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Abstract
In contrast to established zebrafish gene annotations, the question of sex determination has still not been conclusively clarified 
for developing zebrafish, Danio rerio, larvae, 28 dpf or earlier. Recent studies indicate polygenic sex determination (PSD), 
with the genes being distributed throughout the genome. Early genetic markers of sex in zebrafish help unravel co-founding 
sex-related differences to apply to human health and environmental toxicity studies. A qPCR-based method was developed 
for six genes: cytochrome P450, family 17, subfamily A, polypeptide 1 (cyp17a1); cytochrome P450, family 19, subfam-
ily A, polypeptide 1a (cyp19a1a); cytochrome P450, family 19, subfamily A, polypeptides 1b (cyp19a1b); vitellogenin 1 
(vtg1); nuclear receptor subfamily 0, group B, member 1 (nr0b1), sry (sex-determining region Y)-box 9b (sox9b) and actin, 
beta 1 (actb1), the reference gene. Sry-box 9a (Sox9a), insulin-like growth factor 3 (igf3) and double sex and mab-3 related 
transcription factor 1 (dmrt1), which are also known to be associated with sex determination, were used in gene expression 
tests. Additionally, Next-Generation-Sequencing (NGS) sequenced the genome of two adult female and male and two juve-
niles. PCR analysis of adult zebrafish revealed sex-specific expression of cyp17a1, cyp19a1a, vtg1, igf3 and dmrt1, the first 
four strongly expressed in female zebrafish and the last one highly expressed in male conspecifics. From NGS, nine female 
and four male-fated genes were selected as novel for assessing zebrafish sex, 28 dpf. Differences in transcriptomes allowed 
allocation of sex-specific genes also expressed in juvenile zebrafish.

Keywords Sex determination · Genes · Zebrafish · Juvenile expression

Introduction

Fish embryos are an attractive model for the risk assessment 
of chemicals and for the investigation of effects of endocrine 
disrupting substances (Kazeto et al. 2004; Yu et al. 2018) 
and drug discovery (Vaz et al. 2018). Toxicological studies 
which test acute toxicity by means of Fish Embryo Acute 
Test (FET) (OECD 2013) or Early-life Stage Toxicity Tests 
(ELS Test) (OECD 2010) often use zebrafish embryos as 
indicators of endpoints (Kazeto et al. 2004; Yu et al. 2018). 
At this early stage, the embryos cannot be morphologically 

sexed because during the test period sex differentiation is 
not yet complete (Kimmel et al. 1995). Even in zebrafish 
larvae, 96 h post fertilisation (hpf), many genes are insuf-
ficiently expressed, making genetic sex determination diffi-
cult. However, the sex of the individual embryo could likely 
be a confounding factor masking the underlying impact of 
a test. The make-up of the individuals in a chosen popula-
tion is random and contains an unknown mix of both males 
and females. Consideration of this mixture could therefore 
be important, as studies have shown gender-specific differ-
ences in zebrafish and if not taken into consideration tests 
could have misleading results (Kling et al. 2008; Dlugos 
et al. 2011). Only tests such as the 21-day fish assay (OECD 
2009), which use sexually mature zebrafish, can take these 
gender-specific effects into account because the zebrafish are 
at a stage at which the sex can be determined visually. ELS 
tests are a replacement for adult fish tests because of ani-
mal welfare issues (Nagel 2002) so it is increasingly import 
to identify early gene markers of sex. Therefore, establish-
ment of early sex-determining genes in zebrafish is vital 
to ensure that discrepancies in the resulting impact can be 
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distinguished, so that confounding factors are revealed and 
the issue of sex-related difference is evident.

It is known from human drug development and use of 
medication that there are differences in sensitivity between 
male and females (Soldin and Mattison 2009; Whitley and 
Lindsey 2009; Parekh et al. 2011; NIDA National Institute 
on Drug Abuse 2017). There are also varying effects of trials 
on zebrafish of different sex (Brian et al. 2005; Tilton et al. 
2008; Balik-Meisner et al. 2018) which makes it difficult to 
interpret data if you use the early life stage zebrafish model 
for drug discovery and toxicity testing for general health 
and environmental benefits. There are few studies, which 
have revealed early identifiable genes for sex determination 
in zebrafish (Liew 2013; Kossack and Draper 2016). This 
highlights the need for identification of novel genes for sex 
identification at early stages in zebrafish to scrutinise sex-
specific drug susceptibility and translate to human data.

The early gonadal development of zebrafish is a com-
plex process (see Table 1 S1, supporting information). The 
zebrafish is termed a juvenile hermaphrodite; all gonads ini-
tially develop as an undifferentiated juvenile ovary, which 
are ovary-like organs with oocyte-like germ cells that later 
degrade and transform into true ovary or testis (Takahashi 
1976; Uchida et al. 2002; Maack and Segner 2003; Wang 
et al. 2007; Yang et al. 2017). During the female‐to‐male dif-
ferentiation, intersex gonads contain both oocyte‐like germ 
cells and developing testicular tissues; oocytes regress by 
apoptosis from 19–27 dpf (Uchida et al. 2002; Chen and Ge 
2013; Wilson et al. 2014). Development of spermatogonia 
and proliferation of stromal somatic cells in the transform-
ing gonad lead to final differentiation into the testis and the 
fish becomes male (Uchida et al. 2002; Chen and Ge 2013). 
Remarkably, after oocyte depletion, early oocyte-producing 
individuals and those who reproduce as females can also 
change into fertile males, indicating the need for oocytes, not 
only for initial sex determination but also for maintenance of 
the adult female zebrafish phenotype (Dranow et al. 2016).

The first indication of zebrafish sex differentiation is at 
10–12 dpf when the ovarian gonocyte proliferates and dif-
ferentiates. At 10–17 dpf, somatic genes express indiffer-
ently, becoming sexually dimorphic at three weeks (Tong 
et al. 2010). Zebrafish gonad differentiation begins around 
25 dpf (Uchida et al. 2002; Wang et al. 2007; Chen and Ge 
2013) but it has also been reported at a much earlier stage in 
development, 14 dpf (Hsiao and Tsai 2003). Gonads can be 
morphologically identified and differentiation of the gonad 
is complete at around 35 dpf in females and 45 dpf in males 
(Uchida et al. 2002; Wang et al. 2007; Chen and Ge 2013; 
Wong et al. 2014). The variation among studies regarding 
age at which sex-determining genes are established indi-
cates differing factors which may significantly influence the 
timing of sex differentiation in the zebrafish (Chen and Ge 
2013). In teleost fish, gonadal sex differentiation is highly 

plastic and can be influenced by both genetic and environ-
mental factors or a combination of both (Devlin and Naga-
hama 2002; Strüssmann and Nakamura 2003; Chen et al. 
2017; Guiguen et al. 2019; Valdivieso et al. 2019). Despite 
morphological and histological zebrafish gonadal differenti-
ation being well documented (Takahashi 1976; Uchida et al. 
2002; Wang et al. 2007), the molecular mechanism of sex 
determination remains largely unknown (Tong et al. 2010; 
Chen et al. 2017).

Genetic factors are key in influencing the sexual fate of 
zebrafish. There has been relatively little discovery of dis-
cernible sex chromosomes in zebrafish and distinguishing 
the sex of juveniles is challenging (Liew et al. 2012; Liew 
2013). Zebrafish have neither heteromorphic sex chromo-
somes, which are common in mammals (Traut and Wink-
ing 2001), nor a single specific sex-determining locus (Liew 
et al. 2012). The entire genome has been sequenced and more 
than 26,000 annotated genes are known (Zeng and Gong 
2002; Li et al. 2004; Wen et al. 2005; Knoll-Gellida et al. 
2006; Santos et al. 2007; Jørgensen et al. 2008; Sreenivasan 
et al. 2008; Groh et al. 2011; Collins et al. 2012; Howe et al. 
2013), but questions remain about the complicated nature of 
sex-determination in zebrafish. Recent studies have pointed 
to PSD in zebrafish in which multiple genes along with 
the influences of primordial germ cells dictate the sexual 
fate of zebrafish (Von Hofsten and Olsson 2005; Anderson 
et al. 2012; Liew et al. 2012; Liew 2013; Nagabhushana and 
Mishra 2016; Chen et al. 2017; Yang et al. 2017). Genes 
contributing to sex determination and gonadal differentiation 
are distributed throughout the genome, with the combination 
and interaction of this network of alleles establishing the sex 
of the individual (Bulmer and Bull 1982; Liew et al. 2012; 
Wilson et al. 2014; Crowder et al. 2018b).

In many pathways genetic expression is changed with age 
and expressed differently in males and females (Arslan-Ergul 
and Adams 2014). Female-dominant genetic factors are nec-
essary for zebrafish sex determination (Tong et al. 2010). 
Several genes, including aromatase, cyp19a1a and forkhead 
box L2a (foxl2a) promote ovary differentiation and devel-
opment (Siegfried and Nüsslein-Volhard 2008; Clelland 
and Peng 2009; Dranow et al. 2016; Chen et al. 2017). In 
addition, sex differentiation can be biased in favour of fully 
functioning and fertile females when juvenile zebrafish are 
exposed to exogenous oestrogens (Örn et al. 2006; Schulz 
et al. 2007; Crowder et al. 2018b). On the other hand, male 
sex determination is initiated by expression of sex-determin-
ing genes that activate downstream factors essential for testis 
development and spermatogenesis, anti-Mullerian hormones 
(amh); dmrt1 and sry-related HMGbox 9 (sox9) (Rodríguez-
Marí et al. 2005; Schulz et al. 2007; Herpin and Schartl 
2015; Jie and Jian-fang 2015; Lin et al. 2017a).

As well as genetic elements, environmental per-
turbations contribute to sex-fate in zebrafish. In fish, 
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development of the gonad may be influenced by fluctua-
tions in intrinsic factors such as growth or behaviour, or 
by extrinsic environmental factors (Devlin and Nagahama 
2002). Sex ratio and sex determination in zebrafish popu-
lations is known to be altered by both abiotic and biotic 
environmental factors (Valdivieso et al. 2019). Stress is 
caused by: changes in water temperature (Uchida et al. 
2004; Hörstgen-schwark 2011; Hörstgen-schwark et al. 
2012; Brown et al. 2015; Ribas et al. 2016; Santos et al. 
2017) and pH; hypoxia (Shang and Wu 2004; Shang et al. 
2006; Lo et al. 2011; Robertson et al. 2014); endocrine 
disrupting chemicals (EDCs) including endocrine disrupt-
ing hormones (EDHs) xenoestrogens and 17a-ethinylestra-
diol; aromatase inhibitors fadrozole and xenoandrogens; 
17b-trenbolone; pollution; high densities (Hazlerigg et al. 
2012; Liew et al. 2012; Ribas et al. 2017) and reduction 
in food (Lawrence et al. 2008). In turn, stress is associ-
ated with zebrafish masculinisation, but these results are 
conflicting (Ribas et al. 2017; Santos et al. 2017; Crowder 
et al. 2018a).

Environmental stress during zebrafish embryogenesis 
can produce a male-biased sex ratio (Uchida et al. 2004; 
Hörstgen-schwark et al. 2012; Brown et al. 2015; Ribas et al. 
2017). Gonadal masculinisation in laboratory zebrafish is 
visible in transcriptome data of gonads exposed to increased 
water temperatures, with an upregulation of male genes and 
repression of female-related genes. This evidence shows that 
sex is not only influenced by, but can be altered by, environ-
mental factors. It also supports the theory of PSD working 
together with environmental factors to influence sex-fate in 
zebrafish (Ribas et al. 2016; Hosseini et al. 2019; Valdivieso 
2019).

During recent decades, domestication of zebrafish and 
selection by researchers has caused alteration in natural 
genetic and environmental cues and consequently led to 
either evolution of new sex-determining methods or changes 
in underlying genetic sex-determining mechanisms (Guryev 
et al. 2006; Whiteley et al. 2011; Wilson et al. 2014; Van 
Den Bos et al. 2017; Holden and Brown 2018). Observations 
in studies suggest that domesticated zebrafish populations 
consist of individuals with recessive or over-dominant male-
determining alleles compared to wild populations (Delomas 
and Dabrowski 2018).

Domesticated laboratory strains of zebrafish lack a sex 
chromosome, and few sex-determining genes have been 
identified (Crowder et al. 2018b). Genetic studies of sex in 
different zebrafish strains have identified multi-loci, which 
are considered sex-determining regions, including a sin-
gle sex-linked locus on chromosome 4 (Chr4) which was 
highlighted in an AB laboratory strain (Sola and Gornung 
2001; Bradley et al. 2011; Anderson et al. 2012; Howe et al. 
2013; Yang et al. 2017). However, loss of certain naturally-
occurring genes, including Chr4, through selection has been 

reported in some domesticated strains, AB and TU (Wilson 
et al. 2014).

In this study, a qPCR was developed to analyse the 
expression of nine selected genes, which have been pre-
viously associated with sex determination and expressed 
early in embryonic development and these were compared 
against a reference gene. It is assumed that sex in zebrafish is 
poly-genetically determined and that varying levels of gene 
expression influence development of sexual characteristics. 
Accordingly, expression profiles of both adult female and 
male, as well as 28 day-old zebrafish were established and 
compared to identify sex- and age-specific gene expression. 
Additionally, we used NGS data of whole body tissue analy-
sis from domesticated AB strain, adult males and females, 
540 dpf, and juveniles, 28 dpf, to establish a catalogue of 
transcriptome expression. We used this to identify sex-deter-
mining genes and indicate those expressed as early as 28 dpf 
in zebrafish for applications for juvenile sex identification. 
This information will allow cofounding sex-related variables 
to be revealed for human benefits.

Methods

Materials

Juvenile and adult zebrafish

Commercially available 28 dpf and adult female and male 
zebrafish of the strain AB, bred by the company IES, Wit-
terswil, were used for the establishment of the expression 
analysis. Fish were euthanised with 2-phenoxyethanol and 
preserved in ethanol until subsequent RNA isolation.

Methods

Development of the TaqMan qPCR for gene expression 
analysis

Gene selection Gender-specific genes, which are thought to 
contribute to sex-determination in zebrafish, were selected 
from previous literature. It was ensured that selected genes 
were expressed in the juvenile stage of zebrafish accord-
ing to the zebrafish information network (Zfin.org). Based 
on the gene ontology and the findings from literature, nine 
genes were selected for analysis against the reference house-
keeping gene, actb1 (see Table 2 S2, supporting informa-
tion).

Primer and  TaqMan probe development For the genes 
actb1, cyp17a1, nr0b1, sox9b, vtg1, cyp19a1b and 
cyp19a1a novel primers and probes were developed based 
on the NCBI reference sequences (see Table 2 S2, support-



4146 Archives of Toxicology (2020) 94:4143–4158

1 3

ing information). These were tested for efficiency and speci-
ficity and optimised. For the genes dmrt1, sox9a and igf3, 
commercially available TaqMan qPCR mix (Thermo Fisher 
Scientific, Switzerland) was used.

RNA isolation—RNeasy method Total RNA isolation from 
adult fish and juvenile fish, 28 dpf, was performed using 
Qiagen RNeasy Maxi Kit and Mini Kit, respectively, 
according to the manufacturer’s protocol. The RNA was 
eluted in nuclease free water and then stored at − 80  °C. 
After isolation, the RNA quality was analysed by measuring 
the RNA concentration and determining RNA integrity by 
gel electrophoresis before further use. Total RNA isolated 
from zebrafish, which had been preserved and stored, was 
intact and not degraded after storage so it could be used in 
further tests.

cDNA synthesis The mRNA was transcribed into cDNA 
using reverse transcriptase (RT) according to the Promega 
M-MLV RT protocol and oligo-dT primers. In contrast to 
the protocol, no nuclease inhibitor was added to the reac-
tion; 500 ng of RNA was used instead of 2 μg RNA and a 
dNTP mix with a concentration of 2 mM each, total 8 mM 
was used, instead of single dNTPs. The synthesised cDNA 
was diluted in a ratio of 1:3 with nuclease free water and 
stored at − 20 °C before further use. The cDNA synthesis of 
tested juvenile and adult zebrafish RNA which was isolated 
with the RNeasy method and integrated DNase I digestion 
was used in further tests. Instead of carrying out the RT con-
trol for each individual sample, an RNA pool of a test con-
dition of the gene expression analysis with +/− RT for each 
tested gene was performed.

TaqMan qPCR for analysis of gene expression Sex-specific 
expression profiles were determined for 28  dpf and adult 
zebrafish, using the developed gene expression assay. A 
relative quantification was performed in comparison to the 
negative control to check whether age had an influence on 
the investigated genes. For each developed and commer-
cially available probe, a master mix was prepared containing 
relevant primers and TaqMan probes. The qPCR analysis 
was performed in technical duplicates, 3 µL diluted cDNA 
per 15 µL qPCR reaction, according to the optimal qPCR 
programme. Only samples in which both replicates yielded 
a Ct value above the threshold of 0.0141 were used for eval-
uation. The mean Ct value of the replicates was used to cal-
culate the gene expression and normalized to the reference 
gene, actb1.

RNA sequencing using NGS To identify possible genes 
that contribute to sex determination, the transcriptome of 
adult male and adult female zebrafish were compared. Two 
adult male and two adult female zebrafish were selected and 

whole body tissue used for RNA sequencing by NGS. In 
addition, the RNA of two 28-day-old zebrafish was tested 
to gather whether they could, at this stage, be assigned to 
a female or male expression profile. RNA quality testing, 
library preparation and subsequent NGS were performed at 
the Biocenter under the supervision of Philippe Demougin 
(Life Sciences Training Facility (LSTF), Basel), according 
to Illumina’s standard protocol for RNA sequencing (Illu-
mina Inc., San Diego, USA, Cat. # RS-100-0801).

Comparative analysis was carried out on the NGS tran-
scriptome data using Galaxy 77, with the latest zebrafish 
genome, version 35.6 downloaded from NCBI (https ://www.
ncbi.nlm.nih.gov/grc), used for reference against. Trimmo-
matic is a quality-based trimming tool, which was used to 
increase mapping efficiency by trimming low-quality reads 
from the profile. The Stringtie command assembles tran-
scriptomes for each of the six individual files, the two 28-day 
juveniles, adult females and males; it defines which genes 
or reads transcriptomes belong to and counts them. A table 
of expression for all the reads was produced, showing the 
number of transcriptomes for each gene for each individual. 
Around 4 million transcriptomes per sample were generated 
and 24 million reads were compared across the six samples. 
Genes with the highest average transcriptome count between 
males and females were highlighted for further analysis. 
Integrated genomic viewer, IGV, was used to compare and 
visualise the expression of mapped genes for the six samples 
in comparison to the reference genome. The software R and 
the R package ggbio were used for the production of heat 
maps and visualised expression graphs.

Results

Development of qPCR for gene expression 
analysis—primer development, primer test and PCR 
optimisation

Primers and probes for seven genes; actb1, sox9b, vtg1, 
cyp19a1a, cyp19a1b, nr0b1 and cyp17a1 were developed, 
tested and optimised (see Table 3 S3, supporting informa-
tion). qPCR was performed in in Rotor-Gene Q from Qia-
gen in three stages; 95 °C for 600 s, followed by 45 cycles 
at both 95 °C for 15 s and 60 °C for 60 s. Cycle threshold 
(Ct) values obtained from the dilution series were used to 
determine PCR efficiency of the seven tested genes so com-
parisons of gene expression could be made. The developed 
qPCR probes, as well as commercially available probes for 
the genes sox9a, dmrt1 and igf3 (Thermo Fisher Scientific, 
Switzerland) were used for the analysis of sex-specific gene 
expression in zebrafish in relation to age, with actb1 used as 
a housekeeping reference gene.

https://www.ncbi.nlm.nih.gov/grc
https://www.ncbi.nlm.nih.gov/grc
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Gene expression analysis 28 dpf in comparison 
to adult male and female zebrafish

Significant differences in expression of the genes associated 
with sex determination were found in developing zebrafish, 
28 dpf, in comparison to adult zebrafish (Fig. 1). Most strik-
ingly, the gene expression at 28 dpf compared to sex showed 
a relatively low expression of vtg1 in both adult male and 
juvenile zebrafish, compared to females; this is also the 
case for cyp17a1 and igf. Additionally, the expression trend 
of sox9a was similar at 28 dpf and in males, with a lower 
expression highlighted in females (Fig. 1). Gene expression 
analysis of adult zebrafish is provided in S4 Figure 6, sup-
porting information.

RNA sequencing using NGS

RNA sequenced NGS data was evaluated for investigation 
of differences between the transcriptome of adult female 
and male zebrafish. The transcriptome dataset from the 
whole genome was narrowed to highlight the genes with 
the largest difference in transcriptome number between adult 
female and male zebrafish, which indicated potential sex-
determining genes (see Table 4 S5, supporting information). 
Genes from this as well as from the PCR in this study and 
additional genes selected from the NGS data or known from 
previous research, which showed the best potential for early 
sex identification in zebrafish, 28 dpf, were selected. We 
highlight four male and nine female genes, which could be 
used for early sex-determination in zebrafish (Figs. 2 and 3, 
respectively; See also supporting information, S6 Tables 5 
and 6, respectively). Further, seven female and five male 
additional genes were selected for their potential sex-deter-
mining role (see Table 7 S7, supporting information).

Genes selected for early female sex‑determination

Six genes from high differentiation between male and 
females in NGS transcriptome data and three additional 
genes discovered from NGS data, which all are supported 
by previous literature, were selected as potential markers of 
female sex-determination in zebrafish, 28 dpf.

Glycogenin 1a (gyg1a)

Gyg1a was chosen for further analysis in this study as it 
was indicated as one of the top 50 genes with the highest 
expression difference in transcriptome data between males 
and females. Transcriptome analysis revealed that gyg1a was 
expressed 26 times more in female zebrafish compared with 
males; with juvenile expression numerically comparable to 
male transcriptome data (Fig. 3). Gyg1a has been linked 
to glycogen starch synthase activity and is involved in the 
glycogen biosynthetic process where it is localized to the 
cytoplasm (Zfin.org—ZFIN ID: ZDB-GENE-040426-2910).

Retinol dehydrogenase 10b (rdh10b)

The transcriptome number data described in this study 
shows a 39-fold increase in rdh10b in females compared 
with males (Fig. 3). Similarly, the average juvenile tran-
scriptome number for the gene rdh10b is 55-fold lower 
than female zebrafish. Rdh10b is involved in NADP-retinol 
dehydrogenase and oxidoreductase activity, retinoic acid 
(RA) biosynthetic and retinol metabolic processes and is 
localized to the lipid droplet. It is expressed in several struc-
tures, including axis; notochord; pleuroperitoneal region; 
tail bud; and yolk syncytial layer (Zfin.org—ZFIN ID: 
ZDB-GENE-030909-7).

Fig. 1  Ct value of different 
aged juvenile zebrafish in 
comparison to adult male and 
female zebrafish shown as a bar 
chart. A comparably low ∆Ct 
value corresponds to a strong 
expression and a high ∆Ct value 
to a weaker expression of the 
analysed gene
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Protein disulphide‑isomerase A4 (pdia)

For the gene, pdia, transcriptome data of female zebrafish 
is on average four-fold and three and a half times higher 
than that of male and juvenile zebrafish, respectively 
(Fig. 3). Pdia catalyses the re-arrangement of disulphide-
isomerase bonds in proteins and is crucial for protein fold-
ing and response to endoplasmic reticulum (ER) stress 
(Zfin.org—ZFIN ID: ZDB-GENE-040426-705).

Karyopherin alpha 2 (KPNA2)

Our transcriptome data provides evidence for a higher 
expression of KPNA2 in adult female zebrafish compared 
with that of males.; Adult female transcriptome data is 27 
times that of males with juvenile expression matching that 
of the adult male (Figs. 3, 4). KPNA2 is a protein-coding 
gene, involved in nuclear import signal receptor activity and 
protein import into the nucleus. Diseases associated with 

Fig. 2  Heat map showing the relative expression of four male genes selected for early sex-determination
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the gene include ovarian endodermal sinus tumour and 
ovarian primitive germ cell tumour (Zfin.org—ZFIN ID: 
ZDB-GENE-040718-22).

Cyclin B1 similar (ccnb1)

Our transcriptome data shows on average a 90-fold and 103-
fold higher expression of ccnb1 in female zebrafish com-
pared to males and juveniles, respectively (Fig. 3). Ccnb1 
is predicted to contribute to protein kinase activity and is 

involved in oocyte maturation. Human orthologs of this gene 
are implicated in breast and prostate cancer (Zfin.org—ZFIN 
ID: ZDB-GENE-000406-10).

Cathepsin La (ctsla)

In our study, transcriptome data shows a 4.5-fold and 4-fold 
increase in expression in adult female zebrafish compared 
to males and juveniles, respectively (Fig. 3). Ctsla is spec-
ulated to have cysteine-type endopeptidase activity and 

Fig. 3  Heat map showing the relative expression of nine female genes selected for early sex-determination
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thought to be involved in proteolysis (Zfin.org—ZFIN ID: 
ZDB-GENE-030131-106).

Bone morphogenetic protein (bmp15)

In this study, transcriptome expression of bmp15 is 352 and 
2228 times higher in adult female zebrafish compared to 
males and juveniles, respectively (Fig. 3). Bmp15 is pre-
dicted to have cytokine and transforming growth factor 
receptor binding activity. Human orthologs of this gene are 
implicated in ovarian dysgenesis 2 and premature ovarian 
failure (Zfin.org—ZFIN ID: ZDB-GENE-030131-6115).

Zona pellucida glycoprotein 3 (zpb3)

Female transcriptome data has a 1.5 times higher expres-
sion of zpb3 in adult female zebrafish compared with males 
(Fig. 3). In addition, zpb3 is 1.8 times lower in females 
compared to juveniles, 28 dpf (Fig. 3). Zpb3 gene expres-
sion is  partly co-ordinated by folliculogenesis-specific 
basic helix-loop-helix, transcription factor (Fig α), which 
is needed for female development (Zfin.org—ZFIN ID: 
ZDB-GENE-031121-1).

Chr4

We found chr4 is more highly expressed in females, with a 
240-fold and 60-fold increase in transcriptome data seen in 
female compared with male and juvenile zebrafish, respec-
tively (Fig. 3).

Genes selected for early male sex‑determination

One gene from the PCR in this study, two genes from high 
differentiation between male and females in NGS transcrip-
tome data and one additional gene discovered from NGS 
data, all supported by previous literature, were selected as 
potential markers of male sex-determination in zebrafish, 
28 dpf.

sox9a

In this study, PCR analysis showed that Sox9a had a higher 
expression in males when compared to females (see S4 and 
Figure 6, supporting information). Additionally, on average 
sox9a was expressed 2.5-fold and 3-fold higher in adult male 
and juvenile zebrafish compared to females based on NGS 
transcriptome data (Fig. 2); the strong expression of sox9a at 

Fig. 4  The relative expression of the female gene, kpna2, and the point of expression across the gene for males, females and juveniles for com-
parison
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juvenile stage is also seen in previous research. Sox9a exhib-
its chromatin-binding activity and is involved in cartilage 
and embryonic morphogenesis and glial cell differentiation 
(Zfin.org—ZFIN ID: ZDB-GENE-001103-1).

Glyceraldehyde‑3‑phosphate dehydrogenase, 
spermatogenic (gapdhs)

In this study, expression level of gapdhs was 1.7-fold higher 
in adult male zebrafish compared with females based on 
NGS transcriptome analysis (Fig.  2). We found gapdhs 
expression to be high in juveniles and adult male zebrafish; 
the average transcriptome number was almost identical 
(Fig. 5). Glyceraldehyde 3-phosphate dehydrogenase is an 
enzyme of the glycolytic pathway that is known to cata-
lyse glyceraldehyde 3-phosphate to 1,3-bisphosphoglycer-
ate. Gapdhs is expressed in several structures, including the 
cardiovascular system, digestive system, nervous system, 
neural tube,; and trigeminal placode (Zfin.org—ZFIN ID: 
ZDB-GENE-020913-1).

ATPase Na/K transporting, beta 1a polypeptide (atp1b1a)

A two-fold increase in both male and juvenile zebrafish 
expression can be seen in transcriptome data for atp1b1a 
compared to adult female zebrafish (Fig. 2). Atp1b1a is 

predicted to contribute to sodium–potassium-exchanging 
ATPase activity and is involved in several processes, 
including establishment or maintenance of epithelial cell 
apical polarity, regulation of cardiac muscle cell action 
potential and skin epidermis development (Zfin.org—
ZFIN ID: ZDB-GENE-001127-3).

Cytochrome P450, family 26, subfamily b, polypeptide 1 
(cyp26b1)

NGS data revealed sex-specific expression of cyp26b1, 
with 2.1 times more transcripts in adult male zebrafish 
compared with females as well as a 1.5-fold higher expres-
sion in juvenile zebrafish (Fig. 2). Cyp26b1 is predicted to 
have RA 4-hydroxylase activity and is involved in several 
processes, including animal organ morphogenesis, nega-
tive regulation of RA receptor signalling pathway and 
RA catabolic process. It is expressed in several zebrafish 
structures, including the brain; gill; hindbrain neural keel; 
pleuroperitoneal region; and skeletal system, as well as 
in testis (Zfin.org—ZFIN ID: ZDB-GENE-030131-2908).

Fig. 5  The relative expression of male gene, gapdhs, and the point of expression across the gene for males, females and juveniles for comparison
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Discussion

Expression analysis of sex‑determining genes

The reference genome that we used for alignment of NGS 
data used the latest zebrafish sequence for the strain, TU, 
which should be sufficient as the reference genome to high-
light relevant genes. However, previous literature states 
that there can be high variation in gene expression between 
strains (Guryev et al. 2006; Whiteley et al. 2011; Van Den 
Bos et al. 2017; Holden and Brown 2018). This should there-
fore be considered when primer and probes of selected sex-
determination genes are developed and tested.

PCR results and NGS transcriptome data revealed several 
sex dominant genes that are also expressed in zebrafish, 28 
dpf, results of which are also supported by previous research. 
The pattern of gene expression of the two adult male and 
two adult female zebrafish in comparison to the two juve-
niles indicates both juveniles are most likely males, as the 
transcriptome data of juveniles consistently reflects that of 
the adult males. Our gene selection highlighted many more 
female sex-specific genes compared to males; this matches 
previous literature which states that female-dominant genetic 
factors are necessary to determine zebrafish sex (Tong et al. 
2010).

Genes selected for early female sex‑determination

gyg1a

Gyg1a is expressed in zebrafish at cleavage-16-cell-stage, 
1.5–1.75 hpf, until hatching-long-pec-stage, 48–60 hpf, 
as well as at larval-stage, 14–20 dpf and juvenile stage, 
30–44 dpf (Zfin.org—ZFIN ID: ZDB-GENE-040426-2910). 
Gyg1a has been confirmed as a female-enriched gene in pre-
vious studies (Van Maanen et al. 1999; Wen et al. 2005). 
Evidence from NGS data here and previous reports in litera-
ture taken as a whole is enough to support gyg1a as a gene 
for early female sex-determination in zebrafish.

rdh10b

Rdh10b is involved in RA biosynthetic and retinol processes. 
RA is present in female mice but absent in males (Koubova 
et al. 2006). Rdh10b is most highly expressed in the female 
gonad of zebrafish [bgee.org—gene: rdh10b—ENS-
DARG00000012369—Danio rerio (zebrafish)]. Retinoic 
mechanisms are central for tipping the sexual fate of gonads 
towards the female pathway in zebrafish and decreased RA 
leads to male phenotype (Rodríguez-Marí et  al. 2013). 
Genes associated with retinal synthesis are upregulated 

in the ovary with higher gene expression and synthesis of 
vitellogenins in the liver but also in the extra-hepatic tis-
sues (Levi et al. 2012). The expression of rdh10b in early 
developmental stages of zebrafish, from blastula, 128-cell 
stage, 2.25–2.5 hpf to larval-stage, 5 dpf until adulthood, 
90–730 dpf (Zfin.org—ZFIN ID: ZDB-GENE-030909-7), in 
addition to NGS results, point to the usefulness of rdh10b as 
an early genetic marker for female sex-determination.

pdia

Stress often causes a male-biased sex ratio in fish; pdia4, 
the protein product of an ER chaperones, is down-regu-
lated, five-fold, due to ER function decrease under stress 
conditions (Zheng et  al. 2018). Pdia is expressed most 
highly in the female gonad [bgee.org—gene: pdia4—
ENSDARG00000018491—Danio rerio (zebrafish)] and at 
30–44 dpf in the ovaries of zebrafish (Miao et al. 2017). 
Using NGS data, pdia is predicted to be a female sex-spe-
cific gene with strong potential for early sex-determination 
in zebrafish.

KPNA2

KPNA2 is expressed in 31 organs, with the highest expres-
sion level in cleaving embryo and fourth highest in female 
gonad. KPNA2 is thought to be involved in female sexual 
fate and is expressed in the developing oocyte (Ly-Huynh 
et al. 2011; Zuccotti et al. 2013; Mihalas et al. 2015). In 
a study, KPNA2 protein was up-regulated two-fold in the 
female gonad during very early development and throughout 
oocyte growth. KPNA2 is expressed around the time of sex 
differentiation as well as at day 6 and adult stages in female 
but not male zebrafish (Major et al. 2011). All things consid-
ered, KPNA2 was selected as an early developmental gene 
for female sex-determination.

ccnb1

Ccnb1 is expressed in 48 organs, including nervous system; 
oocyte; pectoral fin; trunk mesenchyme; and unfertilized 
egg, with highest expression level in blastula and third 
highest expression in the mature ovarian follicle [bgee.
org—gene: ccnb1—ENSDARG00000051923—Danio 
rerio (zebrafish)]. Ccb1 is found in oocytes and needed for 
oocytes maturation and female sexual development (Kondo 
et al. 1997, 2001; Knoll-Gellida et al. 2006; Wang et al. 
2007; Nagahama and Yamashita 2008; Yasuda et al. 2013; 
Kotani et al. 2013; Takahashi et al. 2014; Horie and Kotani 
2016; Dingare et al. 2018; Takei et al. 2018; Yi et al. 2019). 
Ccnb1 is expressed in early zebrafish development (Yasuda 
et al. 2010; Horie and Kotani 2016). Therefore, it was high-
lighted in our study as an early female sex-determining gene.
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ctsla

Ctsla is expressed in 32 organs including the blood, gill, 
liver, pleuroperitoneal region and yolk syncytial layer, 
with highest expression level in gastrula at five stages of 
development and fourth highest expression in the mature 
ovarian follicle at fully-formed stage (Zfin.org—ZFIN ID: 
ZDB-GENE-030131-106). Ctsla shows different patterns of 
expression during embryogenesis and in adult zebrafish tis-
sue. Levels of gene expression increase throughout develop-
ment with highest ctsla accumulation in the adult ovary and 
oocytes. In zebrafish, ctsla is first detected in blastomers and 
later is localized in yolk syncytial layer cells. It is involved in 
yolk processing during oogenesis and embryogenesis. Ctsla 
mRNA is maternally inherited in zebrafish suggesting its 
vital role in early embryos (Tingaud-Sequeira and Cerdà 
2007; Tingaud-Sequeira et al. 2011). For these reasons, ctsla 
was selected as a gene for early female sex-determination 
in zebrafish.

bmp15

Bmp15 is expressed in several structures, including the 
brain, digestive system, gonad, heart, and steroid hormone 
secreting cells, with the highest expression in the blastula 
and second highest expression in the female gonad at three 
stages, fully-formed, life-cycle and juvenile stage, 30–44 dpf 
[Zfin.org—ZFIN ID: ZDB-GENE-030131-6115; bgee.org—
gene: bmp15—ENSDARG00000037491—Danio rerio 
(zebrafish)]. Bmp15 aids female sex differentiation, nega-
tive regulation of oocyte development and oocyte matura-
tion. In zebrafish, bmp15 plays a crucial role in regulating 
functions of the gonad, it is found in oocytes and aids their 
maturation (Clelland et al. 2006; Yan et al. 2017). Bmp15 
promotes female development; it increases expression of 
downstream gene cyp19a1a, an aromatase enzyme which 
converts androgens to oestrogens (Hosseini et al. 2019). 
The resultant increase in oestrogens creates differentiation 
of granulosa cells from bi-potential somatic cells. Loss or 
down-regulation of bmp15 in adult zebrafish results in dis-
ruption of ovarian development and a female-to-male sex 
reversal (Dranow et al. 2016; Crowder et al. 2018a; Hosseini 
et al. 2019), indicating it as a marker for early female sex-
determination in zebrafish.

zpb3

Fig alpha, fig α, influences zpb3 gene expression and is 
needed for female development (Zfin.org—ZFIN ID: 
ZDB-GENE-031121-1). In mammals, Fig α is a germ 
cell-specific transcription factor, which is necessary for 
normal formation of the ovarian follicle and oocytes 
(Schlessinger et al. 2011). Fig α is expressed throughout 

zebrafish development with the peak of both fig α and zpb 
expression coinciding with the start of zebrafish gonad dif-
ferentiation at 22 dpf. There is another peak of expression 
at 25 dpf when the onset of gonadal differentiation to ovary 
in female zebrafish is expected. The highest expression of 
zpb is in the female gonad and seventh highest in mature 
ovarian follicle (Jørgensen et al. 2008) [bgee.org—gene: 
zp3c—ENSDARG00000092919—Danio rerio (zebrafish)]. 
Fig α is thought to be crucial in oocyte preservation, nor-
mal ovarian development in mice and is an oocyte specific 
marker in medaka (Soyal et al. 2000; Kanamori et al. 2006). 
In zebrafish, low expression and down-regulation of fig α is 
seen just before oocyte apoptosis at 19–20 dpf in individuals 
developing as male. Fig α and related female-fated genes are 
highly expressed after 22 dpf to adulthood (Jørgensen et al. 
2008). This information taken with our data and the fact that 
zpb3 is expressed in early development provides evidence 
for the use of zpb3 as an early marker of adult zebrafish 
sexual fate.

Chr4

In previous research, a strongly sex-linked locus was found 
only at the end of the long right arm of Chr4 in natural 
zebrafish populations. Chr4R lacks protein-coding genes, 
contains most of the genome’s 5S–RNA genes, is enriched 
in satellite repeats and has high GC content (Anderson et al. 
2012; Howe et al. 2013); in other species, such as mammals, 
these traits are linked to sex chromosomes (Charlesworth 
et al. 2005). Sex-linked markers found only on the chromo-
some arm with cytogenetic properties of sex chromosomes 
indicates that Chr4R is a sex chromosome in zebrafish. 
Another study found that two domesticated strains, AB and 
TU, lacked this sex-linked loci and thus it was concluded 
that this female sex-linked region had been lost in domesti-
cated strains. It was thought that domestication led to new 
methods of sex-determination through selection or uncov-
ering of minor genetic sex-determining mechanisms (Wil-
son et al. 2014). However, in our study we concluded that 
Chr4 was more highly expressed in adult female zebrafish 
compared with males, despite being from the domesticated 
strain, AB.

Genes selected for early male sex‑determination

Sox9a

Sox9a is expressed in 76 organs, including brain, ectoderm, 
head, reproductive system and skeletal system, with highest 
expression level in ceratohyal cartilage at five stages of early 
development. This pattern of male-biased sex-expression in 
Sox9a can be seen in literature where it is reported to be 
predominantly expressed in the testis (Groh et al. 2011). 
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Many other studies support these findings that sox9a is a 
male sex-determining gene (Chiang et al. 2001; Vidal et al. 
2001; Gasca et al. 2002; Klüver et al. 2005; Rodríguez-Marí 
et al. 2005; Jørgensen et al. 2008; Tong et al. 2010; Major 
et al. 2011; Sun et al. 2013; Liu et al. 2013; Chen et al. 
2017; Lin et al. 2017b; Yu et al. 2018; Crowder et al. 2018a). 
Sox9a is expressed in early zebrafish development from 
0–44 dpf (Jørgensen et al. 2008), in the testis at juvenile 
stage, 30–44 dpf, and in fully developed adult stages (Zfin.
org—ZFIN ID: ZDB-GENE-001103-1). Our findings from 
PCR and NGS together with previous literature highlight 
sox9a as a gene for male sex-determination in early zebrafish 
development.

gapdhs

Glyceraldehyde-3-phosphate dehydrogenase spermatogenic, 
gapdhs, is a testis-specific enzyme encoded by gapdhs gene 
and is required for sperm motility and male fertility (Welch 
et al. 1995; Kuravsky et al. 2011; Fujihara et al. 2019). Gap-
dhs encodes a protein, which has an important role in the 
carbohydrate metabolism. Gapdhs is necessary for energy 
production during spermatogenesis and in the spermato-
zoon and is tenth highest expressed in the testis of zebrafish 
[bgee.org—gene: gapdhs—ENSDARG00000039914—
Danio rerio (zebrafish)]. In mice, gapdhs is first expressed 
at 20 dpf in the post-meiotic germ cells. Expression levels 
increase until 24 dpf and then remain constant during matu-
rity. After sexual maturation at 120 dpf, gapdhs protein is 
in both sertoli cells and elongated sperms (Liu et al. 2013). 
Gapdhs-knock-out mice had impaired sperm motility, higher 
levels of infertility and a lower ATP concentration; 10.4% 
that of wild-type mice. Anti-gapdhs antibodies were also 
able to inhibit zona pellucida penetration (Miki et al. 2004; 
Liu et al. 2013; Takei et al. 2014; Paoli et al. 2016). Gapdhs 
is one of the two isoforms of this enzyme in mammals and is 
found only in sperm (Paoli et al. 2016). From our results, we 
can see that gapdhs is expressed in early zebrafish develop-
ment therefore it is ideal for use as a male sex-determination 
gene marker for zebrafish, 28 dpf.

atp1b1a

Atp1b1a is expressed in 39 organs, including the cardio-
vascular system, epithelium, mesoderm, renal system and 
sensory system, with highest expression level in the kidney 
and seventh highest expression in the testis at fully-formed 
stage [Zfin.org—ZFIN ID: ZDB-GENE-001127-3; bgee.
org—gene: atp1b1a—ENSDARG00000013144—Danio 
rerio (zebrafish)]. It is expressed in early development 
in zebrafish from gastrula 50%-epiboly-stage to adult-
stage (Ma and Jiang 2007; Wang et al. 2008; Abbas and 
Whitfield 2009; Hatzold et al. 2016) (Zfin.org—ZFIN ID: 

ZDB-GENE-001127-3). 17-Alpha-ethinyloestradiol (EE2) 
can be found in sewage effluent at concentrations that change 
normal reproductive function in fish. Atp1b1a was down-
regulated with EE2 exposure (Martyniuk et al. 2007). All 
things considered, atp1b1a was selected as marker gene for 
early male sex-determination.

cyp26b1

The balance of RA is related to sex-determination and is 
necessary for spermatogenesis. The RA degrading enzyme 
cyp26b1 has differential expression in the gonads with 
higher expression in the testis (Kashimada et al. 2011; Kipp 
et al. 2011; Bowles et al. 2016). Testis and ovary samples in 
zebrafish, 90 dpf, are sexually dimorphic with higher expres-
sion of cyp26b1 in the testis (Pradhan and Olsson 2015). 
During mouse gonadogenesis, up-regulation of cyp26b1 
expression in male-fated individuals leads to loss of RA and 
protects germ cells from entering into meiosis in developing 
testes, while female-specific down-regulation of cyp26b1 
expression allows RA to induce germ cells to enter into 
meiosis in embryonic ovaries (Rodríguez-Marí et al. 2013).

Cyp26b1 and transcription factor genes, sf1 and sox9, 
are co-expressed in sertoli and leydig cells in mouse foetal 
testes. Sf1 and sox9 expression ensure germ cells become 
male by activating and up-regulating cyp26b1 in mice. In 
addition to this, foxl2 acts as an antagonist of cyp26b1 and 
is expressed in ovary-fated gonads; knock-out of the ovarian 
transcriptome factor, foxl2, increases cyp26b1 expression 
20-fold in XX mice gonads in relation to wild-type indi-
viduals (Kashimada et al. 2011). This indicates cyp26b1 as 
a useful gene for early sexual fate in zebrafish.

Conclusions

The identification of the early expression of these male- and 
female-specific genes will have profound implications in aid-
ing future developmental, biomedical, toxicological, eco-
toxicological and genetic zebrafish research. This in turn is 
useful for human pharmaceutical drug discovery and trials, 
and toxicity testing, as sex-related, covered, co-founding fac-
tors are removed. More research should now be carried out 
to allow us to clarify the ability of these selected genes to 
determine sex at 28 dpf with the development of TaqMan 
qPCR assays for the novel selected genes. With these early 
markers, improved sex determination in juvenile zebrafish 
will soon be achievable; in turn allowing improvements in 
human health and environmental trials.
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