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Abstract: High-flux X-ray measurements with high-energy resolution and high throughput require
the mitigation of pile-up and dead time effects. The reduction of the time width of the shaped pulses
is a key approach, taking into account the distortions from the ballistic deficit, non-linearity, and time
instabilities. In this work, we will present the performance of cadmium–zinc–telluride (CdZnTe or
CZT) pixel detectors equipped with digital shapers faster than the preamplifier peaking times (ballistic
deficit pulse processing). The effects on energy resolution, throughput, energy-linearity, time stability,
charge sharing, and pile-up are shown. The results highlight the absence of time instabilities and
high-energy resolution (<4% FWHM at 122 keV) when ballistic deficit pulse processing (dead time
of 90 ns) was used in CZT pixel detectors. These activities are in the framework of an international
collaboration on the development of spectroscopic imagers for medical applications (mammography,
computed tomography) and non-destructive testing in the food industry.

Keywords: CZT detectors; CdTe detectors; X-ray and gamma ray detectors

1. Introduction

Photon counting detectors with energy resolving capabilities, typically termed en-
ergy resolved photon counting (ERPC) detectors, have been recently developed for high-
flux spectroscopic X-ray imaging, with a strong impact in several fields, from diagnostic
medicine to synchrotron applications and non-destructive testing (NDT) in the food indus-
try [1–9]. Direct semiconductors represent the key detector materials, with particular em-
phasis on high-Z and wide-bandgap compound semiconductors [10–14] for high-resolution
performance near room-temperature conditions. Currently, cadmium telluride (CdTe)
and cadmium–zinc–telluride (CdZnTe or CZT) gave the best performances, in terms of
crystal growth and device technology [1–11]. In particular, unsurpassed performance, in
terms of both detection efficiency (>90%) and energy resolution (<1.5% FWHM at 60 keV),
is obtained with thin CdTe pixel detectors (thickness < 1 mm) with Schottky electrical
contacts up to 70 keV [15–18]. However, the use of thicker Schottky CdTe detectors for
high energies is limited by the presence of time instabilities due to the well-known bias-
induced polarization phenomena [6,19–22]. At high X-ray energies (>100 keV), interesting
energy resolutions (<4% FWHM at 122 keV) [23–25] are obtained with thick CdTe/CZT
pixel detectors with quasi-ohmic electrical contacts that are immune to the bias-induced
polarization effects.

When high-energy resolution and high output counting rates (throughput) are re-
quired in high-flux X-ray measurements, pile-up and dead time effects must be mitigated.
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This can be obtained by using detectors with short charge collection times and short peak-
ing times from both the charge sensitive preamplifiers (CSPs) and the shaping amplifiers.
The charge collection time (TD) of a detector is fixed by the maximum electric field between
the electrodes, the leakage current, the charge transport properties of the electrons/holes,
and the detector thickness, selected in agreement with the required detection efficiency.
The peaking time (TCSP) of the pulses from the CSPs is slightly greater than the TD; the
result of time integration, due to capacitive effects and gain constraints, often produces
a TCSP greater than TD. If the energy losses due to the ballistic deficit [26–28] are to be
avoided, the golden rule for the shaping amplifiers is to produce pulses with peaking times
(TS) greater than the peaking times TCSP of the CSP output pulses. Ballistic deficit arises
when the peaking times (TS) of the shaped pulses become comparable with the TCSP, caus-
ing severe energy losses and fluctuations. Therefore, the optimum TS is always selected
greater than the TCSP, looking for the best trade-off between the energy resolution and dead
time/pile-up effects.

Recently, 3-mm thick cadmium telluride (CdTe) detection systems, using digital
shapers faster than the peaking times TCSP of the CSP output pulses (ballistic deficit pulse
processing), were proposed for high throughput X-ray measurements up to 150 keV [29–31].
The systems allow X-ray spectra measurements at high fluxes, with a dead time less than
100 ns and an energy resolution of 8% FWHM at 122 keV. However, the too-fast shaping
produces time instabilities in the measured X-ray spectra, on the contrary to what happens
when the proper slow shaping is used. These critical issues arise from small changes to
the electric field lines with time in quasi-ohmic CdTe detectors [29], producing amplitude
variations only on the first part of the leading edge of the CSP output pulses. Because
the last part of the leading edge, up to the full amplitude of the pulses, is not influenced
by these electric field changes, the time instabilities are not visible when the proper slow
shaping is used.

In this scenario, it would be interesting to investigate the presence of any time instabil-
ities in CZT pixel detectors working in the ballistic deficit regime.

In this work, we present the performance of several CZT pixel detectors working in
the ballistic deficit regime. The effects on energy resolution, throughput, energy-linearity,
time-stability, charge sharing, and pile-up are shown. The key results highlight the absence
of time instabilities and high-energy resolution when ballistic deficit pulse processing is
used in CZT pixel detectors.

2. Materials and Methods
2.1. The CZT Pixel Detectors

The measurements involved CZT pixel detectors with quasi-ohmic electrical contacts
(Au, Pt) characterized by different CZT crystals, with thicknesses between 1 and 3 mm.
The 1-mm thick CZT detector was based on a boron oxide encapsulated vertical Bridgman
(B-VB) CZT crystal, developed at IMEM-CNR of Parma with the collaboration of the
due2lab company [32–34]. CZT detectors with gold electroless contacts are routinely fabri-
cated at IMEM-CNR and are characterized by low leakage currents at room temperature
(<1 nA cm−2 at 1000 V cm−1) [33–35]. In particular, 4% AuCl3 methanol solution was used
for the cathode electrodes, while the anode patterns were obtained by photolithography
and the passivation procedure was performed with an aqueous solution of H2O2 at 10%
for 5 min. The thick detectors were based on travelling-heater-method THM-CZT crystals
provided by Redlen Technologies (Saanichton, BC, Canada) [36–39]. In particular, besides
the standard or low flux LF-THM CZT crystals (with enhanced electron charge transport
properties), we also used high-flux HF-THM CZT crystals [40–43], recently fabricated
by Redlen and characterized by enhanced hole charge transport properties to minimize
high-flux radiation-induced polarization effects [44–46]. The details of the detectors (CZT
crystals and electrical contacts) are better highlighted in Table 1. As shown in Figure 1, all
detectors were characterized by four arrays of 3 × 3 pixels with pixel pitches of 500 µm
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and 250 µm and an inter-pixel gap of 50 µm; the cathode is a planar electrode covering the
full crystal area.

Table 1. The key characteristics of the CZT pixel detectors.

CZT Crystals
Mobility-Lifetime

Products
µτ (cm2/V)

Electrical Contacts

B-VB CZT
(4.25 × 3.25 × 1 mm3)

IMEM-CNR Parma (Parma, Italy) 1

due2lab s.r.l. (Scandiano, Italy) 1

µeτe 0.6–0.7 × 10−3

µhτh not measured

gold (Au) electroless
quasi-ohmic

IMEM-CNR Parma (Italy) 1

due2lab s.r.l. (Italy) 1

HF-CZT
(4.25 × 3.25 × 2 mm3)
Redlen Technologies

(Canada) 1

µeτe 2–3 × 10−3

µhτh 1–2 × 10−4

platinum (Pt) quasi-ohmic
Redlen Technologies

(Canada) 1

LF-CZT
(4.25 × 3.25 × 3 mm3)
Redlen Technologies

(Canada) 1

µeτe 1–3 × 10−2

µhτh 2–3 × 10−5

gold (Au) electroless
quasi-ohmic

IMEM-CNR Parma (Italy) 1

due2lab s.r.l. (Italy) 1

1 The manufacturers.
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Figure 1. The anode layout of the three CZT pixel detectors. (a) The 1-mm thick B-VB CZT pixel 
detector, (b) the 2-mm thick HF-CZT pixel detector, and (c) the 3-mm LF-CZT pixel detector. The 
different colours highlight the related differences in both the CZT crystals and electrical contacts. 

  

Figure 1. The anode layout of the three CZT pixel detectors. (a) The 1-mm thick B-VB CZT pixel
detector, (b) the 2-mm thick HF-CZT pixel detector, and (c) the 3-mm LF-CZT pixel detector. The
different colours highlight the related differences in both the CZT crystals and electrical contacts.

2.2. The Preamplifiers and the Digital Pulse Processing Electronics

Figure 2 shows a schematic view of the readout electronics used for all CZT
pixel detectors.

The front-end electronics was represented by charge-sensitive preamplifiers (CSPs)
without pulse shaping. They were based on a low-noise application specific integrated
circuit (PIXIE ASIC) developed at the Rutherford Appleton Laboratory RAL (Didcot,
UK) [47]. The PIXIE ASIC was equipped with 36 CSPs arranged in four arrays of 3 × 3 pads,
flip-chip bonded directly to the pixels of the detectors (Figure 3).
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Figure 2. Schematic view of the readout electronic circuit architecture. On the left, there is the
charge-sensitive preamplifiers of the PIXIE ASIC [47], where the CZT pixels were flip-chip bonded;
the pulse shaping and the pulse height analysis was performed by custom digital pulse processing
electronics [48–50] controlled through a PC.
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Figure 3. The 3-mm LF-CZT pixel detector flip-chip bonded on the PIXIE ASIC. A bias voltage
of −1800 V was supplied by a gold wire glued on the planar cathode electrode, clearly visible in
the picture.

Each array can be selected by the user providing, simultaneously, nine preamplifier
outputs, with no pulse shaping processing. The electronic noise is very low, i.e., with an
equivalent noise charge (ENC) less than 80 electrons. In this work, we only used the pixels
of the 500-µm arrays.

The pulse shaping processing of the CSP output pulses was performed through a
digital approach, using 16-channel digital electronics, developed at DiFC of the University
of Palermo (Palermo, Italy) [48–50]. The digital electronics were based on commercial
digitizers (DT5724, 16-bit, 100 MS/s, CAEN SpA, Italy; https://www.caen.it, accessed on
26 April 2022), where a dedicated firmware was uploaded [48–50]. The potentialities of
the digital pulse processing approach are now widely recognized [51–53]; in our case, the
flexibility of this approach, due to the possibility of using different pulse shaping features,
was a key point for our investigation.

For each CSP output channel, the digital system performed on-line pulse detection,
time-tag triggering, and pulse height analysis. The details of the pulse shaping operations
and the outputs from each CSP output channel are described below:

(i) Pulse detection and arrival time estimation; the CSP output waveforms were shaped
using the classical single delay line (SDL) shaping technique [26], acting as the classical
differentiation; the trigger time was generated and time-stamped through the ARC
(amplitude and rise time compensation) timing marker (at the leading edge of the
SDL pulses), able to reduce the distortions from time jitters and amplitude and rise
time walks [26];

https://www.caen.it
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(ii) Pulse height analysis (energy estimation); the detected CSP output pulses with the
related arrival times were shaped with a classical trapezoidal filter [26]. We used
trapezoidal-shaped pulses with peaking times (TS) ranging from 30 ns to 1000 ns.

Further details of the digital electronics are reported in our previous works [48–50].

2.3. Experimental Procedures

The measurements were performed at the laboratory of ionizing radiation detectors
of the University of Palermo (Italy). All detectors were irradiated through the cathode
electrode with uncollimated radiation sources (109Cd, 241Am and 57Co sources). High-flux
measurements with X-ray tubes were conducted at the Livio Scarsi X-ray facility of the
University of Palermo [54]. We used X-rays (main fluorescent lines at 17.5 and 19.6 keV)
from a Mo target typical of mammographic X-ray beams. An overview of the experimental
setup used is shown in Figure 4. All measurements were performed at room temperature
(T = 20 ◦C).
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Figure 4. An overview of the experimental setup used for high-flux X-ray measurements at the Livio
Scarsi X-ray facility. The CZT pixel detectors (enclosed in the grey rectangular box, together with
the preamplifier PIXIE ASIC) were irradiated with Mo target X-rays (the tube on the right side). The
red boxes, on the bottom right side, are the digitizers of the digital pulse processing electronics. The
detector box was mounted on a micro-translator system, which can be moved in x, y, and z directions
with a precision of 10 µm.

3. Ballistic Deficit Pulse Processing in CZT Pixel Detectors: Measurements and Results

In this section, we will show the effects of the ballistic deficit pulse processing approach
on the energy resolution, throughput, energy-linearity, time-stability, charge sharing, and
pile-up in the CZT pixel detectors. A comparison with the results obtained from an energy
resolution pulse processing, optimized for the best energy resolution, will be also presented.

3.1. Energy Resolution and Throughput

The selection of the optimum shaping peaking time value (TS) is a key procedure
for all radiation detectors [26]. Typically, the optimum TS value is chosen looking for the
best energy resolution (energy resolution pulse processing). Figure 5 shows the energy
resolution (FWHM) values at 59.5 keV measured at different TS values. All detectors were
characterized by optimum TS values ranging from 300 ns to 400 ns; these values were
always greater than the CSP peaking time TCSP (green dashed vertical lines), due to the
minimization of the ballistic deficit fluctuations. As it is well-known in the literature [55],
the optimum TS values also follow the equilibrium between two main electronic noise
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components. At high TS values, the parallel white noise (shot noise mainly due to the
leakage current of the detectors) dominated the energy resolution, while at low TS values,
the series white noise (thermal noise due to the drain current of preamplifier input FETs)
was the main contributor. In our measurements, the degradation of the energy resolution
at TS < TCSP was due to both the ballistic deficit and series noise effects.
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Figure 5. Measurement of the energy resolution (FWHM) at 59.5 keV vs. the peaking time of the
shaped pulses. The results for the (a) B-VB CZT pixel detector, (b) HF-CZT pixel detector, and
(c) LF-CZT pixel detector. The green dashed vertical lines represent the mean value of the peaking
times TCSP of the CSP output pulses.

In order to increase the throughput of the system (i.e., the ratio between the output and
the input counting rate), the TS should be chosen as low as possible, taking into account the
degradation of the energy resolution. In Figure 6, we present the performance of the 2-mm
HF-CZT pixel detector, in terms of throughput and energy resolution (241Am source).

We used two different pulse shaping set-ups: the first with a TS of 30 ns selected for
high throughput (ballistic deficit pulse processing), the second with a TS of 400 ns for the
best energy resolution (energy resolution pulse processing). The mean value of the time
widths of the shaped pulses over the detection threshold was 90 ns and 850 ns for TS of
30 ns and 400 ns, respectively. This time width was a dead time for the system and can be
modelled as paralyzable dead time [26,56]. If a second pulse arrives while the first pulse
is still above the detection threshold, the second pulse overlays the first, and extends the
dead time by its width from its arrival time. Because the system counts threshold crossings,
it will count only the first pulse. In agreement with the paralyzable dead time model, we
calculated the throughput curves at the two-pulse processing set-up. The ballistic deficit
pulse processing (dead time of 90 ns) ensured a maximum output counting rate (OCR)
of 4.1 Mcps (Figure 6c), while the energy resolution pulse processing was of 0.43 Mcps
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(Figure 6d). Further energy spectra using the ballistic deficit pulse processing are shown
in Figure 7.
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We used two different pulse shaping set-ups: the first with a TS of 30 ns selected for 
high throughput (ballistic deficit pulse processing), the second with a TS of 400 ns for the 
best energy resolution (energy resolution pulse processing). The mean value of the time 

Figure 6. The preamplifier output pulses (black lines) and the shaped output pulses (red lines) with
peaking times TS of (a) 30 ns (ballistic deficit pulse processing) and (b) 400 ns (energy resolution pulse
processing). The calculated throughput curves, i.e., the output counting rate (OCR) vs. the input
counting rate (ICR), with TS of (c) 30 ns and (d) 400 ns. The throughput curves were calculated
considering paralyzable dead times (the full-time width of the shaped pulses over the threshold) of
90 ns and 850 ns for TS = 30 ns and 400 ns, respectively. The measured 241Am energy spectra with TS

equal to (e) 30 ns and (f) 400 ns. To optimize the binning of the pulse heights of the shaped pulses at
TS of 30 ns, we used an amplitude gain equal to 2.
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Figure 7. Measured (a,c,e) 109Cd and (b,d,f) 57Co energy spectra for the three CZT pixel detectors.
All spectra were obtained using the ballistic deficit pulse processing with a peaking time TS of 30 ns
(dead time of 90 ns).

Excellent energy resolution of 3.6% FWHM at 122 keV was obtained with the
3-mm CZT pixel detector. This was an interesting result when compared with the en-
ergy resolution of about 8% at 122 keV for the 3-mm CdTe pixel detectors using similar
ballistic deficit pulse processing [29].

3.2. Energy Linearity and Time Stability

The linearity of the ballistic deficit pulse processing with energy was investigated. In
particular, the linearity of the pulse heights with the photon energy was experimentally
verified for all detectors, as shown in Figure 8.
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Figure 8. The photon energy vs. the pulse height (channels) obtained using the ballistic deficit pulse
processing approach. The linearity with energy was well verified.

As discussed in the introduction, CdTe detectors with quasi-ohmic electrical contacts,
when working in ballistic deficit regimes, suffer from time instabilities due to the temporal
changes of the electric field lines [29]. This was investigated in our detectors working at the
same electric field set-up (3333 V/cm) used in CdTe detectors. In particular, Figure 9 shows
the 57Co energy spectra measured within a time window of one hour. The time stability
was well verified, demonstrating the more stable electrical contacts (Au, Pt) and electric
field in quasi-ohmic CZT pixel detectors. This also highlighted the absence of temporal
changes of the space charge in CZT materials.
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Figure 9. The energy spectra measured with the (a) B-VB CZT pixel detector and (b) LF-CZT pixel
detector within a time window of one hour. For each time window of one hour, we measured
six energy spectra with an acquisition time of ten minutes. 57Co sources with different activity were
used. The time stability was verified.

3.3. Charge Sharing

The effects of the ballistic deficit pulse processing on the charge sharing measurements
were also investigated. Typically, charge sharing is strongly present in sub-millimetre CZT
pixel detectors. The percentage of charge sharing events is very high, of about 50–60%
for the pixels with 500 µm pitches [23,48]. As it is well known, the energy of the shared
events can be recovered by summing their energies, measured in temporal coincidence.
However, the energy recovered after charge sharing addition (CSA) is often characterized
by deficits, due to the presence of charge losses at the inter-pixel gap [57–65]. In our
case, we investigated the effects of ballistic deficit pulse processing on these charge losses.
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Figure 10 shows the scatter plots of the summed energy ECSA versus the sharing ratio
R. The energy ECSA = (EPixel5 + EPixel8) was the sum of the energies of two coincidence
events between two adjacent pixels, i.e., after CSA, while the charge sharing ratio R was
calculated from the ratio between the energy of the two coincidence events, as follows:
R = (EPixel5 − EPixel8)/(EPixel5 + EPixel5). R is typically used to provide information about
the interaction position of the shared events within the inter-pixel gap.
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Figure 10. Two-dimensional (2D) scatter plot of the summed energy of the coincidence events (mul-
tiplicity m = 2) between pixel no. 5 and pixel no. 8 after, the charge sharing addition (CSA), versus 
the sharing ratio R. (a,c) Ballistic deficit pulse processing; (b,d) energy resolution pulse processing. 
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The plots on the left side were obtained using ballistic deficit pulse processing; on the 
right side, we used energy resolution pulse processing. Despite the poor energy distribu-
tion of the shared events (poor energy resolution), the ballistic deficit pulse processing did 

Figure 10. Two-dimensional (2D) scatter plot of the summed energy of the coincidence events
(multiplicity m = 2) between pixel no. 5 and pixel no. 8 after, the charge sharing addition (CSA),
versus the sharing ratio R. (a,c) Ballistic deficit pulse processing; (b,d) energy resolution pulse
processing. The blue dashed lines represent the true energy.

The plots on the left side were obtained using ballistic deficit pulse processing; on the
right side, we used energy resolution pulse processing. Despite the poor energy distribution
of the shared events (poor energy resolution), the ballistic deficit pulse processing did not
increase the charge losses after CSA. This result is also shown in Figure 11, where the
energy spectra after CSA (black lines) are presented. The charge losses (3 keV at 59.5 keV)
were the same for both shaping processing approaches, even if the energy resolution of the
energy spectra after CSA was poorer for the ballistic deficit pulse processing. Moreover, the
correction of these charge losses was successfully performed for both processing approaches
(red lines) through the application of a charge sharing correction (CSC) technique developed
by our group and presented in our previous works [23,63]. The best energy resolution of
the corrected energy spectra after CSC (red lines) was obtained with energy resolution
pulse processing.
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3.4. High Flux Performance

The goal of using ballistic deficit pulse processing was to obtain high throughput
energy spectra with low pile-up effects and an energy resolution as high as possible. To
investigate on the potentialities of this approach at high fluxes, we measured Mo-target
X-ray spectra (with fluorescent X-ray lines at 17.5 keV and 19.6 keV) at different rates, up to
a maximum saturation rate of the CSPs (600 kcps). The energy spectra, measured using
both ballistic deficit and energy resolution pulse processing, are shown in Figure 12. At
high rates (560 kcps), the ballistic deficit pulse processing gave the best results: similar
energy resolution with the energy resolution pulse processing, high throughput (95%), and
low pile-up effects in the spectra.
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On the contrary, the effects of pile-up are visible when the energy resolution pulse
processing was used, with the presence of more background events beyond the 28-keV
end-point energy of the spectrum (blue line of Figure 12b).

4. Discussion

The measurements using the ballistic deficit pulse processing (shaped pulses with
time widths of 90 ns) in CZT pixel detectors highlighted the following key results:
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- All detectors showed good energy resolutions of about 4% FWHM at 122 keV, in
particular when compared with the energy resolution of about 8% obtained with
3-mm CdTe pixel detectors using similar ballistic deficit pulse processing [29]; this is
due to the high bias voltage operation of the detectors (>5000 V/cm) which minimizes
the changes of the charge collection times and, therefore, the effects of ballistic deficit;
moreover, the series noise, very important in this shaping set-up, was also mitigated
by the low noise front-end electronics (PIXIE ASICs).

- The linearity of the pulse heights with the energy was verified in all CZT detectors.
- We observed the absence of time instabilities, typically present in CdTe pixel detectors

with quasi-ohmic electrical contacts [29]; this demonstrated the time stability of the
electric field lines in the quasi-ohmic (Au, Pt) CZT detectors, highlighting the absence
of space charge changes with time in CZT materials.

- The ballistic deficit pulse processing did not increase the charge losses after the charge
sharing addition (CSA) and the energy recovery was successfully applied.

- At high rates (560 kcps), we measured energy spectra with very high throughput
(95%), low pile-up effects, and a similar energy resolution obtained with the energy
resolution pulse processing approach; potentially, the dead time of 90 ns, modelled
as paralyzable dead time, can ensure a maximum output counting rate (OCR) of
4.1 Mcps.

5. Conclusions

In this work, we presented the potentialities of a ballistic deficit pulse processing
approach for high-flux X-ray measurements with CZT pixel detectors. This approach
consists of using shaped pulses with peaking times less than the peaking times of the
preamplifier pulses. Despite the long peaking times of the preamplifiers (150–170 ns), we
used digital shaped pulses with peaking times of 30 ns and a dead time less than 90 ns.
Interesting energy resolution (4% at 122 keV) was obtained in various CZT pixel detectors,
characterized by different thicknesses, crystals, and electrical contacts. The time instabilities,
typically present in CdTe detectors, were not observed, demonstrating the absence of space
charge changes with time in CZT materials.

Future activities will be focused on the use of new digitizers with a higher sampling
frequency (>100 MHz) for performance enhancements in ballistic deficit pulse processing.
We believe that the high sampling frequency can improve the pulse height analysis and the
energy resolution of the detection systems.
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