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New evidence suggests that the clinical success of chemotherapy is not merely

due to tumor cell toxicity but also arises from the restoration of

immunosurveillance, which has been immensely neglected in previous

preclinical and clinical researches. There is an urgent need for novel insights

into molecular mechanisms and regimens that uplift the efficacy of

immunotherapy since only a minority of cancer patients are responsive to

immune checkpoint inhibitors (ICIs). Recent findings on combination therapy

of chemotherapy and ICIs have shown promising results. This strategy

increases tumor recognition and elimination by the host immune system

while reducing immunosuppression by the tumor microenvironment.

Currently, several preclinical studies are investigating molecular mechanisms

that give rise to the immunomodulation by chemotherapeutic agents and

exploit them in combination therapy with ICIs in order to achieve a synergistic

clinical activity. In this review, we summarize studies that exhibit the capacity of

conventional chemotherapeutics to elicit anti-tumor immune responses,

thereby facilitating anti-tumor activities of the ICIs. In conclusion, combining

chemotherapeutics with ICIs appears to be a promising approach for

improving cancer treatment outcomes.
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Introduction

The link between host immunity and cancer development was

unclear until recently. Now it is well documented that cancer

development is associated with host immunity. Immunosurveillance

is a monitoring process by which immune cells detect and destroy

malignant cells (1). Over time, tumor cells evolve to escape

immunosurveillance, resulting in tumor establishment (Figure 1).

Following tumor establishment, cancer cells employ more

immunosuppressive mechanisms to escape anti-tumor immune

responses (1). Major mechanisms that these cells use for

immunosuppression are 1. Binding to effector cells using inhibitory

receptors called immune-checkpoints (ICs) such as cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) and programmed cell

death protein-1 (PD-1) (Figure 2) 2. Secretion of anti-inflammatory

cytokines like IL-10 and 3. Suppression of effector cells upon depletion

of essential metabolic substrates like tryptophan and arginine (2, 3). So

the accumulation of immunosuppressive cells and increased levels of

immunosuppressive molecules such as PD-1 ligand (PD-L1) and

indoleamine 2,3-dioxygenase 1 (IDO1) are directly associated with

poor prognosis and unfavorable disease outcomes in patients with

cancer (4–6).

Accordingly, immunotherapeutic approaches such as

blocking the ICs and reducing immunosuppressive molecules
Frontiers in Oncology 02
and cells could enhance the anti-tumor immune responses (7).

IC inhibitors (ICIs) such as anti-PD-1 or anti-PDL1 antibodies

have shown promising results in the treatment of various

cancers like unresectable or metastatic melanoma, renal

cancer, metastatic non-small cell lung cancer (NSCLC), and

more recently, Hodgkin’s lymphoma and urothelial carcinoma

(8–14).

Nevertheless, a significant proportion of patients with breast or

prostate cancer show resistance to ICIs, mostly due to the

immunosuppressive tumor microenvironment (TME) or the lack

of immune checkpoints expression by tumor cells (15–18).Moreover,

patients who initially have respondedwell to ICIs therapy can develop

resistance as the disease progresses after a period of time. Therefore, it

is essential to prevent resistance phenomena and enhance the anti-

tumor activity of monoclonal antibody therapy by using combination

therapies. Some studies on combination therapies are ongoing (19–

26). Despite the primary belief that conventional chemotherapy is

merely immunosuppressive, recent findings unveiled the

immunostimulatory properties of chemotherapy. Utilizing

chemotherapy leads to the release of antigens through cytotoxic cell

death activity, stimulating immune responses and improving the

activity of PD-1/PD-L1 blocking agents. In addition, chemotherapy

may positively impact the leukocyte composition of infiltrated cells

(26–29). Several ongoing clinical trials combine ICIs monoclonal
FIGURE 1

Immunosurveilance and cancer immunoediting. Immunosurveillance is a monitoring process by which cells of the immune system detect and
destroy virally infected or malignant cells. It is consisted of three major phases; 1. Elimination phase that eradicate neoplastically transformed
cells; 2. Equilibrium phase that occurs upon incomplete eradication of malignant cells so a temporary state of equilibrium develops between the
growing tumor and the immune cells; And 3. Escape phase during which variants of tumor cells resist, avoid or suppress the anti-tumor activity
of the host immune cells to the point that the immune system is no longer able to restrain tumor growth. PD-1, Programmed cell death 1;
TCD4+, helper T cell; TCD8+, cytotoxic T lymphocyte, DC, dendritic cells; MDSC, myeloid-derived suppressor cell; NK, natural killer; TAM, tumor
associated macrophages; Treg, regulatory T-cell.
frontiersin.org

https://doi.org/10.3389/fonc.2022.939249
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.939249
antibodies with various chemotherapies (25–28, 30). This review

aimed to discuss the different immunological effects of combining

ICIs and chemotherapy.
ICIs resistance mechanisms and
strategies to avoid them

Resistance to immunotherapy drugs can be primary, as seen

in non-responders, or acquired, which occurs after some time in

patients. Also, resistance can emerge intrinsically or

extrinsically. The former happens when tumor cells directly

interfere with processes involved in immune recognition, gene

expression, and cell signaling. Extrinsic resistance happens

externally to tumor cells via T-cell activation processes (31).

Several factors in response or resistance to ICIs therapy are

related to tumor immunogenicity, TME, antigen presentation,

and classic oncologic pathways.

The mechanisms underlying resistance to ICIs are not fully

elucidated. However, defects in neoantigen and antigen

presentation, mutations in inflammatory signaling pathways,

Overexpression of other ICs, and overcoming immunosuppressive

mechanisms in the TME can lead to ICI resistance (32).
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The defect in antigen presentation is one mechanism of

tumor cells to evade immune responses (33). It can stem from

DC dysfunction, deficiency in MHC machinery, and decreased

T-cell priming. Mutations in B2M (b2-microglobulin gene) lead

to MHC-I loss (34). Some acquired ICI-resistant patients

showed loss of B2M (35–37). However, not all mutations of

B2M cause ICI resistance (32), as it has been reported that some

B2M-mutated CRC patients were still ICI sensitive (38).

Co-expression of inhibitory receptors such as Lymphocyte-

activation gene (LAG-3), T-cell immunoglobulin and mucin

domain-3 (TIM-3), T cell immunoreceptor with Ig and ITIM

domains (TIGIT), V-domain Ig suppressor of T cell activation

(VISTA) (39), and B-/T-lymphocytes attenuator (BTLA),

alteration in the balance of tumor-infiltrating lymphocytes

(TILs) in favor of myeloid-derived suppressor cells (MDSCs)

and regulatory T cells (Tregs), and increased production of

indoleamine 2,3-dioxygenase (IDO) and adenosine are another

circumstances that lead to ICI resistance (14, 31).

Neoantigens-specific T cells are principal anti-tumor effector

cells that could express ICs (40, 41). Accordingly, loss of

neoantigen expression by tumor cells may lead to immune

evasion and ICI resistance (42, 43). Neoantigen-specific IC

expressing T cell clones might be eliminated by the selective
FIGURE 2

Crosstalk between CTL, APC and Tumor cell. Tumor cells are recognized by the immune system when tumor peptides are presented via APC to
CD8+ T cells. APC also provide costimulatory molecules such as B7.1/2 to bind CD28 on T cells. The primed CD8+ T cells can recognize tumor
antigens and destroy tumor cells by secretion of perforin and granzyme B However, tumor cells express inhibitory molecules such as PD-L1 to
bind PD-1 on activated T cells to suppress anti-tumor responses. Tumor cells also induce PD-L1 expression on APCs to further suppress the
immune responses. CTLA-4 is expressed on T cells following activation. Binding CTLA-4 on T cells to B7.1/2 on APCs causes inhibition of T cell
activity. APC: antigen presenting cell. CTL, cytotoxic T lymphocyte; CD28, cluster of differentiation 2; CTLA-4, cytotoxic T-lymphocyte-
associated protein 4; MHC-I, major histocompatibility complex class I; TA, tumor antigen; TCR, T cell receptor; PD-1, Programmed cell death 1;
PD-L1, Programmed cell death-ligand 1;
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pressure that exists in the TME, resulting in the outgrowth of IC

negative clones (44).

Other prominent factors that cause resistance to ICIs are

mutations in JAK1/2, IFNGR1/2, and IRF1 (45), aberrant WNT/

b-catenin signaling, and loss of tumor suppressor genes (46). Such

signalings are required to express ICs on cells (47). Hence, defects

in signaling can cause loss of ICs and ICI resistance. However,

patients carrying heterozygous mutations still have active signaling

pathways and IC expression, making them ICI sensitive (48).
The rational for ICIs and
chemotherapy combination therapy

There are different therapeutic strategies to bypass this

resistance to ICIs. Since T lymphocytes are the most effective and

crucial components in immune defense against tumor

development, any strategy that increases tumor immunogenicity

and T cell priming that subsequently activates this type of cell can

help defeat tumor resistance. Chemotherapy consists of a large

group of molecules that target and destroy proliferating cells.

Chemotherapy mainly affects growing cancer cells but may also

affect normal proliferating immune cells causing myelosuppression

and leukocytopenia. Hence, chemotherapy was long thought to be

solely an immunosuppressive treatment modality. However,

according to recent studies, there are forms of chemotherapy that

demonstrate immune-stimulatory effects (49, 50). Chemotherapy

increases tumor response to ICIs therapy by increasing the release

of tumor antigens upon cancer cell death, resulting in enhanced T

cell priming (29). In addition, chemotherapy contributes to the

depletion of the MDSC and Treg population in the tumor site (27).

Also, radiation therapy positively affects the ICIs treatment outcome

in a similar manner. It increases antigen presentation and promotes

an inflamed TME (51). Other strategies available for this purpose

that have shown enhanced tumor regression are combining ICI

with targeted therapy, cytokine/chemokine inhibitors, and

immune-stimulatory agent therapy (31).

Given the complex network of signaling and regulation of

immune responses against the tumor, it seems impossible to define

a specific immunologic biomarker in order to select patients who

would benefit the most from this approach. One of the strategies

that help in choosing ICIs therapy alone or in combination with

chemotherapy in a cancer patient is related to the immune status of

TME and their “hot” or “cold” immunologic contexts.

Immunogenic or hot TME comprises infiltrating T cells,

inflammatory cytokines, and PD-L1. Contrarily, those lacking

these features are called non-immunogenic or cold TMEs (52–

55). Patients displaying hot TMEs are excellent candidates for

receiving ICI therapy alone, while patients whose tumors are

non-immunologic would benefit from the synergistic effect of

combination therapies (54). In these patients, chemotherapy

boosts immune responses against tumor cells by increasing the
Frontiers in Oncology 04
immunogenicity of the growing tumor, while IC blockade prolongs

this effect by providing a long-lasting immune response resulting in

fast tumor regression (56).
Immunomodulatory effects
of chemotherapy

Conventional chemotherapy may exert anti-tumor immune

responses by “on-target” effect, which directly increases

immunogenicity of targeted cancer cells, or through “off-target”

effect on different immune cell populations, leading to alteration of

the whole-body physiology favoring anti-cancer immunosurveillance.

Common action mechanisms of chemotherapeutic agents are 1.

Marked lymphodepletion or so-called ‘reset’ of the immune system

(with major adverse effects) and near-to-complete reconstitution of

the host’s immunological repertoire (57), 2. Decrease

immunosuppressive cells, including M2-like tumor-associated

macrophages (TAMs), MDSCs, and Tregs, by providing an

inflammatory condition (17, 58, 59), or 3. Activation of effector

cells such as cytotoxic T cells (CTLs) (60), DCs (61),, and M1-like

TAMS (62) (Figure 3).

An efficient anti-tumor immune response relies on the

combination of two fundamental factors. First, tumor cells must

express antigens for T cell recognition and activation

(immunogenicity). Then, cancer cells should recruit adjuvant-like

danger signals such as damage-associated molecular patterns

(DAMPs) or pathogen-associated molecular patterns (PAMPs) to

boost the immunogenicity (adjuvanticity) (63, 64). Conventional

chemotherapies improve the immunogenicity and adjuvanticity of

cancer cells by inducing cellular death and stress (Figure 3) (65).

Immunogenic cell death (ICD), a form of regulated cell death,

occurs as a part of the so-called “integrated stress response” and

emerges from the activation of unsuccessful cytoprotective

pathways such as phosphorylation of eukaryotic translation

initiation factor 2 subunit alpha (EIF2S1, also known as eIF2a)
and autophagy. Activation of autophagy during ICD leads to the

lysosomal secretion of ATP, which promotes purinergic receptors to

stimulate the recruitment of DC precursors to the tumor site and

accelerates inflammatory reactions after inflammasome activation

(66–68). On the other hand, endoplasmic reticulum (ER) stress

favors the translocation of ER chaperones such as heat shock

protein family A (HSP70) member 1A (HSPA1A, also known as

HSP70) and calreticulin to the cell surface. Exposure of these

chaperones on the cell surface is a signal for the phagocytic

uptake of the tumor cell by immature DCs (69). Accumulation of

nuclear or mitochondrial DNA of dying cancer cells in extracellular

spaces or the cytosol as a result of responding to chemotherapy

elicits immune signaling via Toll-like receptor 9 (TLR9), TLR3, and

GMP-AMP synthase (CGAS) that eventually results in the

production of type I interferons (IFNs) (70, 71). Also, dying

tumor cells release a number of nuclear and cytoplasmic proteins
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like high mobility group box 1 (HMGB1) and annexin A1

(ANXA1). HMGB1 facilitates the interaction of DCs with dead

cell debris via binding to formyl peptide receptor 1 (FPR1), while

ANXA1 promotes DC maturation upon binding to TLR4 (72).

These observations represent the importance of adjuvanticity for

chemotherapy to exert clinically efficient anti-tumor immunity.

Preclinical studies also support this notion by demonstrating the

positive prognostic value of the increased DAMP expression and

ICD-associated stress responses in the host (73).

However, little is known about the ability of chemotherapy

to increase tumor antigenicity. Major histocompatibility

complex (MHC) class I upregulation driven by IFN signaling,

accumulation of genetic and/or epigenetic defects, and

transcriptomic perturbations like modifications in the

expression of non-coding RNA are possible mechanisms by

which chemotherapy improves antigenicity (74, 75).
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Supporting this notion, gemcitabine, a chemotherapeutic

agent, has been shown to activate stress response pathways

that ultimately result in the upregulation of b2 microglobulin

(structural component of MHC I) (76).
Mechanisms of action of
chemotherapeutic agents

Alkylating and platinum based anti-
cancer drugs

Alkylating agents can stop protein synthesis by inhibiting the

transcription of DNA into RNA. Anti-tumor alkylating agents

covalently bind to the double strand of DNA and form
FIGURE 3

Immunomodulatory effects of chemotherapy; Chemotherapeutic agents can modulate the anti-tumor immune responses; They induce
immunologic death and trigger the release of tumor antigens and neoantigens via antigen spreading; Besides antigen spreading, they can
enhance the release of DAMPs and inflammatory mediators; The induced inflammation can recruit proinflammatory cells into the tumor milieu
and decrease the immunosuppressor cells; Such inflammatory conditions; ANXA1, annexin A1; CTL, cytotoxic T lymphocyte; DC, dendritic cells;
HMGB1, high mobility group box 1; HSP, heat shock protein; IFN, interferon; MDSC, myeloid derived suppressor cell; MHC-I, major
histocompatibility complex class I; NK, natural killer; TAM, tumor associated macrophages; TA, tumor antigen; TCR, T cell receptor; Th, T helper
cell; Treg, regulatory T-cell; DAMPs; Damage-associated molecular patterns.
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platinum–DNA crosslinks. These inter- and intra-strand crosslinks

disrupt DNA replication and transcription and ultimately induce

apoptosis in cancer cells. In addition, platinum agents can exert

their anti-tumor efficacy by modulating the host’s immune system.

Cisplatin, oxaliplatin, and carboplatin are renowned platinum

derivatives. Moreover, cisplatin is the most studied derivative

regarding immunomodulatory effects (77–79). Oxaliplatin and

cisplatin increase type I IFNs and IFN-g signaling, leading to the

upregulation of co-inhibitory ligands such as PD-L1 (80). Similarly,

it has been observed that chemotherapy consisting of platinum-

containing agents and 5-fluorouracil (5-FU) induces PD-L1

expression as a consequence of enhanced CD8+ CTL infiltration

(81). Also, the same effect has been reported in patients with

esophageal squamous cell carcinomas who received cisplatin plus

5-FU (82).

Platinum agents decrease STAT6 signaling through

dephosphorylation of STAT6. Loss of STAT6 phosphorylation

leads to the downregulation of PD-L2 on tumor cells and DCs

and, in turn, increases tumor recognition by T lymphocytes (83,

84). Also, platinum agents can stimulate CTL-mediated attack

(83). A combination of cisplatin and vinorelbine in patients with

NSCLC made tumor cells more responsive to MHC-guided

perforin and granzyme-B mediated CTL attacks, mainly

associated with the MHC I upregulation (85). Besides this

mechanism of action, it was reported that combining cisplatin

with vinorelbine may increase the ratio of effector CD4+ to Tregs

(86). However, cisplatin is unable to stimulate calreticulin release

from ER, thereby not able to completely trigger ICD (87). In the

same context, carboplatin is inefficient in inducing ICD,

resulting in the partial release of HMGB1 and calreticulin.

Conversely, platinum compounds play an important role in

recruiting and activating DCs to tumor sites by inducing the

release of ATP from dying cells (83). However, further

investigations are required to elucidate the exact effect of

various chemotherapeutic compounds on the immune response.

Cyclophosphamide was the first chemotherapeutic agent

reported to have immunomodulatory effects, if used at a certain

dosage, by selective depletion of the Treg population. This

observation initiated the investigation of the probable

immunomodulatory effects of other agents (88). Furthermore,

cyclophosphamide is able to trigger DCs homeostasis. Supporting

this notion, mouse models treated with intraperitoneal

cyclophosphamide showed tumor cell death with tumor

infiltration and engulfment of apoptotic tumor cells by DCs, and

ultimately cross-priming of CD8+ T cells by DCs (89). Other in vivo

experiments have demonstrated that a single dose of

cyclophosphamide converts the immune profile from TH2 to

TH1 cytokines, increasing interleukin (IL)-2 and IFN-g
production and decreasing IL-10 and TGF-b production (90–92).

Mouse Tregs appear to be less sensitive to cytotoxic effects of

cyclophosphamide compared with human Tregs. Nevertheless,

systemic cyclophosphamide mediates IL-12 and interferon

regulatory factor 1 (IRF1)-dependent response resulting in
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increased TH1 polarization and Treg depletion (93). It is unclear

whether a similar pathway is operational in humans. Another

mechanism of anti-tumor efficacy of cyclophosphamide is

inducing ICD (94).

The combination of cyclophosphamide and oxaliplatin in

NSCLC patients significantly increased nuclear HMGB1 staining

in tumor nodules; Also, the oxaliplatin cyclophosphamide

combination was able to control tumor growth (95). It is

important to mention that the dosage of cyclophosphamide used

in combination therapies is crucial: high dosages may induce

myelosuppression, while metronomic low dosages improve the

immune system (96, 97). Low-dose cyclophosphamide has been

observed to deplete both circulating and tumor-infiltrating Treg

cells through ICD-independent mechanisms (98, 99). Of note,

cyclophosphamide depletes both Treg cells and TH1 cells at first;

however, TH1 cells are able to recover faster than Tregs after

discontinuation of the treatment (100).
Topoisomerase inhibitors

Topoisomerase I and II are normal enzymes of mammalian

cells that cut and repair DNA strands in DNA replication and

cell division processes. Their activity significantly increases in

rapidly dividing cancer cells. Topoisomerases represent an

appropriate non-selective anti-cancer drug. Camptothecin is

an active topoisomerase poison, and its derivatives, irinotecan

and topotecan, serve as topoisomerase I inhibitors (101).

According to preclinical findings, camptothecin derivatives

enhance tumor recognition by T cells. Also, topoisomerase I

inhibitors increase the expression of TP53INP1 and Melan-A/

MART-1. Upon overexpression of these antigens, tumor

recognition by T lymphocytes is increased, and consequently,

T cell-mediated killing of cancer cells is improved (102, 103).

Another study demonstrated upregulation of HMGB1, HSP70,

and other DAMPs after treatment with irinotecan (104). MHC I

and Fas expression are upregulated in tumor cells affected by

topotecan treatment, making them more sensitive to killing by

effector T cells (105, 106).

Anthracyclines are inhibitors of topoisomerase II and have shown

to be effective in the selective depletion of immunosuppressive cells.

Doxorubicin, epirubicin, and idarubicin are derivates of anthracyclines

with immunosuppressive abilities (82). Clinical results in patients with

breast cancer demonstrated that intraperitoneal administration of 5mg/

kg doxorubicin leads to in vivo reduction of MDSCs and subsequent

increase of CD4+ and CD8+ T cells, as well as other effector elements

including IFN-g, granzyme B and perforin (107). Besides their

immunosuppressive capabilities, anthracycline has the capacity to

elicit ICD by increasing the expression of DMAPs, including

HMGB1, HSP70, and calreticulin (72, 108). However, inducing ICD

requires higher doses than cytotoxic dose (109).

Other immunomodulatory effects of anthracyclines have

been studied, and it appears that they can induce immune
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responses in a similar manner that viral pathogens initiate

immune responses (71). Doxorubicin acts by damaging DNA

and cell membrane by generating free oxygen radicals. It

demonstrated limited clinical efficacy in NSCLC treatment

mainly due to the rapid upregulation of NF-KB signaling in

response to therapy and acquiring resistance in the host immune

system (110). Doxorubicin can also exert anti-tumor activity by

upregulating STAT1 signaling (78, 87). Epirubicin disrupts

Treg-mediated suppression of CD8+ T cells by blocking the

interaction between NF-KB subunit p65 and Foxp3 in vitro

(111). A few studies have reported potential negative outcomes

of anthracyclines. Daunorubicin has been observed to induce cell

death in both resting and activated peripheral blood cells, which

is considered a negative factor for ICI combination (112, 113).
Antimitotic agents

Anti-microtubule agents exert anti-neoplastic effects by

disrupting microtubules. The most widely used anti-

microtubule agents are Taxanes: Docetaxel and paclitaxel

(114). Taxanes are generally known for depleting neutrophils

and lymphocytes, especially neutrophils (115). Increased

neutrophil to lymphocyte ratio favors ICIs treatment (116).

CD3+, CD4+, CD8+, CD56+, and CD45RO+ cells are

lymphocytes affected by taxane administration (117), some of

which are related to ICI responses (118).

Taxanes improve the upregulation of proinflammatory

cytokines such as IL-2, IL-6, IFN-g, and GM-CSF after six

cycles of standard treatment (119). The effect of taxane agents

on the cytotoxicity of T cells is controversial. While some studies

report impaired T cell-mediated cytotoxicity upon treatment

with paclitaxel (120), others have shown increased NK and

lymphokine-activated killer cell activity (119, 121). Moreover,

both agents have immunomodulatory effects on specific immune

cell subsets (79). At certain dosages, paclitaxel and docetaxel

induce DC maturation by increasing the expression of MHC II

(122). Also, it reduces the Treg population through upregulation

of Fas receptors and increasing apoptosis while improving CD4+

and CD8+ T cells (123). Similarly, docetaxel exerts its anti-tumor

activity by selective depletion of Tregs and reduction of MDSCs

at the tumor site via activation of STAT3 signaling (56, 124).

Administration of a chemotherapeutic cocktail containing

doxorubicin and cyclophosphamide contributes to the

repolarization of the TME compartment from an M2-like

phenotype to an M1-like phenotype (125). A similar finding

was observed upon administrating paclitaxel which is reported

to act as a TLR4 agonist (62). According to preclinical data,

paclitaxel supports the upregulation of co-inhibitory ligands like

PD-L1 by tumor-infiltrating myeloid cells or malignant cells as a

consequence of type I IFN or IFN-g signaling (126, 127).

Therefore, upregulation of PD-L1 upon chemotherapy is used

as a biomarker to classify and select patients who would benefit
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from anti-PD-1 or anti-PD-L1 antibodies alone or in

combination with chemotherapy (128).

One of the concerns regarding the administration of

chemotherapeutic agents is adverse effects like neuropathic

pain and neuroinflammation. According to recent preclinical

findings, gut microbiota can modulate neuroinflammation

induced by taxanes (129, 130). Thereby, modulating gut

microbiota by using prebiotics or probiotics may enhance the

efficacy of chemotherapy and help manage the toxicities of these

agents (131).
Antimetabolites

Antimetabolites are chemotherapeutic agents with

‘cytotoxic’ effects on cells by mimicking the molecules, such as

genetic materials and enzymes that tumor cells need for growth.

Thereby, tumor cells uptake and use these antimetabolites

instead of normal cell materials (132).

Gemcitabine is an antimetabolite and pyrimidine analog

that disrupts RNA and DNA synthesis (133). It modulates

anti-cancer responses by selectively suppressing MDSCs

(134) while increasing the expression of tumor antigens and

making tumor cells more recognizable to the immune system.

In a trial on patients with pancreatic cancer, the standard

dosage of gemcitabine resulted in Treg depletion that lasted

for two weeks (135). 5FU is extensively used as an anti-cancer

drug. Since 1957, it has been important in treating cancers

like colon cancer and breast cancer (128, 129). 5-FU has a

structure similar to the pyrimidine molecules of DNA and

RNA and is a uracil analog. It interferes with nucleoside

metabolism and can be incorporated into RNA and DNA,

leading to cytotoxicity and cell death (130). A standard

dosage of 5FU exerts stimulatory effects by supporting

antigen uptake of DCs. In an in vitro study, a gastric cancer

cell line pre-treated with 5FU showed higher IL-12

production than the control. This subsequently increased

the cytotoxicity of T cells generated by DCs compared to

the control (136). Both gemcitabine and 5FU activate the

NLRP3 inflammasome in MDSCs, leading to IL-1b secretion

and ultimately immunosuppression by TH17 (137). In CT26

tumor-bearing mice, 5FU eliminated MDSCs without

significantly affecting T, B, or NK cells (138).

Methotrexate is a folate derivative that can inhibit a number

of enzymes involved in nucleotide synthesis culminating in the

suppression of inflammation and prevention of cell division.

High-dose methotrexate suppresses bone marrow, while low-

dose methotrexate has been reported with immune-stimulating

properties (139). According to an in vitro study, low-dose

methotrexate supported DC maturation by upregulating

CD40, CD80, and CD83. Consequently, DCs stimulated T cell

proliferation and ultimately exerted a proper anti-tumor

immune response (140).
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Pemetrexed is another antimetabolite that inhibits enzymes

involved in the folate pathway, including thymidylate synthase,

dihydrofolate reductase, and glycinamide ribonucleotide

formyltransferase (141–143). Despite the fact that the folate

pathway is critical for T cell activation, several studies have

reported improved T cell infiltration and antigen presentation in

tumor sites upon pemetrexed administration (144). In addition,

pemetrexed selectively activates CD45RO+ memory T cells and

IFN-g-producing NK cells (84).
Clinical trials of ICIs and
chemotherapy combination therapy

Immunotherapy, particularly ICIs that target PD-1, PD-L1, and

CTLA-4, is being widely used and becoming the predominant

treatment modality in patients resistant to conventional therapies.

ICIs generate moderate-to-severe side effects that require

immunosuppressive drugs and active clinical management in

some patients (145). Therefore, extensive research has been done

in order to develop a proper combination therapy of chemotherapy

and ICIs therapy to achieve early (with chemotherapy) and long-

lasting (with ICIs) disease control while yielding superior overall

survival and minimum risk of adverse effects.

Noteworthy, besides the augmenting effects of chemotherapy on

ICI responses, ICIs can also enhance the clinical efficacy of

chemotherapy in a reciprocal way (146). Chemotherapy increases

the infiltration of immune cells in the tumor. However, a significant

proportion of the infiltrated immune cells express ICs over time,

limiting their functions (7, 63). Hence, adding ICIs to chemotherapy

could augment the responses to chemotherapy (146).

Table 1 demonstrates trials using ICI-chemo combination

therapy. In a phase II clinical trial in NSCLC patients, KEYNOTE-

021, the efficacy of combining anti-PD-1 (pembrolizumab) with

chemotherapy was investigated. It was observed that the

combination of anti-PD-1 with carboplatin and pemetrexed

culminated in a higher response rate than chemotherapy alone

(180). However, adding immunomodulation to chemotherapy did

not lead to enhanced toxicity (180, 181). An updated analysis

confirmed improved response rate and progression-free survival of

this combination therapy which led to its accelerated FDA approval

for treatment of metastatic NSCLS patients. Interestingly, the

enhanced response rate of 80% was associated with higher tumor

PD-L1 expression (≥50%).

Subsequently, the KEYNOTE-189 phase III trial evaluated the

efficacy of adding anti-PD-L1 therapy to chemotherapy in non-

squamous NSCLC (182). Results indicated improved overall

survival and progression-free survival compared to chemotherapy

alone, independently of the tumor PD-L1 status. This culminated in

full FDA approval for the combination approach of pembrolizumab

and chemotherapy in treating NSCLC patients. Nevertheless, these

suggestions are subject to change upon approval of nivolumab and
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ipilimumab for patients with PD-L1- positive tumors (PD-L1 ≥1%)

and in combination with chemotherapy regardless of PD-L1

expression (183, 184). A phase III trial (KEYNOTE-407) is

ongoing to evaluate whether this combination can also benefit

patients with squamous NSCLC. Overall, adding ICI to

conventional chemotherapy has modified the standards for

treating metastatic lung cancer patients (182).

Despite extensive research on combining ICIs with

chemotherapy, only a few trials attempted to systematically

determine the most effective chemo-ICIs immunotherapy. The

TONIC trial is the only trial to assess the possibility of sensitizing

patients with metastatic breast cancer after administrating a PD-1

inhibitor and a chemotherapy agent. Five therapeutic options were

tested: no treatment, radiotherapy, cisplatin, cyclophosphamide, or

doxorubicin. Doxorubicin appeared to have the strongest

sensitizing effect (185). It should be noted that this was a small-

scale trial aiming to compare the efficacy of a few induction

regimens, including systemic chemotherapy or local radiotherapy

treatment in metastatic cancer (186). Thus, the results of this

particular should not be generalized to other malignancies and

interpreted as definite evidence regarding the superiority of

doxorubicin over other induction therapies. Other studies have

also used PD-1 inhibitors in combination with chemotherapy.

Camrelizumab is a high-affinity, fully humanized, anti-PD-1 IgG4

type monoclonal antibody that blocks the binding of PD-1 to its

ligands (187).

Fang et al. have published initial data for a nonrandomized

single-arm phase I trial investigating camrelizumab as a first-line

treatment for patients with metastatic nasopharyngeal carcinoma.

The study investigated gemcitabine and cisplatin combined with

camrelizumab (followed by maintenance camrelizumab). More of

interest, the combination of camrelizumab with gemcitabine and

cisplatin had good clinical efficacy with 20 (ORR 91%) out of 22

patients achieving an overall response after a median follow-up of

10.2 months (188).

In phase III clinical trial (PACIFIC trial) in patients with

unresectable NSCLC, anti-PD-L1 antibody durvalumab was

administered with chemotherapy plus radiotherapy. Improved

treatment outcomes were observed with remarkable

improvement in overall survival compared to placebo (median

time to death or development of distant metastases 28.3 versus

16.2 months) (183). The same results were achieved in a trial in

cohorts of patients with metastatic NSCLC who received anti-

PD-L1-antibody atezolizumab combined with paclitaxel,

bevacizumab, and carboplatin (184). In addition, both

durvalumab and atezolizumab were found to be efficient in

monotherapies in patients with metastatic NSCLC (189, 190).

This supports the notion that the positive therapeutic

performance of these combination therapies may be simply

related to the effect of anti-PD-1 monoclonal antibodies.

A negative point of current clinical trials that use combination

therapy is that the majority of them administer chemotherapy and

ICIs concomitantly at full doses. A study evaluated three different
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TABLE 1 Different clinical trials using combination therapy.

Tumor
Type

Chemotherapy Immunotherapy Findings Reference

All solid
tumor types

Docetaxel
Nab-paclitaxel
Gemcitabine
Vinorelbine
Irinotecan
liposomal
oxorubicin

Pembrolizumab Full dosages of chemotherapy were used. Phase 2 dose was found to be as maximum
tolerated dose. Partial responses occurred in arm 3 – 6.

(147)

Breast cancer
(Triple
negative)

Gemcitabine
Carboplatin

Pembrolizumab In two out of three patients effective immune stimulation observed (148)

Breast cancer
(Triple
negative)

Eribulin Pembrolizumab Median PFS 4.2 mo
OS 17.7 mo

(149)

Breast cancer
(Triple
negative)

Capecitabine or
Paclitaxel

Pembrolizumab Three out of nine patients showed a partial response although two patients had metastatic
disease.

(150)

Breast cancer
(Triple
negative)

Doxorubicin
Paclitaxel
Cyclophosphamide
Carboplatin

Pembrolizumab In both regimens promising anti-tumor activity observed. Addition of carboplatin resulted
in more grade 3 or 4 toxicities, mainly neutropeni.

(151)

Breast cancer
(Triple
negative)

Carboplatin Nivolumab NR (152)

Breast cancer
(Triple
negative)

Eribulin Durvalumab NR (153)

Breast cancer
(Triple
negative)

Nab-paclitaxel
Cyclophosphamide
Epirubicin

Durvalumab Combination therapy resulted in a high CR rate and induction therapy with durvalumab
seemed useful.

(154)

Breast cancer
(Triple
negative)

Nab-paclitaxel Atezolizumab Median PFS 5.5 mo
OS 14.7 mo

(155)

Breast cancer
(HER2
negative)

Paclitaxel Nivolumab NR (156)

Colon cancer 5-Fluorouracil
Oxaliplatin

Durvalumab,
Tremelimumab

Phase 1b: Safety
Phase 2: Primary: PFS Secondary: OS

NCT03202758
(phase 1b/2)

Gastric
cancer

Paclitaxel Nivolumab NR (157)

Gastric
cancer

Cisplatin
5-Fluorouracil

Pembrolizumab Effective immune stimulation observed in
Full dose administration irrespective of PD-L1 expression

(158)

Head and
neck cancer

Cisplatin Avelumab NR (159)

Mesothelioma Cisplatin
Pemetrexed

Nivolumab NR (160)

Melanoma Dacarbazine Ipilimumab ORR was 14.3% vs 5.4% for the combination therapy.
OS was 20.9 and 16.4 respectively

(161)

Melanoma Dacarbazine Ipilimumab Combination therapy resulted into a higher OS (11.2 movs. 9.1 mo). (162)

Melanoma Carboplatin
Paclitaxel
Temozolomide
Nab-paclitaxel

ICIs Patients who received chemoimmunotherapy had a median OS of 5 years (95% CI: 2-NR)
versus 1.8 years (95% CI: 0.9-2; p = 0.002) for those who received either ICIs or
chemotherapy alone, with ORR of 61% versus 17% (p = 0.001), respectively

(163, 164)

NSCLC Carboplatin
Nab-paclitaxel

Pembrolizumab Approved for first line treatment of metastatic squamous NSCLC. Improved OS (15.9 mo
vs 11.3 mo), response rates, and duration of response (PFS if 6.4 mo vs 4.8 mo) in the
group with chemoimmunotherapy compared to chemotherapy alone.

(165)

(Continued)
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TABLE 1 Continued

Tumor
Type

Chemotherapy Immunotherapy Findings Reference

NSCLC Pemetrexed
Cisplatin
Carboplatin

Pembrolizumab Pembrolizumab combination group:
OS (12 mo): 69.2% PFS: 8.8 m
Placebo combination group:
OS (12 mo): 49.4% PFS: 4.9 mo

(166)

NSCLC Pemetrexed
Carboplatin

Pembrolizumab Pembrolizumab + Pemetrexed+ Carboplatin:
ORR: 56.7% PFS: 24.0 mo
Pemetrexed/Carboplatin:
ORR: 30.2% PFS: 9.3 mo
Approved for first line treatment of metastatic non-squamous NSCLC.

(167, 168)

NSCLC Cisplatin
Gemcitabine
Pemetrexed or
cisplatin

Nivolumab NR (169)

NSCLC 1: Gemcitabine +
cisplatin
2: Pemetrexed +
cisplatin
3: Paclitaxel +
carboplatin

Nivolumab Group 1
PFS: 5.7 mo OS: 11.6 mo
Group 2
PFS: 6.8 mo OS: 19.2 mo
Group 3 (With 10 mg/kg nivolumab)
PFS: 4.8 mo OS: 14.9 mo
Group 3 (With 5 mg/kg nivolumab)
PFS: 7.1 mo
Most promising results observed in group 3

(170)

NSCLC Gemcitabine
Cisplatin
Paclitaxel
Carboplatin
Pemetrexed
Docetaxel

Nivolumab NE (171)

NSCLC Paclitaxel
Carboplatin

Ipilimumab Ipilimumab + Carboplatin + Paclitaxel:
OS: 13.5 mo
PFS: 5.6 mo
Placebo + Carboplatin + Paclitaxel:
OS: 12.4 mo
PFS: 5.6 mo

(172)

NSCLC Paclitaxel
Carboplatin

Ipilimumab Only phased regimen leads to improved PFS compared to control (173)

NSCLC Carboplatin
Bevacizumab
Paclitaxel

Atezolizumab Approved for first line treatment of metastatic non-squamous NSCLC with atezolizumab
+ bevacizumab + chemotherapy

(174)

NSCLC Carboplatin
Etoposide

Atezolizumab Atezolizumab group:
OS: 12.3 mo
PFS: 5.2 mo
Placebo group:
OS: 10.3 mo
PFS: 4.3 mo

(175)

NSCLC Carboplatin
Paclitaxel
Pemetrexed
Nab-paclitaxel

Atezolizumab Atezolizumab+ Carboplatin + Paclitaxel
ORR: 36%
PFS: 7.1 months
OS: 12.9 months
Atezolizumab + Carboplatin/Pemetrexed
ORR: 68%
PFS: 8.4 mo
OS: 18.9 mo
Atezolizumab+ Carboplatin+ Nab-paclitaxel:
ORR: 46%
PFS: 5.7 mo
OS: 17.0 mo

(176)

STS Trabectidin Nivolumab Synergistic and safe effect in paired administration of trabectedin and nivolumab (177)

(Continued)
Frontiers in O
ncology
 f10
 rontiersin.org

https://doi.org/10.3389/fonc.2022.939249
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.939249
regimens using the combination of ipilimumab and gemcitabine in

non-immunogenic mouse models (191). Gemcitabine was used 15

days prior to anti-CTLA-4, concurrently, and three days after anti-

CTLA-4. The results showed synergistic effects in the concomitant

regimen and removing the first dosage of gemcitabine significantly

reduced anti-tumor effects. Similar results were found in another in

vivo study that combined cyclophosphamide and anti-CTLA-4

(192). Administration of cyclophosphamide one day prior to anti-

CTLA-4 improved immunological anti-tumor responses. However,

when the orders were reversed, the anti-tumor effects of anti-CTLA-

4 were decreased, and CD8+ T cells underwent massive apoptosis.

These findings prove that chemotherapy accentuates the anti-tumor

effects of ICI therapy. Nevertheless, only a few studies have

addressed the optimal dosage or sequence of administration of

chemotherapeutic agents. Preclinical data shows that these

parameters may affect treatment outcomes.

It has been reported that the induction phase of chemotherapy

may optimize TME for the following ICIs therapy. A study in

metastatic triple-negative breast cancer patients evaluated induction

therapy with different types of chemotherapy. In the induction

phase, low dosages of cisplatin, doxorubicin, and cyclophosphamide

were administered for twoweeks. In a cohort receiving this regimen,

the response rate appeared to be higher than nivolumab alone (193).

By far, favorable response rates have been observed upon induction

of doxorubicin and cisplatin. Biomarker analysis also supported the

notion that treatment with these two agents culminates in the

upregulation of immunological pathways related to anti-PD-1,

which ultimately facilitates the nivolumab anti-tumor effect. In

addition, inducing these two compounds increased TILs in

TME (194).

Another phase II clinical trial investigating the performance

of ipilimumab with paclitaxel and carboplatin was conducted in

NSCLC patients. Three different regimens were evaluated:

Administration of chemotherapy prior to ipilimumab,

concomitant regimen, and the control group receiving placebo

and chemotherapy. Similar to previous trials, results indicated

the importance of the chemotherapy induction phase (173).

Thus far, most of these trials provided inconclusive preclinical

evidence regarding the optimal dosage and sequel of

administration. Therefore, a large multi-center trial is needed
Frontiers in Oncology 11
to determine the optimal combinations of ICIs and

immunogenic chemotherapy for cancer treatment.
Dose and time optimization for
ICIs and chemotherapy
combination therapy

It should be noted that chemotherapy might impose

immunosuppressive effects based on dose. High doses of

cytotoxic chemotherapy have myelosuppression effects, leading

to immunosuppression and ICI resistance (146). Moreover,

high-dose chemotherapy causes off-target effects and toxicity.

However, it has been implied that the doses for induction of

immunologic cell death are generally higher than the cytotoxic

doses of chemotherapy (109). So, optimum doses of

chemotherapy are required to enhance the ICIs response.

Interestingly, a study showed that daily prescription of 100 mg

oral cyclophosphamide decreased Treg proportion without

significant effects on other immune cells. However, doubling

this dose depleted all lymphocytes (97). This study concluded

that the metronomic doses of cyclophosphamide could decrease

Tregs and spare effector T and NK cells (97).

Besides the treatment dose, treatment time is also critical in

achieving the best outcome. It has been reported that a single

standard dose of gemtacibine increased the infiltration of CD8+ T

cells into the tumor and upregulated the PD-L1 expression in

pancreatic and ovarian tumors (127, 135). However, this effect is

observed within the first week and not in the second week after

treatment (127). So, administration of ICIs within the first week of

treatment with gemtacibine might result in favorable responses.

Accordingly, similar studies on mice showed that ipilimumab had

a synergistic effect with gemtacibine or cyclophosphamide only

when administered concomitantly (191, 192). Interestingly, anti-

tumor immune responses are yielded when chemotherapy is

administered one day before the ICI. However, reversing the

order caused significant apoptosis in CD8+ T cells and reduced

the ICIs effects (192). These findings indicate the necessitate to

optimize the dose and timing of treatment.
TABLE 1 Continued

Tumor
Type

Chemotherapy Immunotherapy Findings Reference

Urothelial cell
carcinoma

Gemcitabine
Cisplatin

Ipilimumab No changes was observed in composition and frequency of peripheral immune cells upon
gemcitabine administration. Expansion of CD4+ cells occurred after combination therapy.

(178)

Urothelial cell
cancer

Docetaxel or
gemcitabine

Pembrolizumab Arm A
ORR: 50%, DCR: 67%, PFS: 5.7 mo
Arm B:
ORR: 33%, DCR: 50%, PFS: 3.7 mo

(179)
f

CR, complete response; DCR, disease control rate; ICIs, immune checkpoint inhibitors; MTD, maximum tolerated dose; NSCLC, non small cell lung cancer; ORR, objective response rate;
OS, overall survival; PFS, progression free survival; STS, soft tissue sarcoma; mo, months; NR, not reached; NE, not evaluable;
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Patient-derived organoid (PDO) platforms are promising

models to optimize the dose and time of treatment ex vivo (195).

Advanced PDOs, such as air-liquid interface (ALI) models that

contain both tumor and immune cells in a 3D interaction

resembling tumor milieu, can be used in further investigations

to determine the optimum dose and time and also the ideal

combination of chemo-immunotherapy (196, 197).
Combination of chemotherapy with
other immunotherapies

According to the systemic and local changes that chemotherapy

makes, it can synergize the effects of many immunotherapies.

Adoptive cell therapy is an immunotherapeutic approach that

uses the patient’s or another donor’s immune cells to fight cancer

(18). Tumor-infiltrating lymphocytes (TILs) are immune cells

infiltrating into the TME (17). The frequency of TILs in the TME

is a prognostic factor in many tumors (198). Isolation, expansion,

activation, and re-administration of TILs to the patients is an old

way of immunotherapy in immunogenic tumors (17). However, in

non-immunogenic or cold tumors with a low frequency of TILs,

TIL therapy might not significantly improve the survival (17). In

this condition, chemotherapy might heat up the TME, leading to a

higher infiltration rate of TILs (199). So, it can potentiate TIL

therapy in cold tumors (199). More recently, CAR-T cell therapy

has been introduced and used as a promising anti-tumor modality

(200). CAR-T cells are genetically modified T cells that harbor the

chimeric antigen receptors comprising the extracellular domain of B

cell receptor (BCR) and signaling domains of T cell receptors

(TCRs) and co-stimulatory receptors (200). They can be activated

independent of MHC and produce many cytokines or release

cytotoxic molecules (200). Chemotherapy can enhance the

susceptibility of tumor cells to cytotoxic mediators of T cells such

as granzyme B (201). In the mouse model of breast cancer,

combining doxorubicin and T cell therapy had synergistic effects

beyond the effects of each treatment alone (202). Further clinical

trials in the era of combining chemotherapy and adoptive cell

therapy are warranted.

Chemotherapy is also beneficial for improving the effects of

cancer vaccines, especially in cold tumors (203–205). In a mouse

model of melanoma (B16), it has been shown that the addition of

ICI (anti-PD-1) to the cancer peptide vaccine did not further

inhibit the tumor growth and was not able to improve the

survival (203). However, combining metronomic chemotherapy

with the vaccine resulted in tumor growth inhibition in half of

the mice (203). Notably, adding ICI to this combination delayed

tumor growth in all mice and inhibited tumor growth in two-

thirds of mice (203). This synergistic effect of chemotherapy with

cancer vaccines might be through the decrease of Tregs and

inhibition of tumor angiogenesis (204). These findings suggest

that multi-aspect combination therapy should be employed in

advanced and resistant tumors.
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Oncolytic viruses (OVs) are wild-type or engineered viruses

with anti-tumor capabilities that is able to impose direct

cytotoxic or heat up the TME via upregulation of the

inflammatory responses (206). Similar to chemotherapy, OVs

can induce ICD, releasing neoantigens and inflammatory

mediators that potentiate the immunotherapies (207).

However, chemotherapy and OVs can be combined to

maximize the inflammatory and cytotoxic responses against

tumor cells (207). There are many clinical trials evaluating the

safety and efficacy of chemo-OV combination therapy that are

comprehensively reviewed elsewhere (207).

Chemotherapy can be combined with many other

immunotherapies and targeted therapies, such as monoclonal

antibodies, bispecific antibodies, nanobodies, DC vaccines, NK/

CAR-NK cells, etc., which their safety and efficacy of these

combinations are under investigation.
Perspectives and conclusions

According to several clinical trials, chemotherapeutic agents

can exert immunostimulatory effects by activating effector cells

and/or inhibiting immunosuppressive cells or elevating

immunogenicity and enhancing T-cell infiltration. However,

more research is required to achieve the best and most

efficacious combination therapy. In order to do so, it is

suggested that future researches focus on the following

suggestions: 1. Preclinical studies that evaluate drug efficacy

should be compatible as much as possible with the clinical

situation. Thereby, results obtained from animal models can

also be utilized for human malignancies. 2. Until now, most

studies assessed the immunomodulatory effects of chemotherapy

in peripheral blood and not TME. Further studies investigating

the effect of chemotherapy on TME are required. 3. In addition

to chemotherapy, ICD can also be induced as a result of

pathological conditions. Therefore, it is crucial to differentiate

between chemotherapy-induced ICD and the type of ICD caused

by normal physiological processes and other pathological

conditions. 4. Identifying tumor-associated markers specific to

each tumor and each cancer patient may help design better

combination therapies in the future. 5. Furthermore,

understanding the toxicity patterns of these treatment

regimens in preclinical studies would provide us with more

knowledge of how to prevent and manage them in clinical

studies. In conclusion, various clinical and preclinical findings

indicate that combination therapy can result in a more efficient,

long-lasting anti-tumor immune response.
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