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Magnetotactic bacteria (MTB) have been found in a wide variety of marine habitats,

ranging from intertidal sediments to deep-sea seamounts. Deep-sea hydrothermal fields

are rich in metal sulfides, which are suitable areas for the growth of MTB. However,

MTB in hydrothermal fields have never been reported. Here, the presence of MTB

in sediments from the Tangyin hydrothermal field was analyzed by 16S rRNA gene

amplicon analysis, metagenomics, and transmission electron microscopy. Sequencing

16S rRNA gene yielded a total of 709 MTB sequences belonging to 20 OTUs,

affiliated with Desulfobacterota, Alphaproteobacteria, and Nitrospirae. Three shapes of

magnetofossil were identified by transmission electron microscopy: elongated-prismatic,

bullet-shaped, and cuboctahedron. All of these structures were composed of Fe3O4.

A total of 121 sequences were found to be homologous to the published MTB

magnetosome-function-related genes, and relevant domains were identified. Further

analysis revealed that diverse MTB are present in the Tangyin hydrothermal field, and

that multicellular magnetotactic prokaryote (MMPs) might be the dominant MTB.

Keywords: magnetotactic bacteria, 16S rRNA gene, magnetosome genes, magnetofossil, hydrothermal field

INTRODUCTION

Magnetotactic bacteria (MTB) represent a group of prokaryotes that canmigrate along geomagnetic
field lines (Blakemore, 1975; Bellini, 2009). MTB are diverse in their morphology, phylogeny,
and physiology. There are single-cell forms (cocci, ovoid, rod, curved rod, and spirillum) and
multicellular forms that are known as the multicellular magnetotactic prokaryotes (MMPs).
The MMPs can be divided into two types based on their shape: spherical MMPs (sMMPs)
and ellipsoidal MMPs (eMMPs) (Bazylinski et al., 2013; Amor et al., 2020). MTB exhibits
great taxonomic diversity. Most are phylogenetically affiliated with phyla of Proteobacteria,
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Desulfobacterota (previously known as Deltaproteobacteria),
Nitrospirae, Planctomycetes, the candidate phylumOmnitrophica,
and the candidate phylum Latescibacteria (Bazylinski et al., 2013;
Lin et al., 2018). Recent studies of reconstructed metagenome-
assembled MTB genomes have expanded our knowledge of
the taxonomy of MTB, several of which belonged to the phyla
Nitrospinota, UBA10199, Bdellovibrionota, Bdellovibrionata_B,
Fibrobacterota, Riflebacteria phyla, Elusimicrobia, and
Candidatus Hydrogenedentes (Lin et al., 2020; Uzun et al.,
2020).

TheMTB can use intracellular biomineralization to synthesize
special organelles called magnetosomes, which help them find
and remain near suitably chemically stratified water columns
or sediments. Magnetosomes are composed of magnetite or/and
greigite (Zhang et al., 2014) and exhibit different shapes (e.g.,
elongated-prismatic, bullet/tooth-shaped, and cuboctahedron)
(Bazylinski et al., 2013). There is a strong correlation between the
morphology of biogenetic magnetosomes and MTB phylogeny
(Li et al., 2020b). Alphaproteobacteria MTB always synthesizes
cuboctahedral or elongated-prismatic magnetite magnetosomes,
while MTB with bullet-shaped magnetite crystals is associated
with the Desulfobacterota, Nitrospirae, and the candidate
phylum Omnitrophica (Lin et al., 2014; Amor et al., 2020).
Desulfobacterota MTB can also biomineralize greigite crystals of
diverse morphologies (Lefèvre et al., 2011; Zhang et al., 2014).
Inside the cell, magnetosomes are arranged as single chains,
double chains, or multiple chains, and disorderly arrangements
have also been reported (Amor et al., 2020). Magnetosome
formation in MTB is a biomineralization process that is strictly
controlled by conserved genes found in magnetosome gene
clusters (MGCs) (Lin et al., 2020). Generally, there are four
steps in the formation of magnetosomes, which arrange in
chains: cytoplasmic membrane invagination forms vesicles,
proteins are targeted to the vesicle (magnetosome) membrane,
iron is transported to vesicles (membranous invagination of
magnetosomes) and mineralized into magnetite crystals, and
the crystals are assembled into chains of magnetosomes (Uebe
and Schüler, 2016). Studies on pure cultures of the MTB,
like Magnetospirillum gryphiswaldense MSR-1, revealed that the
MGC genes are found in five operons: the mms6 operon, the
mamGFDC operon, the mamAB operon, the mamXY operon,
and the feoAB1 operon (Uebe and Schüler, 2016). Magnetosome
genes that compose MGCs of different MTB species are not
identical, as reflected in species-level differences in magnetosome
type. However, almost all MGCs contain the mamAB operon
(Lefèvre and Wu, 2013). This operon contains the core gene,
mamABEKMOPQI, which is thought to play an important
role in magnetosome formation (Lefèvre and Wu, 2013; Lin
et al., 2018). After the death of a magnetotactic bacterium,
the magnetosomes are released; over time, they accumulate
in sediments, forming fossil magnetosomes (magnetofossils)
(Lin et al., 2014). The magnetic mineral ultrastructure,
morphology, composition, size, and other characteristics of
magnetofossils can be observed and effectively distinguished
using a transmission electron microscope (TEM) (Li et al.,
2020a). The study of magnetofossils can provide paleoecological
and paleoenvironmental information (Hesse, 1994).

The MTB is widespread in sediments and water at the
oxic-anoxic interface (OAI, previously called the OATZ) of
freshwater, brackish, marine, and hypersaline environments
(Bazylinski et al., 2013). The abundance of marine MTB is
usually higher in the intertidal zone, where most reports
indicate that magnetotactic cocci are relatively common and
the dominant species of MTB (Lin et al., 2012; Abreu et al.,
2016). Most of these studied environments have near-neutral pH,
moderate temperatures, and are concentrated in the Northern
hemisphere. However, there are some reports of MTB in special
habitats, including mangrove swamps, coral reefs, seamounts,
deep seas, etc. (Torres de Araujo et al., 1986; Dong et al.,
2016; Liu et al., 2017; Teng et al., 2018). Vibrio and rod-
shaped MTB, but not cocci, have been found in hemipelagic
sediments of the Santa Barbara Basin (Stolz et al., 1986). Other
studies indicated that the MTB found in extreme environments
often belonged to Desulfobacterota and Nitrospirae (Abreu
et al., 2007; Nash, 2008; Lefèvre et al., 2010). In addition,
biogenic magnetite, with elongated octahedral and prismatic
morphologies in ferromanganese nodules, has also been reported
(Hassan et al., 2020).

In deep-sea hydrothermal fields, which are rich in metal
sulfides, microorganisms mainly obtain energy from reductive
sulfur oxidation (McCollom and Shock, 1997; Amend
et al., 2011; Meier et al., 2019), and chemolithoautotrophic
microorganisms represent the only primary producers (Jannasch
and Mottl, 1985). Simultaneously, most cultured MTB can
grow chemolithoautotrophically using reductive sulfides.
Desulfobacterota MTB are sulfate-reducing anaerobes that grow
only chemoorganoheterotrophically (Bazylinski et al., 2013).
MTB might dwell in and adapt to hydrothermal environments.
To assess this possibility, we combined 16S rRNA gene amplicon
and metagenomic data and TEM observations to study the
presence, diversity, and characteristics of MTB in the Tangyin
hydrothermal field of Okinawa Trough.

MATERIALS AND METHODS

Sample Collection
The Tangyin hydrothermal field is located atop an upland found
38 km northeast of Yonaguni Knoll IV field, at the southern end
of the Okinawa Trough. Surface sediment samples were collected
by a box sampler during a cruise conducted by the R/V Kexue
in May 2014. All sediment samples were quick-frozen in liquid
nitrogen and stored at−80◦C until laboratory analysis.

16S rRNA Gene Sequencing and Analysis
Total genomic DNA was extracted from sediment samples as
described by Zhou et al. (1996). The V3–V4 regions of the 16S
rRNA gene were amplified using universal primer sets 338F
and 806R. PCR products were purified, quantified, and paired-
end sequencing was performed on the Illumina MiSeq PE300
platform atMajorbio Bio-PharmTechnology Co., Ltd. (Shanghai,
China). Detailed protocols were previously published by Wang
et al. (2018). The paired-end reads of fastq files were merged
and quality-filtered using Usearch (version 8.1) (Edgar, 2016).
The filtered reads were clustered into operational taxonomic
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units (OTUs), using UPARSE with the threshold set to 97%
(Edgar, 2013). Representative reads for OTUs were aligned with
the GenBank nucleic acid database (NT) using BLASTn, and
MTB-related OTUs were screened using an identity threshold of
90% (Altschul et al., 1990). The CLUSTALW multiple alignment
software was used for sequence alignment (Larkin et al., 2007).
The phylogenetic tree was constructed based on the neighbor-
joining method using MEGA6 (Tamura et al., 2013) with the
bootstrap p value of 1,000.

Rock Magnetic Measurements
We measured the isothermal remanent magnetization (IRM)
acquisition curve and first-order reversal curves (FORC) on
the bulk sample using a vibrating sample magnetometer (VSM,
Princeton Measurements Corporation’s MicroMagTM 3900) at
the Institute of Geology and Geophysics, Chinese Academy of
Sciences (IGGCAS) (Roberts et al., 2000; Kruiver et al., 2001; Egli
et al., 2010). For the IRM acquisition curve, the field was added
from 10 µT to 1 T with 120 data points in a log distribution of
the field steps and the averaging time is 1 s for each data point.
Coercivity unmixing analyses were conducted using the Max
Unmix model (Maxbauer et al., 2016). For the FORC diagram,
the saturation field is set to 1 T and 200 partial hysteresis curves
were measured with 350ms averaging time. We used FORCinel
software (v 3.06) to create a FORC diagram (Harrison and
Feinberg, 2008). The FORC were smoothed using VARIFORC
parameters: Sc0 = 6, Sb0 = 5, Sc1 = Sb1 = 8.

Magnetofossils Observation
The so-called magnetic fingers were used to extract
magnetofossils, as previously described (Von Dobeneck
et al., 1987; He and Pan, 2020). We made a minor modification
based on the method mentioned above. Briefly, 2ml of sediment
and 0.1 g sodium hexametaphosphate were mixed with 30ml
Milli-Q water in a 50-ml centrifuge tube, and a magnetic finger
was put into the mixture for at least 12 h. Magnetic minerals
were washed from the surface of the magnetic finger into a 15-ml
centrifuge tube using Milli-Q water. Two circular magnets were
attached to the outside of the 15-ml centrifuge tube, and the
enriched particles were shaken until they were evenly distributed
throughout the tube and then allowed to settle for at least 12 h.
A Pasteur tube was used to recover the magnetic particles that
were adsorbed on the inner wall and transfer them to a 1.5-ml
centrifuge tube. After rinsing the tube three times using Milli-Q
water, 30µl of anhydrous ethanol was used to re-suspend the
magnetic particles. Then, 8 µl of this suspension was dropped
onto a copper double grid for TEM observation.

The morphological characteristics of the magnetofossils were
observed using a Hitachi H8100 microscope operating at
100 kV at the Institute of Oceanology, Chinese Academy
of Sciences (IOCAS). High-resolution transmission electron
microscopy (HRTEM), selected area electron diffraction (SAED),
and X-ray energy-dispersive spectroscopy (XEDS) were obtained
using a JEOL JEM-2100 TEM operated at 200 kV at the
Institute of Geology and Geophysics, Chinese Academy of
Sciences (IGGCAS).

Metagenome Sequencing and MGCs
Analysis
The genomic DNA was sequenced in BGI Co., Ltd. (Wuhan,
China) via shotgun sequencing on the Illumina HiSeq platform
(150 bp paired-end strategy). The raw sequencing data were
filtered and trimmed to generate high-quality clean data. Clean
reads were assembled using the IDBA-UD software (Peng et al.,
2012). Genes were predicted using Prodigal (Hyatt et al., 2010)
and aligned with known MGC genes using BLASTp, with
thresholds of 35% for similarity and 50% for gene coverage.
MGC genes (mam, mad, feo, mms, man) of MTB strains were
downloaded from the MAGE website (Vallenet et al., 2019).
All genes were manually checked, and putative magnetosome
genes with higher homology to known MGC genes were
selected for further analysis. The abundances of these putative
magnetosome genes were calculated, and the Pfam database
was used to predict the domains of the selected genes and
known magnetosome genes (Mistry et al., 2021). At the same
time, some selected putative magnetosome gene sequences
have higher similarities with known homologous genes. These
sequences were used as representative sequences to construct
phylogenetic trees. The construction method is the same as
above. The sequences homologous to the two known MTB
magnetome genes with the most abundant number and species
were selected, and the sequences with the highest similarity to
the known sequences in each putative magnetome gene were
selected for gene organization comparison. Jalview was used to
analyze the conserved regions of predictive protein sequences of
magnetosome genes (Waterhouse et al., 2009).

RESULTS

MTB Community Analysis
Using high-throughput sequencing, we obtained a total of
153,056 tags from the Tangyin hydrothermal field sediment
samples, corresponding to a total of 3,115 OTUs using the
threshold of 97% sequence identity. After alignment to published
MTB 16S rRNA gene sequences, a total of 709 sequences were
screened out (0.46% of all tags). These sequences belonged to
20 OTUs (0.64% of all OTUs) (Supplementary Table S1). Of
them, eight (10 reads) belonged to genera Magnetovibrio and
Magnetospira in the class of Alphaproteobacteria, six (17 reads)
belonged to Nitrospirae MTB, and six (682 reads) belonged to
MMPs affiliated with Desulfobacterota. Notably, two dominant
MMP OTUs accounted for 463 reads and 146 reads and were
highly similar to sMMP Ca. Magnetomorum litorale. Of the
remaining four MMP-related OTUs, three (60 reads) were most
similar to sMMP Ca. Magnetoglobus multicellularis Araruama
and one (13 reads) was similar to eMMP Ca. Magnetananas
rongchenensis (Table 1). Results of the phylogenetic tree based
on representative sequences of the OTUs were consistent with
our sequence alignment results (Figure 1).

The 16S rRNA gene sequences clustered six OTUs into
a branch within Desulfobacterota, which was branched with
known MMPs but formed a different group (Figure 2). The
five MTB-related OTUs belonging to the phylum Nitrospirae
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TABLE 1 | Numbers of OTUs and reads corresponding to different species of magnetotactic bacteria.

OTUs Reads

Desulfobacterota sMMPs Ca. Magnetomorum litorale 2 609

Ca. Magnetoglobus multicellularis Araruama 3 60

eMMPs Ca. Magnetananas rongchenensis 1 13

Nitrospirae Magnetobacterium sp. P1B_23 2 13

Ca. Magnetobacterium bavaricum 3 3

Uncultured magnetotactic rod MHB-1 1 1

Alphaproteobacteria Magnetovibrio Magnetovibrio blakemorei MV-1 4 6

Magnetospira Magnetospira sp. QH-2 3 3

Magnetospira thiophila MMS-1 1 1

Total 20 709

Bacteria 3,115 153,056

MTB percentage of bacteria 0.64% 0.46%

were also found in a different clade from the known MTB
in the phylogenetic tree, while OTU3965 was clustered in
the same clade with the known thermophilic MTB (Figure 2).
Besides, theMTB-related OTUs affiliated withMagnetovibrio and
Magnetospira were also found in the same branch as the known
MTB (Figure 2).

Detection of Magnetofossils
The FORC diagram does not show a clear central ridge
which indicates non-interacting uniaxial single domain grains
(Figure 3A). It suggests that the bulk sample probably contains
multi-domain (MD) and/or vortex magnetic minerals and
magnetofossils with broken chains. We decomposed the sample
into five components using IRM unmixing analysis, including
component 1, biogenic soft (BS, with a median coercivity of 41.1
± 1 mT), biogenic hard (BH, with a median coercivity of 88.4
± 1 mT), detrital (with a median coercivity of 30.1 ± 1 mT), and
high coercivity component (with amedian coercivity of 217.3± 1
mT). The dispersion parameter (DP) of BS and BH components
is 0.21 and 0.18, respectively (Figure 3B). Component 1 might
indicate coarsemagneticminerals with lower coercivity (7.4± 1.1
mT). The high coercivity components probably indicate that the
sample contains hematite or goethite. Detrital magnetic minerals
are the dominant component which contribute 48.8% to the
remanent magnetization of the bulk sample (Figure 3B). The
proportions of BS and BH, which usually represents isotropic and
elongated magnetofossils, are 12.4% and 21.1%, respectively.

Subsequently, a total of 443 magnetofossils were observed
by TEM. Three different magnetofossil morphologies
were recognized: elongated-prismatic, bullet-shaped, and
cuboctahedral (Figures 4A,B,F,G,K,L). Most magnetofossils
fall within a stable single domain (SSD) size range (Figure 3C).
Prismatic magnetofossils (84 ± 25 × 59 ± 18 nm, n = 326)
were the dominant type, accounting for 73.6% of the total
magnetofossils (Figure 3D). Here, we define prisms with an axial
ratio smaller than 0.7 to be elongated prismatic magnetofossils
while those with an axial ratio larger than 0.7 to be short prisms.
Bullet-shaped (98 ± 29 × 40 ± 10 nm, n = 110) magnetofossils
accounted for 24.8% of the total, while the cuboctahedron

type accounted for only 1.6% (56 ± 12 × 51 ± 12 nm, n = 7).
Energy-dispersive X-ray analysis indicated that the variously
shaped magnetofossils were all composed of iron and oxygen
(Figures 4C,H,M). Measurement of the crystal lattice and
analysis of the electron diffraction pattern showed that the
particles were magnetite (Figures 4D,E,I,J,N,O).

Analysis of Homologous Sequences of
Magnetosome Genes
Through functional annotation and comparison with
known MGC genes, a total of 121 homologous sequences
of magnetosome genes were found (Supplementary Table S2),
yielding a relative abundance of 0.078%. These homologous
sequences of magnetosome genes were assigned to different
genera or species based on similarity and showed relatively high
similarity to 11 species of MTB. The homologous magnetosome
genes with high similarity to MMPs (Ca. Magnetomorum HK-1,
Ca. Magnetoglobus multicellular Araruama, Ca. Magnetananas
Rongchenensis) accounted for 44.2% with 0.035% relative
abundance. Also, the sequences that were homologous to Ca.
Magnetomorum HK-1 had the highest relative abundance
(0.025%). Four types of magnetosome genes were identified:
mam, mad, feo, and others (i.e., conserved hypothetical
protein and magnetosome-associated genes). The homologous
sequence of mam gene clusters had the highest (0.037%)
relative abundance among the four types; the homologous
sequences of mamE accounted for the majority (0.024%), and
the homologous sequences of mamABOKQ were also found.
The various homologous sequences of mad genes (mad6, mad9,
mad17, mad28, mad29, and mad30) were found, as were three
feo genes (feoA, feoB, and feoC-like) (Figure 5A).

Domain prediction was carried out on the homologous
protein sequences. Most of the homologous protein sequences
had the same domains as known magnetosome proteins. For
example, TY01_125011, which was homologous to mamB of
Ca. Magnetomorum HK-1, the homologous MamB protein,
was predicted to have ZT-dimer and cation efflux domains,
while TY01_34081, which was homologous to mamQ of Ca.
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FIGURE 1 | Neighbor-joining tree for environmental magnetotactic bacteria based on 16S rRNA gene sequences. Scale bar: 0.02.

Magnetobacterium Bavaricum, the homologous MamQ protein
had a LemA domain (Figure 5B).

DISCUSSION

Since MTB was first discovered independently by Bellini and
Blakemore (Blakemore, 1975; Bellini, 2009), the phylogenetic

information reported for them has been based primarily on 16S
rRNA gene sequence analysis. As it has proven to be difficult
to cultivate MTB, the 16S rRNA gene analysis has been used
to infer the diversity and phylogenetic affiliations of MTB in
various environments (Lin et al., 2018; Teng et al., 2018; Amor
et al., 2020). Tan et al. (2021) analyzed MTB communities
in tropical marine environments using the 16S rRNA genes
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FIGURE 2 | Phylogenetic tree constructed based on 16S rRNA sequence gene reads related to magnetotactic bacteria. The sequences determined in this study are

shown in bold text. GenBank accession numbers of the sequences used are indicated in parentheses. Scale bar: 0.02.
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FIGURE 3 | Rock magnetic and statistical data on magnetofossil morphologies for the sediment. (A) First-order reversal curve (FORC) diagram. The Bc and Bu axis

indicates coercivity and magnetostatic interaction, respectively. (B) Isothermal remanent magnetization (IRM)-unmixing result. The horizontal axis stands for coercivity

(expressed on a base 10 logarithmic scale), and the gradient of the IRM acquisition curve (yellow) is fitted by lognormal distributions. The different color stands for

different components; Purple and turquoise curves are biogenic soft and hard components, respectively. Red and green curves are detrital and high coercivity

components, respectively. The blue curve may indicate coarse-grained minerals. (C) Magnetofossil size distributions. Red square, navy blue dot, and yellow triangle

represent bullet-shaped, elongated prism, and short prism, respectively. The green triangle denotes octahedral magnetofossil. The domain-state phase diagram is

modified after Muxworthy and Williams (2009). SP, SD, SSD, and MD represent superparamagnetic, single domain, stable single domain, and multidomain,

respectively. (D) Statistics based on panel (C). The colors representing different morphotypes of magnetofossils are consistent with those in panel (C).

from the metagenomic analysis. MTB at seamounts was also
identified by 16S rRNA gene analysis (Liu et al., 2017). Dong
et al. (2016) used the 16S rRNA gene and magnetofossil analyses
to infer the existence of MTB in deep-sea surface sediments.
Most mature biogenic magnetosomes are single-domain and
arranged in chains in most MTB cells. According to these two
basic characteristics, combined with the size, crystallographic
structure, and composition of the magnetosomes, TEM can
be used to identify magnetofossils effectively (Kopp and
Kirschvink, 2008; Li et al., 2020a). Previous studies found that
biogenic magnetite was distributed widely in deep-sea sediments
(Petersen et al., 1986; Yamazaki et al., 2019; He and Pan,
2020; Usui and Yamazaki, 2021), and the proportions of bullet-
shaped magnetofossils increased in relatively reductive and less
oxic environments, while isotropic magnetofossils dominated
in relatively oxic environments (Hesse, 1994; Yamazaki and
Kawahata, 1998; Yamazaki and Shimono, 2013; He and Pan,
2020; Lu et al., 2021). Recently, the known extent of MTB

diversity has undergone a significant expansion due to the
identification of magnetosome gene cluster (MGC)-containing
genomes and studies screening for sequences homologous to
known MGC genes (Lin et al., 2020; Uzun et al., 2020).
Lin et al. (2020) performed a large-scale reconstruction of
metagenome-assembled MTB genomes from diverse ecosystems,
and 13 bacterial phyla were detected, six of which were
not previously known, including MTB. Thus, the existing
literature indicates that analyses of 16S rRNA gene sequences,
magnetofossil diversity, and magnetosome gene-homologous
sequences obtained from an environment can be used to predict
the existence of MTB diversity.

In our study, 16S rRNA gene analysis showed that
MTB affiliated with Desulfobacterota, Alphaproteobacteria, and
Nitrospirae had been found. FORC diagrams have no central
ridge and the coercivity obtained from FORC is smaller
than 20 mT, which is different from common FORCs of
magnetofossils (Jovane et al., 2012). Vali and Kirschvink (1989)
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FIGURE 4 | Characteristics of magnetofossils with three main shapes. (A,B) Elongated-prismatic magnetofossils. (C–E) Energy dispersive X-ray spectra (C), HRTEM

image (D), and electron diffraction patterns (E) of the magnetofossil indicated by an arrow in panel (B). (F,G) Bullet-shaped magnetofossils. (H–J) Energy dispersive

X-ray spectra (H), HRTEM image (I), and electron diffraction patterns (J) of the magnetofossil indicated by an arrow in panel (G). (K,L) Cuboctahedron

magnetofossils. (M–O) Energy dispersive X-ray spectra (M), HRTEM image (N), and electron diffraction patterns (O) of the magnetofossil are indicated by an arrow in

panel (L) (cuboctahedron magnetofossil). Scale bars (A,B,F) 200 nm; (G,K,L) 100 nm; (I) 20 nm; and (D,N) 10 nm.

found partial magnetofossil dissolved in deep-sea sediment.
Particle corrosion and clumping probably decreased the
coercivity and increased the level of interparticle interaction,
which is shown in our FORC diagram (Figure 3A). We
also observed that partial magnetofossils experienced moderate
corrosion in our sample (Supplementary Figure S1). Moreover,
the diversity of magnetofossil was also affected by early
diagenesis (Rodelli et al., 2019; Yamazaki, 2020). Yamazaki (2020)
concluded that bullet-shaped magnetofossils were dissolved
easier than prismatic ones, which may explain that the
proportions of bullet-shaped magnetofossils are only 24.8%
in our sample (Figure 3D). According to the diversity of
magnetofossils observed from TEM images, the ancient MTB
living in the Tangyin hydrothermal field of the Okinawa
Trough might belong to Alphaproteobacteria, Etaproteobacteria,
Gammaproteobacteria, Desulfobacterota, Nitrospirae, and the
candidate phylum Omnitrophica (Figure 4) (Amor et al., 2020;
Liu et al., 2021a,b). Moreover, we had detected some homologous
sequences of magnetosome genes, and these homologous
magnetosome genes did not form a complete magnetosome
gene cluster. However, these homologous sequences have
the same domain as the known magnetosome genes. This
indicates they may have the same functions, and these
homologous sequences could be magnetosome genes. Then, the
phylogenetic trees of MamE, O, and Q protein sequences showed
that these homologous sequences are evolutionarily distinct
from known MTB (Figure 6). The homologous sequences of

MamE and MamO representative sequences were homologous
to Desulfobacterota. These branches were far from known
MTB in the phylogenetic tree. Whereas, compared with
the known MTB, most of these homologous Mam protein
sequences have conserved regions (Supplementary Figure S2).
Therefore, the MamE, O, and Q in hydrothermal have
different evolutionary statuses and show high diversity. Of
course, in consideration of these homologous sequences
having big differences evolutionarily from known MTB, the
homologous sequences of MamE and mamO are not necessarily
Desulfobacterota either; they might be originated from other
MTB identified by 16S rRNA gene sequences shown in
Figure 2 (Alphaproteobacteria or Nitrospirae). Meanwhile, the
possibility that they are paralogous genes or pseudogenes
from non-MTB cannot be ruled out. Nevertheless, combining
the 16S rRNA gene results with the magnetofossils, we are
more inclined that these are magnetosome genes from MTB.
Here, our analysis of MTB-related 16S rRNA gene sequences,
magnetofossils produced by MTB, and homologous sequences
of magnetosome genes indicate that MTB could inhabit the
deep-sea hydrothermal sediments.

Our analysis revealed that 65.3% of the 16S rRNA gene
sequence reads associated with MTB belonged to OTU1477,
which is affiliated with the MMP branch. All MMP-related
16S rRNA gene sequence reads accounted for 96.2% of all
MTB-related reads. Moreover, the homologous sequences of
magnetosome genes are most similar to known MTB belonging

Frontiers in Microbiology | www.frontiersin.org 8 June 2022 | Volume 13 | Article 887136

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Chen et al. Magnetotactic Bacteria From Hydrothermal Field

FIGURE 5 | Homologous magnetosome genes analyses. (A) Relative abundance of homologous sequences of magnetosome genes in the sampled sediment. (B)

Structural domain prediction for sequences that were homologous to Ca. Magnetomorum HK-1 and Ca. Magnetobacterium bavaricum. Fe_dep_repr C, Iron

dependent repressor, metal binding, and dimerization domain; FeoA, FeoA domain; Trypsin_2, trypsin-like peptidase domain; Cation_efflux, Cation efflux family;

ZT_dimer, Dimerization domain of Zinc Transporter; LemA, LemA protein family domain.

to Desulfobacterota, and MMPs accounted for 44.2% of all
magnetosome gene homology sequences. The proportions of
bullet-shaped magnetic particles are higher than those of MTB
magnetosomes from the intertidal zone of Huiquan Bay in
Qingdao (unpublished data) (24.8% vs. 4.0%). Bullet-shaped
magnetosomes have only been found in the MTB belonging

to Desulfobacterota, Nitrospirae, and the candidate phylum
Omnitrophica (Kolinko et al., 2012; Chen et al., 2015; Li et al.,
2015; Qian et al., 2019). Interestingly, both rock magnetic results
and TEM analysis indicate that the abundance of BH components
(bullet and elongated prisms) is∼1.7 times higher than that of BS
components (cuboctahedron and short prisms) (Figures 3B,D).
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FIGURE 6 | Neighbor-joining tree of homologous sequences of MamE, MamO, and MamQ protein from sediment of Tangyin hydrothermal field. HK-1, Candidatus

Magnetomorum HK-1; RPA, Candidatus Magnetananas rongchenensis; BW-1, Desulfamplus magnetovallimortis BW-1; M. multicellularis, Candidatus Magnetoglobus

multicellularis Araruama; RS-1, Desulfovibrio magneticus RS-1; QH-2, Magnetospira sp. QH-2; MV-1, Magnetovibrio blakemorei MV-1; AMB-1, Magnetospirillum

magneticum AMB-1; MSR-1, Magnetospirillum gryphiswaldense MSR-1; Mbav, Candidatus Magnetobacterium bavaricum.
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All the homologous sequences of mam genes identified herein
correspond to the core genes of magnetosome synthesis. Given
this, 16S rRNA gene sequences, magnetofossils, and homologous
sequences of magnetosome genes consistently indicate that
MMPs might be the dominant species among the MTB in this
region. The hydrothermal field is an anoxic environment and
is rich in reducing sulfides and sulfates (Orcutt et al., 2011).
Previous research found that sulfate-reducing bacteria were the
dominant species of the microbial community in the Tangyin
hydrothermal field (Wang et al., 2018). Among the MTB, MMPs
are anaerobic sulfate-reducing bacteria (Kolinko et al., 2014).
Therefore, MMPs may represent the dominant group of MTBs
at the sampled location, likely reflecting their adaptation to the
hydrothermal environment.

As we all know, the hydrothermal zone is a candidate place for
the origin of life (Trolard et al., 2022). Meanwhile, although the
origins of MTB remain unclear, previous research has shown that
the MTB of Nitrospirae and Proteobacteria differentiated near
the Archean, and this suggests that MTB has existed at least in
the Archean Eon (Lin et al., 2017). The geochemical conditions
in the hydrothermal zone are thought to be similar to those on
the early Earth (Baross and Hoffman, 1985; Trolard et al., 2022).
The evolution of MTB here may be different from known MTB,
which has been implied by the phylogenetic tree of 16S rRNA
and homolog sequences of magnetosome genes. The dominant
MTB in the hydrothermal field may represent a particular MTB
species associated with the early Earth-like environment. There
are microorganisms of ancient origin in hydrothermal vents
(Takai and Nakamura, 2011), and MMPs are also an important
model for studying evolution in prokaryotes (Keim et al., 2007).
If MMPs are present in the hydrothermal field, the MMPs may
be a potential model microorganism for understanding the early
evolution of life on Earth.

CONCLUSION

In this study, a total of 709MTB-related 16S rRNA gene sequence
reads were found in the Tangyin hydrothermal field. The 20
related OTUs represent Desulfobacterota, Alphaproteobacteria,
and Nitrospirae. MMPs represented the largest number total of
121 homologous magnetosome gene sequences were annotated.
The results collectively suggest that MTB exists in the Tangyin

hydrothermal field and MMPs might be the dominant MTB in
this region.
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