41,42. In addition,

Fig. 4 PARP1 inhibitors dose-dependently protect against contractile dysfunction in HL-1 cardiomyocytes and Drosophila. a Representative Western blot
showing that the PARP inhibitors 3-AB (3mM), ABT-888 (40 µM), and nicotinamide (Nic, 10 mM) inhibit tachypacing (TP)-induced PAR formation
(PARylation), which is an indicator of PARP activity. b 3-AB (3mM) and ABT-888 (40 µM) conserved NAD+ levels after TP. The average value of four
independent experiments is shown. **P < 0.01 vs. control (CTL) NP, #P < 0.05 vs. CTL TP, ##P < 0.01 vs. CTL TP. c, d Representative CaT traces and
quantified CaT amplitude in control non-paced (NP) or tachypaced (TP) HL-1 cardiomyocytes pretreated with 3-AB (3 mM) or vehicle (CTL). **P < 0.01 vs.
CTL NP, ##P < 0.01 vs. CTL TP, n= 60 cardiomyocytes for CTL NP, n= 40 for CTL TP, n= 40 for 3-AB TP. e, f Representative CaT and quantified CaT
amplitude of nonpaced (NP) and tachypaced (TP) HL-1 cardiomyocytes pretreated with ABT-888 at different doses (5–40 µM) or vehicle DMSO (CTL).
**P < 0.01 vs. CTL NP, ##P < 0.01 vs. CTL TP, n= 80 HL-1 cardiomyocytes for CTL NP, n= 119 for CTL TP, n= 20 for 5 μM ABT-888 TP, n= 20 for 10 μM
ABT-888 TP, n= 40 for 40 μM ABT-888. g–i Representative heart wall contraction measurements and quantified relative heart rate and arrhythmicity
index of control NP or TP Drosophila pretreated with 3-AB (30mM), ABT-888 (0.2 mM, 0.4mM), or vehicle (CTL). *P < 0.05, **P < 0.01 vs. CTL NP, #P <
0.05, ###P < 0.001 vs. CTL TP, n= 10 Drosophila prepupae for CTL, n= 7 for 3-AB, n= 6 for ABT-888 (0.2 mM), n= 7 for ABT-888 (0.4 mM). Data are all
expressed as mean ± s.e.m. Individual group mean differences were evaluated with the two-tailed Student’s t test
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cardiac function in mouse models of diabetic cardiomyopathies
showed marked improvement by the knockout of PARP116,43.
Importantly, previous studies in biopsy material from patients
with heart failure reported increased expression and activation of
PARP1 to contribute to disease progression17,44. Thus, the find-
ings from the current study contribute to a further appreciation of
the importance of PARP1 activation in cardiovascular diseases.

Our study implicates PARP1 inhibitors as potential therapeutics
in AF. Early PARP1 inhibitors, such as 3-AB, may be unsuited for
the treatment of patients as they compete with NAD+ for the
enzyme and consequently, inhibit PARP1 and other members of
the PARP family, as well as mono-ADP-ribosyl-transferases and
sirtuins, which are cardiac protective enzymes13. However, recently
developed PARP inhibitors, such as ABT-888 and olaparib, exhibit
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increased potency and specificity relative to earlier inhibitors. ABT-
888 directly inhibits PARP1 and PARP2 without an action on sir-
tuins45. ABT-888 is currently in phase I and II clinical studies in
cancer46. In addition to ABT-888, olaparib may represent a suitable
candidate. Olaparib is used in phase III clinical trials for the
treatment of metastatic breast cancers and has no effect on QT/QTc
interval47,48. Another potential therapeutic option to protect against

AF-induced remodeling could be to replenish the NAD+ pool by
supplementation with NAD+ or its precursors, such as nicotina-
mide and nicotinamide riboside. Interestingly, nicotinamide is not
only a PARP1 inhibitor, but also a NAD+ precursor. Nicotinamide
can be converted into NAD+ via the salvage pathway49. In heart
failure, nicotinamide displayed a similar protective effect in
experimental model systems49, demonstrating a clear benefit of

Fig. 5 PARP1 inhibitors significantly attenuated tachypacing-induced electrophysiological deterioration in HL-1 cardiomyocytes. a–h Optical voltage
mapping of HL-1 cardiomyocyte monolayers following 1-Hz electrical stimulation in control nonpaced (NP) or 8 h tachypaced (TP) HL-1 cardiomyocytes
with 20 µM olaparib, 40 µM ABT-888 or vehicle DMSO 12-h pretreatment before tachypacing. a Representative filtered optical signal traces. To indicate
electrical heterogeneity, three tracers which vary in time and space [1 and 3] to excitation block [2] in the TP DMSO group are depicted b typical APD30

and c APD80 maps for indicated groups. d–h Corresponding quantitative analysis of APD30, APD80, APD30 dispersion, APD80 dispersion and excited cell
surface area, showing that TP resulted in significant APD prolongation (a, d, e), an increase in APD dispersion (b, c, f, g) and a significant decrease of
excited cell surface area (h) in HL-1 cardiomyocyte monolayers. Pretreatment of HL-1 cultures with ABT-888 or olaparib significantly prevented the
tachypacing-induced electrophysiological deteriorations (a–h). ***P < 0.001 vs. DMSO NP, ###P < 0.001 vs. DMSO TP. n= 11 for NP DMSO, n= 9 for NP
olaparib TP, n= 11 for NP ABT-888, n= 6 for TP DMSO, n= 6 for TP olaparib, n= 6 for TP+ABT-888. n= number of experiments. Data are all expressed
as mean ± s.e.m. Individual group mean differences were evaluated with the two-tailed Student’s t test
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normalizing NAD+ levels in failing hearts. The high translational
potential and the applicability in humans recently prompted an
open-label pharmacokinetics study with nicotinamide riboside
(Niagen, Chromadex) in healthy volunteers, showing that

nicotinamide riboside stably induced circulating NAD+ and was
well tolerated (even up to 2 × 1000mg/day)50. Therefore, nicoti-
namide riboside represents a potential therapy for diseases in which
NAD+ depletion has been implicated, such as heart art failure and
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AF. Importantly, conduction of clinical trials with drugs directed at
PARP1-NAD+ pathway deserves strong priority, particularly to
preserve quality of life and to attenuate devastating complications
such as heart failure or stroke. Moreover, advancing therapeutic
options in AF has substantial economic impact by reducing the
number of repetitive hospitalizations and visits to healthcare
professionals.

In summary, this study documents the induction of DNA
damage, extended activation of PARP1, and subsequent NAD+

depletion, as key events in cardiomyocyte functional loss and
experimental AF progression. Importantly, inhibition of PARP1
activation prevents NAD+ depletion and conserves cardiomyo-
cyte function in models of AF, thereby attenuating disease pro-
gression. Our findings indicate that inhibition of PARP1 may
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serve as a novel therapeutic target in AF by conserving the car-
diomyocyte metabolism.

We uncovered a role for DNA damage-induced PARP1 acti-
vation in cardiomyocyte dysfunction in AF by utilizing various
experimental model systems, including tachypaced HL-1 cardio-
myocyte and Drosophila models which are easily accessible to
genetic manipulations. The spontenous contraction rate of these

cardiomyocytes is ~0.5–1 Hz in a 2D culture dish (instead of 5–7
Hz in in vivo mice/rats), a 5–10-fold rate increase by TP induces
various endpoints of human AF remodeling8,51,52. Although
observations were consistent between different experimental AF
models (in vitro HL-1 cardiomyocyte and rat atrial cardiomyo-
cytes, Drosophila) and in heart tissue from AF patients, our data
do not provide conclusive evidence about involvement of PARP1
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in AF progression in patients. Nevertheless, previous findings on
the role of heat shock proteins, HDAC6 and autophagy, initially
made in HL‐1 cardiomyocyte and Drosophila models have been
confirmed in all instances in the tachypaced dog model and
clinical human AF8,51,52. Therefore, the tachypaced HL‐1 cardi-
omyocyte and Drosophila model may have merit to identify
potential signaling pathways involved in AF remodeling. Future
research should elucidate the relevance of the DNA damage-
induced PARP1 activation pathway in clinical AF with or without
underlying heart diseases.

Nevertheless, clinical development of PARP1 inhibitors for AF
awaits two further steps. First, the action of recently developed
PARP1 inhibitors, such as ABT-888, should be investigated in
large animal AF models to substantiate its efficacy in relation to
the stage of AF. Secondly, current clinical trials should indicate a
favorable safety profile, especially in case the animal studies
indicate a beneficial effect of long-term use in halting progression
from paroxysmal to persistent AF.

Methods
HL-1 cardiomyocyte model, Ca2+ measurements and drug treatment. HL-1
cardiomyocytes derived from adult mouse atria were obtained from Dr. William
Claycomb (Louisiana State University, New Orleans) and cultured in complete
Claycomb medium (Sigma) supplemented with 10% fetal bovine serum (PAA
Laboratories GmbH, Austria), 100 U per ml penicillin (GE Healthcare), 100 µg per
ml streptomycin (GE Healthcare), 4 mM L-glutmaine (Gibco), 0.3 mM L-ascorbic
acid (Sigma), and 100 µM norepinephrine (Sigma). HL-1 cardiomyocytes were
cultured on cell culture plastics or on glass coverslips coated with 0.02% gelatin
(Sigma) in a humidified atmosphere of 5% CO2 at 37 °C. The cardiomyocytes,
which have a basal spontaneous contraction rate of ~0.5–1 Hz4, were subjected by
TP to a 5–10-fold rate increase as observed in clinical AF (5 Hz, 40 V, pulse
duration of 20 ms) with a C-Pace100 culture pacer (IonOptix) for 12 h unless stated
otherwise. HL-1 cardiomyocytes followed the pacing rate. CaT were imaged by
Solamere-Nipkow-Confocal-Live-Cell-Imaging system (based on a Leica DM IRE2
Inverted microscope). A 2 μM of the Ca2+-sensitive Fluo-4-AM dye (Invitrogen)
was loaded into HL-1 cardiomyocytes by 45 min incubation, followed by 3 times
washing with phosphate-buffered saline (PBS). Ca2+ loaded cardiomyocytes were
excited by 488 nm and emitted at 500–550 nm and visually recorded with a ×40-
objective. CaT measurements were performed in a blinded manner by selection of
normal-shaped cardiomyocytes with the use of bright field settings, followed by a
switch to the fluorescent filter to determine the CaT.

Prior to 12 h TP, HL-1 cardiomyocytes were treated for 12 h with the PARP
inhibitors 3-aminobenzamide (3-AB, Sigma-Aldrich), ABT-888 (Selleckchem),
olaparib (Selleckchem), beta-nicotinamide adenine dinucleotide hydrate (NAD+,
Sigma-Aldrich) or transfected with scrambled siRNA (control, Ambion)
PARP1 siRNA (Ambion), or PARP2 siRNA (Santa Cruz) to study the specific role
of PARP1 and PARP2, respectively.

Rat atrial cardiomyocyte model, Ca2+ test and drug treatment. Adult Wistar
rats (~200 g) were injected with heparin 15 min before atrial cardiomyocyte iso-
lation, followed by anesthetisation (2% isoflurane and 98% O2). Hearts were
excised and placed in ice-cold, oxygenated buffer solution containing (in mM) 134
NaCl, 10 HEPES, 4 KCl, 1.2 MgSO4, 1.2 Na2HPO4, and 11 D-glucose (pH 7.4).
Freshly excised rat hearts were mounted on a Langendorff setup and perfused
retrogradely through the aorta for 30 min with oxygenated buffer solution of 37 °C,
to which 66.7 mg perL librase (Roche) was added. Following Langendorff perfu-
sion, the atria were cut off the heart and rinsed in isolation solution containing (in
mM): 100 NaCl, 5 Hepes, 20 D-glucose, 10 KCl, 5 MgSO4, 1.2 KH2PO4, 50 Taurin,
0.5% bovine serum albumin (BSA) (pH 7.4), transferred to a 15-ml tube containing
10 ml of isolation solution plus 0.02 mM CaCl2 and 0.02 U per ml DNase, gently
triturated for 7 min, and subsequently filtered through a 200μm mesh filter into
another 15-ml tube, followed by centrifugation for 1 min at 700 × g. The super-
natant was removed and the pellet containing atrial cardiomyocytes was resus-
pended carefully in 10 ml of isolation solution plus 0.02 mM CaCl2. Next, the Ca2+

concentration was increased in 5-min steps from 0.1, 0.2 mM to 0.4 mM Ca2+.
Atrial cardiomyocytes were left to sink for 20 min and transferred into laminin-
coated plates in plating medium (M199 medium plus 5% fetal calf serum) for 2 h
followed by replacement with M199 medium plus Insulin-Transferrin-Sodium
Selenite Supplement (Sigma). The isolated adult rat atrial cardiomyocytes have a
basal spontaneous contraction rate of ~0.5–1 Hz in vitro. The rat experiments
complied with all relevant ethical regulations and theVUmc approved the study
protocol (DEC FYS 14-06).

Prior to TP, atrial cardiomyocytes were treated for 2 h with the PARP inhibitors
ABT-888 (Selleckchem) or olaparib (Selleckchem), followed by 2 h TP at 5 Hz, 30 V
with a pulse duration of 2 ms. Control atrial cardiomyocytes were either nonpaced
(NP) or paced for 2 h at 1 Hz, 30 V and pulse duration of 2 ms. Atrial

cardiomyocytes followed the pacing rate. CaT measurement was performed
according to previous studies with minor changes2,53. In short, atrial
cardiomyocytes were washed twice with M199 medium, incubated with the Ca2+

dye Fluo-4 (1 µg per ml) in M199 medium for 15 min, and rinsed twice again with
M199 medium. The Fluo-4-loaded cardiomyocytes were excited at 488 nm and the
light emitted at 500–550 nm and recorded with a high-speed confocal microscope
(Nikon A1R). Bright field settings were used to randomly select normal-shaped
cardiomyocytes, followed by a switch to the fluorescent filter to determine the CaT.
As such, CaT measurements were conducted in a blinded manner.

Drosophila stocks, TP, and heart contraction assays. The wild-type Drosophila
melanogaster strain w1118 strain was used for all drug screening (PARP inhibitors
or NAD+) experiments. Hereto, female and male adult flies were crossed. After
3 days, flies were removed from the embryos-containing tubes and drugs or the
same amount of vehicle (DMSO) were added to the food. Drosophila were incu-
bated at 25 °C for 48 h, with larvae consuming the drug/vehicle prior to entering
the prepupae stage. The Drosophila prepupae were collected and subjected to TP
for 20 min (4 Hz, 20 V, pulse duration of 5 ms) and heart wall functions were
measured as described in detail below. See Supplementary Table 1 for the applied
doses of 3-AB, ABT-888 and NAD+.

To create the knockdown of PARP1 in Drosophila, two PARP1 UAS-RNAi
Drosophila lines, from the Vienna Drosophila RNAi Center (VDRC, ID:330230)
and Bloomington Drosophila Stock Center (BDSC, ID:34888), were utilized. Both
RNAi lines were crossed with a Hand-GAL4 driver strain (kind gift of Prof. Dr.
Achim Paululat)54. As control, wild-type flies w1118 were crossed with Hand-
GAL4 driver flies. Prepupae of F1 offspring were tachypaced as previously
described8.

Heart wall contractions were measured utilizing high-speed digital video
imaging (100 frames per s) before and after TP in at least duplicated 10 s-movies.
Movies were used to prepare heart wall traces and M-mode cardiography. Hereto,
1-pixel width lines were drawn across the heart wall, followed by determination of
Plot-Z axis profile (based on contrast changes) to generate heart wall traces or
kymographs (via the kymograph plugin of Image J) for M-mode cardiography. To
determine the heart rate and arrhythmicity index (defined as the standard
deviation of the heart period normalized to the median heart period of each fly
followed by averaging across flies)55, the heart wall traces were further analyzed
with the use of Drosan software, which was modified from the software originally
developed to determine human heart rate and arrhythmicity56,57. The detailed
algorithm of the Drosan software is described in the Supplementary Methods
section and overview of the outcome parameters is presented in Supplementary
Table 2.

Patients. Before surgery, patient characteristics were collected (Supplementary
Table 3). RAA and/or LAA tissue samples were obtained from patients with cor-
onary artery and/or valvular heart disease having SR or (longstanding) persistent
AF. After excision, atrial appendages were immediately snap-frozen in liquid
nitrogen and stored at −80 °C. The study conformed to the principles of the
Declaration of Helsinki and complied with all relevant ethical regulations. The
Erasmus Medical Center Review Board approved the study (MEC-2014-393), and
all patients gave written informed consent.

Protein extraction and Western blot analysis. HL-1 cardiomyocytes or human
tissue samples were lysed in radioimmunoprecipitation assay (RIPA) buffer con-
taining PBS, Igecal ca-630, eoxycholic acid, and sodium dodecyl sulfate (SDS)2,8. In
short, equal amounts of protein homogenates were separated by SDS-
polyacrylamide gel electrophoresis (SDS-PAGE), transferred onto nitrocellulose
membranes, and probed with antibodies directed against poly (ADP-Ribose) (PAR,
1:1000, BD bioscience, 551813), PARP1 (1:500, Santa Cruz, sc-25780), γH2AX
(1:1000, Millipore, 05–636), Cav1.2 (1:200, Alomone Labs, ACC-003), Kv11.1
(1:400, Alomone Labs, APC-062), Kir3.1 (1:200, Alomone Labs, APC-005), β-actin
(1:1000, Santa Cruz, sc-47778), or GAPDH (1:5000, Fitzgerald, 10R-G109A).
Membranes were subsequently incubated with horseradish peroxidase-conjugated
goat anti-mouse or goat anti-rabbit secondary antibodies (Dako). Signals were
detected by the ECL detection method (Amersham) and quantified by densito-
metry (Syngene, Genetools). Original uncropped blots are available at the Sup-
plementary Information section (Supplementary Figure 12).

NAD assay. NAD and NADH levels, in which NAD represents the sum of NAD+

and NADH, were measured according the manufacturer’s instructions of the assay
kit (Abcam, ab65348). In short, HL-1 cardiomyocytes were lysed in NAD extrac-
tion buffer and the protein concentration was determined (BioRad Laboratories).
To measure NAD, after equalizing the protein concentration, 50 µl of each sample
was mixed with 100 µl NAD cycling buffer and incubated at room temperature
(RT) for 5 min to convert NAD+ to NADH, followed by the addition of 10 µl
NADH developer buffer and 2 h incubation at RT. NAD/NADH levels were
measured at 450 nm (BioTek Synergy 4 plate reader). To measure NADH, NAD+

in each sample was decomposed by incubation at 60 °C for 30 min before mea-
surement. Notably, in accordance with previous findings, the NADH amount in
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cultured cardiomyocytes and tissue was below the detection limit58. Therefore, the
NAD+ amount per µg of total protein was used as endpoint.

Comet assay. To evaluate DNA damage in cardiomyocytes, an alkaline comet
assay kit (Trevigen) was utilized according to the manufacturer’s instructions with
minor changes. HL-1 cardiomyocytes were trypsinized, harvested by centrifuga-
tion, suspended at 2 × 105 cells per ml in PBS, combined with 45 μl melted LAM
agarose at ratio of 1:10 (v:v) and immediately pipetted onto CometSlides. Slides
were dried for 30 min at 4 °C, incubated firstly in lysis solution for 1 h and then in
freshly prepared alkaline unwinding solution (pH > 13) for 1 h. After placing the
slides in 4 °C alkaline electrophoresis solution, electrophoresis at 21 V for 30 min
was performed. After incubation for 2 times 5 min in demineralized H2O and once
for 5 min in 70% ethanol, slides were dried at 37 °C, stained with SYBR Gold for 30
min at RT in the dark, rinsed in water and dried again at 37 °C. Finally, comets
were visualized after excitation at 496 nm by fluorescence microscopy (Leica
Microsystems) at 522 nm. DNA damage was quantified by scoring the percentage
of DNA in the tail, using the Image J Marco “Comet_Assay” based on an NIH
Image Comet Assay developed by Herbert M. Geller (1997).

Irradiation of cardiomyocytes. To induce DNA damage, HL-1 atrial cardio-
myocytes received 10 Gy and rat atrial cardiomyocytes 40 Gy of irradiation with a
dose rate of 0.0562 Gy per second by utilizing a cobalt-60 gamma-source (Gam-
macell 220 Research Irradiator, MDS Nordion, Canada). HL-1 and rat atrial car-
diomyocytes were treated with 40 µM ABT-888 (12 h) or 5 µM ABT-888 (2 h),
respectively, prior to the irradiation. After irradiation, cardiomyocytes were either
prepared for Western blot analyses, NAD+ level measurements or CaT recordings.

Protein oxidation detection. To evaluate oxidative stress in cardiomyocytes,
OxyBlot protein oxidation detection kit (Millipore, S7510) was used, following the
company’s instructions. In short, cardiomyocytes were lysed in RIPA buffer con-
taining 1% beta-mercapto-ethanol (Sigma). A 10 μg of protein was denatured in 6%
SDS, derivatized by incubation for 15 min in 2,4-dinitrophenylhydrazine (DNPH)
solution, followed by the addition of neutralization solution. After neutralization,
protein samples were subjected to SDS-PAGE, transferred onto nitrocellulose
membranes and probed with anti-dinitrophenyl (DNP) antibody (1:150) for 1 h at
RT. Horseradish peroxidase-conjugated goat anti-rabbit IgG (1:300) was used as
secondary antibody. All reagents were included in the kit. Signals were detected by
the ECL detection method (Amersham) and quantified by densitometry (Syngene,
Genetools).

Quantitative reverse transcription PCR. Total RNA was isolated from HL-1
cardiomyocytes utilizing the nucleospin RNA isolation kit (Machery-Nagel). First
strand cDNA was generated by M-MLV reverse transcriptase (Invitrogen) and
random hexamer primers (Promega). Relative changes in transcription level were
determined using the CFX384 Real-time system C1000 thermocycler in combi-
nation with SYBR green supermix (both from BioRad Laboratories). Calculations
were performed using the comparative computed tomography method according
to User Bulletin 2 (Applied Biosystems). Fold inductions were adjusted for
GAPDH levels. Primer pairs used included PARP1 F: CACCTTCCAGAAGCAG
GAGA and R: GCAAGAAATGCAGCGAGAGT; PARP2 F: TCCTCTGGGCATC
ATCTTCT and R: AAGCTGGGAAAGGCTCATGT. CACNA1C F: CAAACAAC
AGGTTCCGCCTG and R: ATCTTTAGAGCAATTTCAATGGTGA. KCNQ1 F:
GCCTCACTCATCCAGACTGC and R: GGACAGAAGCGTGTGACTCC.
KCNH2 F: GGCGTACAGACAAGGACACA and R: CAGGGCCCTCATCTTCA
CTG. KCNJ3 F: TTCATCCTCCAACAGCACCC and R: GGCCATAGCTGCTTG
CTAGA. GAPDH F: CATCAAGAAGGTGGTGAAGC and R: ACCACCCTGTT
GCTGTAG. ACTB F: GGCTGTATTCCCCTCCATCG and R: CCAGTTGGTAA
CAATGCCATGT. Primer pairs used in Drosophila included PARP1 F: TGGTTT
GCGTCAGGTGAAGA and R: TCGCGAAACCTGAAGTAGGC; Actin5C: F: GA
GCACGGTATCGTGACCAA and R: GCCTCCATTCCCAAGAACGA.

Immunofluorescent microscopy of cardiomyocytes. HL-1 cardiomyocytes were
grown on coverslips until 80% confluence and subjected to TP for various time
periods, with or without drug treatment. Immediately after pacing, cardiomyocytes
were rinsed in PBS and fixed with 4% formaldehyde for 15 min, rinsed twice with
PBS, permeabilized by incubation with 0.1% triton X-100 in PBS for 10 min, rinsed
twice in PBS and blocked with blocking solution (0.5% BSA and 0.15% glycine in
PBS) for 10 min. After blocking, cardiomyocytes were incubated with primary
antibodies for 2 h at RT. After rinsing the cardiomyocytes three times with blocking
solution, cardiomyocytes were incubated with secondary antibodies for 45 min at
RT shielded from light, followed by rinsing with blocking solution three times and
PBS twice. Lastly, cardiomyocytes were incubated with mounting media containing
DAPI (Vectashield), sealed with nail polish and used for fluorescent microscopy
(Leica Microsystems). Antibodies used were: anti-γH2AX (1:100, Millipore, 05-
636), anti-PAR (1:200, BD Bioscience, 551813), anti-PARP1 (1:200, Santa Cruz, sc-
25780), anti-oxoguanine 8 (1:100, Abcam, ab64548), goat anti-rabbit FITC (1:200,
Invitrogen, 65-6111), and goat anti-mouse TRITC (1:200, Southern Biotech, 1021-
03). For quantification, Image Pro software was used to calculate the total fluor-
escent (green for FITC and red for TRITC) signal per image as well as the DAPI

signal. The total fluorescent signals, corresponding to the expression of PARP1,
PAR or γH2AX, were divided by the respective blue signals (DAPI), representing
the cell number.

Immunofluorescent microscopy and nuclear shape analysis. The frozen RAA
samples of SR and AF patients were used for staining of γH2AX and 53BP1. Frozen
sections were cut into 5 µm slices. Sections were air dried for 30 min, fixed in 4%
formaldehyde for 10 min at RT, washed 3 times with PBS for 10 min, then per-
meabilized with 0.3% Triton X-100 (in PBS) for 10 min at RT and washed 3 times
for 5 min with PBS. After blocking of the sections with 1% BSA blocking solution
for 30 min at RT, sections were incubated with primary antibodies directed against
γH2AX (1:100; Millipore, 05-636) or 53BP1 (1:100; Santa Cruz Biotechnology, sc-
22760) overnight at 4 °C. After washing with PBS for 3 times 10 min, slides were
incubated with secondary antibodies and 1% human serum, TRITC labeled goat
anti-mouse (1:200; Southern Biotech, 1021-03) and FITC labeled goat anti-rabbit
(1:200, Invitrogen, 65-6111) for 1 h at RT and protected from light. Following 3
washes of 10 min, DAPI mounting medium (Vectashield) was applied to the sec-
tions, after which they were covered with coverslips and sealed. Slides were stored
at 4 °C for a few hour and subsequently used for fluorescent microscopy (Leica
Microsystems). γH2AX and 53BP1 positive nuclei were expressed as the percentage
of the total number of nuclei (typically about 200).

The nuclear shape of cardiomyocytes in RAAs of SR and AF patients was
determined by measuring its circularity (form factor) with Image J 1.48 software
(US National Institute of Health). Hereto, 8-bit images of DAPI-stained nuclei
were converted to binary photos by the method of “make binary” in ImageJ, traced
by hand and the circularity was calculated by the formula 4π*A per P2, in which A
denotes the surface area and P the perimeter. The circularity of a perfect round
circle and a line segment are 1 and 0, respectively59.

Statistical analysis. Results are expressed as mean ± standard error of the mean.
Biochemical analyses were performed at least in duplicate. Individual group mean
differences were evaluated with the two-tailed Student’s t test. Correlation was
determined with the Spearman correlation test. To compare continuous variables
with a skewed distribution, the Mann–Whitney U test was applied. All P values
were two sided. Values of P < 0.05 were considered statistically significant. SPSS
version 20 (IBM Analytics) was used for all statistical evaluations.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the data used in this study are available within the article, Supplementary
Information, or available from the authors upon request.
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