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Abstract: A series of 74 dihydroalkoxybenzyloxopyrimidines (DABOs), a class of highly 

potent non-nucleoside reverse transcriptase inhibitors (NNRTIs), was retrieved from the 

literature and studied by receptor-dependent (RD) three-dimensional quantitative  

structure-activity relationship (3D-QSAR) analysis to derive RD-3D-QSAR models. The 

descriptors in this new method are the steric and electrostatic interaction energies of the 

protein-ligand complexes (per residue) simulated by molecular dynamics, an approach 

named Residue-Ligand Interaction Energy (ReLIE). This study was performed using a 

training set of 59 compounds and the MKC-442/RT complex structure as reference. The 

ReLIE-3D-QSAR models were constructed and evaluated by genetic algorithm (GA) and 
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partial least squares (PLS). In the best equations, at least one term is related to one of the 

amino acid residues of the p51 subunit: Asn136, Asn137, Glu138, and Thr139. This fact 

implies the importance of interchain interaction (p66-p51) in the equations that best 

describe the structure-activity relationship for this class of compounds. The best equation 

shows q2 = 0.660, SEcv = 0.500, r2 = 0.930, and SEE = 0.226. The external predictive 

ability of this best model was evaluated using a test set of 15 compounds. In order to 

design more potent DABO analogues as anti-HIV/AIDS agents, substituents capable of 

interactions with residues like Ile94, Lys101, Tyr181, and Tyr188 should be selected. Also, 

given the importance of the conserved Asn136, this residue could become an attractive 

target for the design of novel NNRTIs with improved potency and increased ability to 

avoid the development of drug-resistant viruses. 

Keywords: receptor-dependent 3D-QSAR; residue-ligand interaction energy; molecular 

dynamics; DABO derivatives; reverse transcriptase; AIDS/HIV-1 

 

1. Introduction 

The human immunodeficiency virus (HIV) is the etiological agent of the acquired 

immunodeficiency syndrome (AIDS). There are two HIV species: HIV-1 (of high virulence/infectivity 

and global prevalence) and HIV-2 (of low virulence/infectivity and prevalent on West Africa). The 

HIV is a retrovirus distinguished by the presence of a viral reverse transcriptase (RT), among other 

targets such as protease and integrase, responsible for the synthesis of DNA from the viral RNA 

genome [1]. 

Due to its essential role in the replication of the virus, this enzyme is one of the most important 

antiviral targets in the chemotherapy of AIDS [2]. The RT enzyme is a heterodimer, consisting of p66 

and p51 subunits, the latter being a truncated form of the former [2]. Although each subunit consists of 

thumb, palm, and finger domains, only the p66 subunit contains a functional active site that binds the 

nucleic acid template-primer to the nucleoside triphosphates [2]. 

There are two classes of antiretroviral drugs currently used to treat AIDS that target the HIV-RT: 

nucleoside/nucleotide analog RT inhibitors (NRTIs) and non-nucleoside RT inhibitors (NNRTIs) [3,4]. 

The NRTIs (e.g., AZT, ddI, ddC, and d4T) are HIV-1/HIV-2 RT competitive substrate inhibitors that 

bind to the active site, and can be incorporated into the growing DNA chain. Further elongation, 

however, is not possible, as they lack the 3'-OH group present in the natural substrate, which causes 

premature termination of the growing viral DNA strand [5]. 

In contrast, NNRTIs (e.g., nevirapine, delavirdine, efavirenz, and etravirine, Figure 1) [6,7] are 

selective HIV-1 RT non-competitive inhibitors that bind to an allosteric site (non-nucleoside binding 

site, NNBS), which is located in the p66 subunit, about 10 Å from the active site [4,5]. Thus, these 

inhibitors also impair the DNA synthesis process. 

Binding of NNRTIs is accompanied by dramatic rearrangements of the subdomains, indirectly 

influencing the enzyme catalytic efficiency. The most prominent change seen is in the position of the 

thumb domain, which is locked in an upright conformation upon NNRTI binding. Moreover, the 
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NNRTI binding deforms the sheet of the p66 palm subdomain, affecting the precise positioning of the 

primer strand relative to the polymerase active site [7].  

Figure 1. Structures of the four non-nucleoside reverse transcriptase inhibitors (NNRTIs), 

nevirapine, delavirdine, efavirenz, and etravirine, approved by the US Food and Drug 

Administration (FDA) to treat AIDS. 

 

Comparisons of the structures of the free and inhibitor bound enzymes show that NNRTIs also 

modify the position of the three catalytic residues (Asp110, Asp185, and Asp186) relative to the other 

active site residues [5]. High-resolution crystal structures of the HIV-1 RT unbound and in complex 

with nevirapine, delavirdine, efavirenz, or etravirine inhibitors show that all of these compounds bind 

to the same allosteric site, even though their 2D structures are quite different [2,4–6,8,9]. 

1.1. Resistance of HIV-1 to NNRTIs 

HIV has a high rate of replication, which can reach up to 1010 viral particles per day in an untreated 

individual [10]. Additionally, in the process of the virus reverse transcription, there are a high number 

of mutations, estimated in the order of 104 to 105 times per day [11]. The high rate of mutation 

combined with the consequent genetic variability has as its most important consequence the selection 

and the predominance of strains resistant to anti-HIV drugs currently used to treat AIDS. 

The emergence of viral variants resistant to drugs in patients infected with HIV is the main cause of 

failure in treatment [3,12,13]. The development of resistance is an important factor when considering 

the administration of a drug for a prolonged period [13]. In this case, the inhibitor becomes a part of a 
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selective pressure for the survival of the virus, and the process of mutation becomes accelerated 

according to the misuse of anti-HIV drugs [13]. 

The mutations alter the affinity of the RT inhibitors, resulting usually in decrease of van der Waals 

interactions between enzyme and inhibitor [12,14–19]. The development of resistance is a significant 

problem in the class of NNRTIs [12,13,15]. Simple changes such as Leu100Ile, Lys101Glu, 

Lys103Asn, Val106Ala, Val108Ile, Tyr181Cys, Tyr188Leu, Gly190Ala, Pro225His, and Phe227Leu 

[14,15,20–25], and double mutations such as Lys103Asn/Tyr181Cys [22,26], Lys103Asn/Val108Ile, 

Lys103Asn/Pro225His, and Lys103Asn/Leu100Ile [24] have been described in the literature as a 

function of prolonged use of NNRTIs [12]. 

In order to overcome resistance, a successful AIDS treatment regimen, known as highly active 

antiretroviral therapy (HAART) [27], is in current use, which combines three drugs: two NRTIs plus a 

NNRTI or a PI (protease inhibitor). Therefore, there is urgent need for the development of new HIV-1 

enzyme (e.g., RT, protease, integrase) inhibitors in order to overcome this pandemic disease. 

1.2. Three-Dimensional Quantitative Structure-Activity Relationship Studies 

A 3D-QSAR model is a mathematical expression that relates the variation of the biological 

response in a series of compounds to the variation in their 3D chemical structure [28,29]. The relation 

between the spatial interactions (independent variables) and the biological response (dependent 

variable) can be established by use of the partial least-squares (PLS) regression method [30–32], which 

is becoming the statistical method of choice for most QSAR studies [33–36]. 

By careful selection of the biological data set (the training and test set compounds) and careful 

model construction (e.g., the trial alignment and the putative active conformation), a 3D-QSAR study 

can lead to a useful model that could be used to predict the biological activity values of new 

compounds prior to their synthesis, which is the primary goal of any drug design process in the 

medicinal chemistry field [29,30,37–41]. 

Molecular modeling approaches currently used in Computer-Aided/Assisted Drug Design (CADD) 

are classified as: (i) direct, receptor-based, or structure-based, which depend on the receptor 

geometry; and (ii) indirect or ligand-based, which do not depend on the knowledge of the receptor 

geometry [29]. Hopfinger has proposed a similar classification for the 3D-QSAR approaches as 

Receptor Dependent (RD) and Receptor Independent (RI) methods [42,43]. Therefore, RD-3D-QSAR 

models are derived from the 3D structure of the receptor-ligand complex, while the RI-3D-QSAR 

models are derived from the 3D structure of the ligands. The RI-3D-QSAR approach is the more usual 

case, and a typical example is the CoMFA method [44]. The RD-3D-QSAR approach is a less usual 

case, and as example there are COMBINE [45,46] and RD-4D-QSAR methods [42]. 

The Genetic Algorithm (GA) is a particularly useful technique in solving problems with a large 

number of variables, by allowing an efficient sampling of the available solutions [47–49]. GAs have 

been applied to various molecular modeling problems in drug design, such as conformation/orientation 

searches (essential in the docking method); studies of SAR (which help the search for pharmacophores) 

and QSAR (which help the correlation of descriptors with biological activities) [30,48,50]. 

In a QSAR study using GAs, the models are randomly created and those with better statistical 

values propagate their characteristics (genetic material) by crossover operations, which is a 
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combination of independent variables of two good models (parents) to create a new model  

(child) [47,51,52]. In the next generation, the models with best scores are kept and new models are 

created by crossover and mutation operations. The mutation is the creation of a new model by the 

random introduction of a new variable in the model created by crossover, which helps maintain 

sufficient diversity in the population [47,49]. 

Genetic Function Approximation (GFA) is a GA technique used to create QSAR models, where the 

variables are called base functions [53,54]. GFA applies the same procedures described above for 

GAs, and coupled with PLS, the GFA-PLS technique has as its most important feature the generation 

of multiple good models rather than the optimization of only a single model [53]. Several authors have 

reported the use of combined GA and PLS analyses [28,55–61]. 

Recently, we reported a RI-3D-QSAR model (CoMFA) [62], using a series of 74 S- and  

NH-DABO (dihydroalkoxybenzyloxopyrimidine) HIV-1 NNRT inhibitors [63–66], selected as an 

unprecedented series in 3D-QSAR studies. Now, to complement this study and to add more 

information to the SAR study of this class of NNRTIs, we have constructed and evaluated  

RD-3D-QSAR models by GFA-PLS method, using as descriptors the steric and electrostatic 

interaction energies of the protein-ligand complexes (per residue) simulated by molecular dynamics 

(MD), a new approach named Residue-Ligand Interaction Energy (ReLIE). Those models may prove 

to be useful in understanding the most relevant residues for DABOs interaction and, consequently, in 

designing new non-nucleoside RT inhibitors for the AIDS treatment. 

1.3. Computational Approach 

1.3.1. Structural and Biological Database 

The biological activity of the 74 compounds selected from the literature [63–66] for this study was 

evaluated in vitro against the HIV-1 RT enzyme, according to the same pharmacological protocol [66]. 

The inhibitory potencies, given in IC50 (μM), were transformed into pIC50 (M), which corresponds to 

the logarithm of the inverse of the minimum concentration capable of inhibiting 50% of enzyme 

activity. Table 1 shows the chemical structures and the biological activities of this series. The 

compounds containing a stereogenic center (i.e., Y = sec-butyl, Table 1), corresponding thus to a 

racemate, were defined in absolute R configuration and its original values of IC50 were multiplied by 

two. As this stereogenic center is located in an alkyl chain side, it was considered of lower importance 

and the R enantiomer was arbitrarily defined as the eutomer. 

Table 1. Structures of the S- and NH-DABO derivatives and the corresponding HIV-1 RT 

inhibitory potencies (pIC50) [63–66]. 
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Table 1. Cont. 

# a X b Ar W–Y c pIC50 
d # a X b Ar W–Y c pIC50 

d

1 Me 2-naphtyl S-sec-Bu 4.23 38 H 2,6-di-F-Ph S-Me 6.10 
2 H 1-naphtyl S-cyclopentyl 4.31 39 Me 2-Cl-Ph S-sec-Bu 6.10 
3 Me 1-naphtyl S-cyclopentyl 4.35 40 Me 2-F-Ph S-sec-Bu 6.10 
4 Me 4-F-Ph S-sec-Bu 4.59 41 Me 3-NO2-Ph S-sec-Bu 6.10 
5 Me 4-Cl-Ph S-sec-Bu 4.77 42 H 2-F-Ph S-sec-Bu 6.22 
6 H 1-naphtyl S-sec-Bu 4.79 43 H 3-NO2-Ph S-sec-Bu 6.22 
7 H 2-naphtyl S-sec-Bu 4.83 44 H 2,6-di-Cl-Ph S-tert-Bu 6.22 
8 H 4-F-Ph S-sec-Bu 4.83 45 H 2,6-di-Cl-Ph S-n-Bu 6.30 
9 H 4-Cl-Ph S-sec-Bu 5.02 46 H 2,6-di-Cl-Ph S-cyclopentyl 6.40 
10 H Ph S-tert-Bu 5.07 47 H 2,6-di-F-Ph S-n-Bu 6.70 
11 H 3-Me-Ph S-tert-Bu 5.09 48 H 2,6-di-F-Ph S-tert-Bu 6.70 
12 Me 3-Me-Ph S-sec-Bu 5.27 49 H 2,6-di-Cl-Ph S-sec-Bu 6.70 
13 Me 2,6-di-Cl-Ph S-cyclohexyl 5.31 50 Me 2,6-di-Cl-Ph S-sec-Bu 6.92 
14 Me Ph S-Me 5.31 51 H 2,6-di-F-Ph S-sec-Bu 7.00 
15 Me Ph S-sec-Bu 5.32 52 Me 2,6-di-F-Ph S-sec-Bu 7.00 
16 Me 3-Me-Ph S-tert-Bu 5.34 53 H 2,6-di-F-Ph S-cyclohexyl 7.05 
17 Me Ph S-cyclohexyl 5.37 54 Me 2,6-di-F-Ph S-tert-Bu 7.05 
18 H 3-Cl-Ph S-sec-Bu 5.42 55 H 2,6-di-F-Ph S-cyclopentyl 7.10 
19 Me 4-NO2-Ph S-sec-Bu 5.44 56 Me 2,6-di-F-Ph S-cyclopentyl 7.10 
20 Me 3-Me-Ph S-cyclopentyl 5.47 57 H 2,6-di-F-Ph NH-cyclopentyl 7.15 
21 H 2-Cl-Ph S-sec-Bu 5.49 58 H 2,6-di-F-Ph S-iso-Pr 7.30 
22 Me 3-F-Ph S-sec-Bu 5.52 59 Me 2,6-di-F-Ph NH-cyclopentyl 7.52 
23 H 2,6-di-Cl-Ph S-Me 5.52 60 Me 1-naphtyl S-sec-Bu 4.35 
24 H Ph S-cyclohexyl 5.52 61 H 2-naphtyl S-cyclohexyl 4.48 
25 H 3-Me-Ph S-iso-Pr 5.54 62 H Ph S-sec-Bu 5.27 
26 H Ph S-cyclopentyl 5.55 63 Me Ph S-cyclopentyl 5.47 
27 H 3-Me-Ph S-cyclohexyl 5.59 64 H 3-Me-Ph S-cyclopentyl 5.59 
28 Me 3-Me-Ph S-Me 5.60 65 Me Ph S-iso-Pr 5.60 
29 Me 3-Me-Ph S-iso-Pr 5.60 66 H 3-Me-Ph S-sec-Bu 5.62 
30 H 4-NO2-Ph S-sec-Bu 5.62 67 Me 3-Cl-Ph S-sec-Bu 5.74 
31 Me 3-Me-Ph S-cyclohexyl 5.66 68 H 3-F-Ph S-sec-Bu 5.92 
32 Me Ph S-tert-Bu 5.72 69 H 2-NO2-Ph S-sec-Bu 6.22 
33 Me 2,6-di-Cl-Ph S-cyclopentyl 5.80 70 H 2,6-di-Cl-Ph S-cyclohexyl 6.40 
34 H 2,6-di-Cl-Ph S-iso-Pr 5.89 71 Me 2,6-di-F-Ph S-Me 6.70 
35 Me 2,6-di-Cl-Ph S-iso-Pr 5.94 72 Me 2,6-di-F-Ph S-n-Bu 7.05 
36 Me 2,6-di-Cl-Ph S-n-Bu 5.94 73 Me 2,6-di-F-Ph S-cyclohexyl 7.15 
37 Me 2,6-di-Cl-Ph S-tert-Bu 5.96 74 Me 2,6-di-F-Ph S-iso-Pr 7.30 

a Underlined numbers correspond to test set compounds (60–74); b DABOs pyrimidine nucleobase 
uracil (X=H) or thymine (X=Me); c S-DABO (W = S, Y = alkyl) and NH-DABO (W = NH;  
Y = alkyl) series; d The original IC50 values of compounds containing a stereogenic center (W = S, 
Y = sec-Bu) were multiplied by two and only the R isomers were considered in this study. 

1.3.2. Definition of the Training and Test Sets 

The 74 inhibitors were divided into a training set, containing 59 compounds (1–59), and a test set, 

containing 15 compounds (60–74), representing about 20% of all compounds (Table 1). The overall 

distribution of biological activity values (pIC50) ranges from 4.23 to 7.52 M and from 4.35 to 7.30 M 
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in the training and test sets, respectively. In both sets, the compounds are regularly distributed 

throughout the whole range of activity, which comprises about four logarithmic units, and have the 

same structural diversity. 

1.3.3. Construction and Optimization of the Ligands 

In the absence of a DABO structure co-crystallized with the HIV-1 RT enzyme, the entire set of 

DABO derivatives (Table 1) were built according to the conformation of MKC-442 (or emivirine, 

Figure 2) bound to the HIV-1 RT (wild-type), available in the Protein Data Bank (PDB) [67] under 

code 1RT1 [68]. MKC-442, a NNRTI of the hydroxyethoxy-phenylthio-thymine (HEPT) series, was 

selected as the template due the structural similarity between the HEPT and DABO series. Figure 2 

shows the structures of MKC-442 and 59, the most potent NH-DABO derivative used in this study. All 

structures were constructed and fully geometry optimized at the AM1 semi-empirical level of theory in 

the SPARTAN′06 program [69]. 

Figure 2. Structures of MKC-442 (template) and the most potent NH-DABO 59. 

 

1.3.4. Construction and Optimization of the Protein-Ligand Complexes 

The protein-ligand complexes were constructed based on the same co-crystallized structure  

(MKC-442/HIV-1 RT, PDB ID: 1RT1) [67] used in the ligands construction. This complex, obtained 

by X-ray crystallography with a 2.55 Å resolution, was employed with success in various molecular 

modeling studies, such as molecular docking, molecular dynamics, and 3D-QSAR [70–75]. 

In the construction of the protein-ligand complexes, each optimized DABO was manually docked in 

the NNBS of the reference complex, by root mean square (RMS) overlapping with the MKC-442, 

using the HyperChem 7.5 program [76]. The MKC-442 (superimposed on the ligand) and the water 

molecules (present in the original structure) were excluded from the protein-ligand complexes, the 

hydrogen atoms were added and the basic (Lys and Arg) and acid (Asp and Glu) amino acids were ionized. 

The protein-ligand complexes were geometry optimized, with the goal of minimizing the possible 

unfavorable van der Waals contacts, in a three-step procedure as follows: (i) ligand; (ii) enzyme; and 

(iii) the entire complex. Using the steepest descent algorithm, it was carried out 1,000 optimization 

cycles or until to achieve a gradient lower than 0.01 kcal/mol Å. Subsequently, using the conjugate 

gradient algorithm, the resultant geometries were submitted to 1,000 optimization cycles or until the 
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same convergence criterion. These calculations were performed in vacuum and without any geometric 

restrictions, employing the Tripos force-field in the SYBYL v.7.2 program [77]. 

1.3.5. Molecular Dynamic Simulation of the Protein-Ligand Complexes 

Before the molecular dynamics simulation (MDS) step, structures of the complexes were subjected 

to a new stage of geometry optimization, using the Gromos87 force field [78], available in the 

GROMACS program [79]. The topology of the ligands, needed in the MDS step, was built on the 

PRODRG server [80,81]. The atomic partial charges, calculated in this server, were replaced by those 

calculated by the semi-empirical method AM1 derived from the molecular electrostatic potential in the 

SPARTAN'06 program [69]. The MDS step was carried out, using the Gromos87 force field [78], 

which was chosen because of the facility in building a large number of ligands topology on the Dundee 

PRODRG server [80,81]. 

Finally, the complexes were submitted to the MDS in conditions of constant temperature (310 K) 

and pressure (1 atm), with the cutoff of 9 Å to the long-range electrostatic interactions and for  

non-bonded ones, using the Particle-Mesh Ewald (PME) method [82]. The SHAKE algorithm was 

used to keep fixed the length of the bonds [83]. The time of integration was 1 fs. Following the initial 

speed according to the Maxwell-Boltzmann distribution, the simulations were carried out in a tentative 

time of 1,000 ps (1 ns). However, as the interaction energies in 100 ps became nearly constant, this 

was the standard time used for the collection of energy values. 

1.3.6. Residue-Ligand Interaction Energies of the Complexes 

The descriptors (independent variables) in this new ReLIE-3D-QSAR method are the steric and 

electrostatic interaction energies of the protein-ligand complexes (per residue) simulated by molecular 

dynamics. Therefore, the steric and electrostatic interaction energies between each one of the  

74 ligands and the amino acid residues of the enzyme, included within a 10 Å radius around the ligand 

(Figure 3), comprising 53 amino acids, were retrieved from the MD simulation step performed as 

described earlier in the GROMACS program, which employs the Lennard-Jones and Coulomb 

potentials to calculate the steric and electrostatic interaction energies, respectively [84]. 

This procedure was adopted considering that the protein-ligand interactions that contribute most 

significantly to the variation in inhibitory response occur with specific residues of the enzyme, near the 

binding site [85,86]. It has analogy with the pruning approach developed by Tokarski and Hopfinger 

(1997) in 3D-QSAR studies [87], in which the energy terms connecting the protein-ligand complexes 

are calculated by the free energy force field (FEFF) method in reduced models of the complexes [48]. 

In 2011, our group has published RD-3D-QSAR models using the ReLIE approach applied to 

acetylcholinesterase inhibitors [88]. 
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Figure 3. Schematic representation of the MKC-442/RT complex (PDB code 1RT1). At 

left, it is shown the RT structure with the p66 (colored in red) and p51 (colored by 

element) subunits, where the circle defines the radius of 10 Å from the ligand (MKC-442). 

At right, this region is shown in close up with the enclosed enzyme residues (colored in 

green) and the ligand (colored by element). 

 

1.3.7. Definition of the Independent Variables Databases 

To assess the influence of the independent variables database (descriptors) on the predictive ability 

of the models to be generated, we tested four databases (DBs) (Table 2), varying the number, 

combination, and pre-treatment of descriptors, as follows. 

Table 2. Summary of features of the four databases (DB) used in the ReLIE-3D-QSAR analysis. 

DB Features Total number of descriptors

DB-I Lennard-Jones (LJ) and Coulomb (C) energies calculated individually by residue 106 (53 LJ + 53 C) 

DB-II Sum of DB-I descriptors by residue 53 (53 LJ + C) 

DB-III DB-I + DB-II 159 (53 LJ + 53 C + 53 LJ+C)

DB-IV DB-I pre-treatment by exclusion of energies columns with variance (<0.0001) 95 (42 LJ + 53 C) 

(a) The first database, DB-I, corresponds to the original database, in which the descriptors are the 

steric and electrostatic interaction energies calculated individually by residue, using the Lennard-Jones 

(LJ) and the Coulomb (C) potentials, respectively. Considering that the protein-ligand complex models 

contain 53 amino acids, the total number of descriptors (53 LJ and 53 C) in DB-I is equal to 106. 

(b) In the second database, DB-II, the descriptors correspond to the sum of the Lennard-Jones and 

the Coulomb energies by residue, with a total of 53 descriptors (LJ + C). 

(c) The third database, DB-III, is the combination of the two previous databases, with a total of  

159 descriptors (53 LJ, 53 C and 53 C + LJ).  

(d) The fourth database, DB-IV, is the DB-I (106 descriptors) after pre-treatment, in which the 

descriptors with variance values lower than 0.0001 were excluded, with a total of 95 descriptors. This 
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pre-treatment was done in order to exclude variables that, probably, do not contribute to the 

explanation of the biological response change. 

1.3.8. Construction of the ReLIE-3D-QSAR Equations 

To obtain the ReLIE-3D-QSAR equations, the four databases of independent variables, along with 

the values of biological activity (pIC50), were submitted individually to the Wolf program [53]. In this 

program, the independent variables (interaction energies) were confronted with the dependent variable 

(pIC50) through the GFA-PLS method [36,53]. 

The first step in the Wolf program was the generation of an initial population of 100 equations, each 

one containing four descriptors selected randomly from the DB. We tested various combinations of 

options within the GFA-PLS technique, setting up 100% mutation probability after each crossover 

operation and 10,000 and 50,000 crossover operations. The equations coefficients were calculated by 

PLS regression analysis, using 3, 4, 5 and 6 principal components. The algorithm that adjusts the 

number of independent variables in the models, smoothing-factor, was adjusted from 0.2 to 0.6 (using 

increment of 0.1). The combination of these options was undertaken in order to obtain models 

containing five to twelve independent variables (terms) and resulted in 40 sets of options, which were 

tested for each one of the four databases (DB-I, DB-II, DB-III and DB-IV), resulting in a total of  

200 equations of ReLIE-3D-QSAR to be analyzed. 

1.3.9. Internal Validation of the ReLIE-3D-QSAR Models 

The ten best models of each GFA-PLS analysis were classified according to the values of 

Friedman’s lack-of-fit (LOF) score [53], which is the penalized least square error (LSE) measure; i.e., 

when two equations have the same LSE, the one which has the lowest number of terms (independent 

variables) has the lowest LOF and is the best equation [53]. Subsequently, the best equations were 

submitted to the leave-one-out cross-validation (LOOcv) technique, giving the cross-validated r2 value (q2). 

In order to avoid model overfitting, it is assumed that the maximum number of terms must be in the 

ratio of at least five compounds in the database for each term in the equation [72,89]. Thus, the 

maximum number of terms has been obtained by dividing the total number of compounds from the 

training set (N = 59) by five, which results in 11.8 terms. Therefore, the models with twelve or more 

variables were not considered for further analysis. 

1.3.10. External Validation of the ReLIE-3D-QSAR Models 

The significance and utility of 3D-QSAR models is generally checked by predicting the activity 

values of a set of compounds, named test set, which are not included in model development. The  

15 molecules from the test set (60–74) were constructed and minimized as described for the training 

set ones. They were aligned with the most potent derivative (59) using atom-based RMS fitting. 

1.3.11. Selecting the Best Model 

The various models obtained after the cross-validation process were ordered by the number of terms 

(which ranged from 5 to 12 independent variables) contained in each equation, considering for the 
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qualitative analysis those with the highest values of q2 and r2, the lowest values of SEcv and SEE, and a 

smaller number of outliers [90]. To compare models with different number of terms, the values of q2 

were transformed into adjusted q2 [31], according to Equation 1. 

 
(1)

In Equation 1, q2 represents the r2 value after cross-validation, n is the number of compounds from 

the training set and p is the number of variables (terms) in the model. 

1.3.12. Analysis of the Cross-Correlation Matrix of Residues 

The cross-correlation matrix between the residues of the best selected models was used to analyze 

the correlation coefficients (r). The residual values represent the difference between the experimental 

(pIC50Obs) and the calculated (pIC50Pred) biological activity values. 

According to Rogers (1996) [54], it is expected that equivalent models have similar distributions of 

residues, and different models show patterns of residues not correlated. Therefore, this kind of analysis 

is a valuable tool for the determination of a subset of distinct models in a number of good  

models obtained in GFA-PLS analysis, eliminating models with the same kind of structure-activity 

information [43], and justifying the importance of the correlated models exclusion [55–57,60,61]. 

1.3.13. Analysis of the Cross-Correlation Matrix of Descriptors 

In addition, the cross-correlation matrix between the independent variables (descriptors) of the best 

selected models was used to analyze the correlation coefficients (r), in order to determine if two or 

more variables highly correlated appear simultaneously in the same model [28,55–57,60,61]. With this 

approach, models showing redundant information could be excluded [28,31,61]. 

2. Results and Discussion 

2.1. Analysis of the Reduced Models of the Protein-Ligand Complexes 

As stated before, in order to calculate the steric and electrostatic interaction energies of each of the 

74 protein-ligand complexes, we considered only the 53 residues in a radius of 10 Å (reduced model 

complex), defined from the ligand, as follows, in accordance with the subunit to which they belong 

(Figure 4A): 

(a) Subunit p66: Ile94, Pro95, His96, Pro97, Ala98, Gly99, Leu100, Lys101, Lys102, Lys103, 

Lys104, Ser105, Val106, Thr107, Val108, Ile178, Val179, Ile180, Tyr181, Gln182, Tyr183, Asp186 

(catalytic), Leu187, Tyr188, Val189, Gly190, Ser191, Asp192, His198, Lys223, Glu224, Pro225, 

Pro226, Phe227, Leu228, Trp229, Met230, Tyr232, Glu233, Leu234, His235, Pro236, Asp237, 

Lys238, Trp239, Thr240, Tyr317, Tyr318, and Asp319; 

(b) Subunit p51: Asn136, Asn137, Glu138, and Thr139. 
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Figure 4. (A) Reduced model complex of the RT of HIV-1 (stick model, carbon atoms of 

the p66 subunit in light blue and p51 in green) showing all 53 residues included in the 

radius of 10 Å from the inhibitor MKC-442 (ball-and-stick model, carbon atoms in gray). 

(B) Close view of the reduced model complex, showing only the residues included in the 

radius of 5 Å. 

(A) 

 

(B) 
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Considering the RT catalytic triad (Asp110, Asp185, and Asp186), Asp186 is the only residue 

included in the reduced model complex. In addition, residues Leu100, Lys101, Lys103, Val106, 

Val108, Tyr181, Tyr188, Gly190, Pro225, and Phe227, included in the reduced model complex, 

correspond to NNRTI-associated positions of frequent mutation [4,22,25,67,91]. 

To facilitate the discussion of results about the spatial location of the residues in the reduced model 

complex, we consider also a smaller radius of 5 Å from the ligand, which includes only the following 

residues (Figure 4B): Leu100, Lys103, Val106, Val179, Tyr181, Tyr188, Gly190, Phe227, Trp229, 

Leu234, Pro236, and Tyr318. 

2.2. Overall Analysis of the Best Equations of Databases I to IV 

The best ReLIE-3D-QSAR equation from each database studied (DB-I, DB-II, DB-III and DB-IV, 

Table 2) was selected considering the statistical values and the number of outliers, with the goal to 

select the most representative equation. The statistical indices are shown on Table 3 and the equations, 

on Table 4. 

Table 3. Statistical results of the best equations of DB-I to DB-IV. 

Equation (DB) NTE a q2
adjus 

b q2 c SECV
d PC e r2 f SEE g Outliers h

Eq.E (DB-I) 10  0.660 0.713 0.420 4 0.822 0.500 3 
Eq.J (DB-II) 10  0.606 0.667 0.460 6 0.766 0.600 3 
Eq.L (DB-III) 7  0.594 0.636 0.480 3 0.723 1.180 4 
Eq.Q (DB-IV) 9  0.616 0.669 0.458 6 0.764 0.700 5 

a Number of terms in the equation (NTE); b q2 adjusted; c r2 after cross-validation (q2); d Standard 
deviation after cross-validation (SEcv); 

e Number of principal components (PC); f Quadratic 
correlation coefficient (r2); g Standard deviation of the estimate (SEE); h Number of outlier 
compounds in the data set. 

Table 4. Descriptors selected in the best equations of DB-I to DB-IV. 

Eq.E 
(DB-I) 

pIC50 = 4.853 + 22.417 Ile94LJ + 0.231 Pro97LJ − 0.153 Lys101LJ 
− 0.110 Tyr181LJ − 0.791 Gln182C − 0.122 Tyr188LJ + 0.323 Ser191C 

+ 0.043 Pro226C + 0.087 His235LJ − 56.813 Asn137LJ 

Eq.J 
(DB-II) 

pIC50 = 6.802 + 0.101 Gly99 − 0.244 Tyr183 + 1.202 Leu187 − 0.059 Tyr188 
+ 0.360 Ser191 + 0.822 Glu224 − 0.028 Phe227 − 0.026 Trp229 

+ 0.061 Asp237 + 1.437 Thr139 
Eq.L 

(DB-III) 
pIC50 = 6.257 + 15.851 Ile94LJ − 0.118 Tyr181LJ + 0.101 Pro225C 

+ 3.525 Glu224 + 0.062 His235LJ − 52.568 Asn137LJ − 0.008 Glu138C 

Eq.Q 
(DB-IV) 

pIC50 = 7.706 + 0.151 Gly99C + 1.162 Leu187C − 0.050 Tyr188C 
+ 0.403 Pro225C − 0.238 Pro226C − 0.282 Val179LJ 

+ 0.124 Lys103LJ − 9.989 Asn136LJ − 0.074 Phe227LJ 

Considering the four equations (Tables 3 and 4), Eq.E (DB-I) was the best one, not only for the 

highest explanatory ability (high value of r2 and low value of SEE), but also for the greatest predictive 

ability, both internally (high value of q2 and low value of SECV) (Table 3), in which the compounds of 
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the training set have the lowest residual values, and externally, in which the compounds of the test set 

also showed the lowest residual values (Table 5).  

Table 5. Cross-correlation matrix among the residual values of Equations E, J, L, and Q. 

 Eq.E Eq.J Eq.L Eq.Q
Eq.E 1.000    
Eq.J 0.559 1.000   
Eq.L 0.514 0.434 1.000  
Eq.Q 0.289 0.278 0.474 1.000

The second best equation, Eq.J (DB-II), has the same number of terms (ten) and the same number 

of outliers (three) than Eq.E, however, it has less explanatory and predictive ability (Table 3). 

Equations L (BD-III) and Q (BD-IV), although more economical (showing only seven and nine terms, 

respectively), showed a higher number of outliers (i.e., four and five, respectively). Moreover, in the 

case of Eq.L, the residual values of four outlier compounds (from the test set) are excessively high, 

making this equation the worst of all. Therefore, we can classify Eq.E and Eq.J as the two best 

equations and Eq.L and Eq.Q as the two worst. 

In relation to the Lennard-Jones (LJ) and Coulomb (C) terms contribution (Table 4) on the 

structure-activity relationship (SAR), there is a greater prevalence of the LJ term in both the best 

(Eq.E, seven LJ and three C terms) and the worst equations (Eq.L, four LJ and two C terms), whereas 

in Eq.Q, there is a slight predominance of the C term (four LJ and five C terms). This analysis cannot 

be performed for Eq.J, because the contributions of LJ and C terms are not individualized, i.e. each 

term is the sum of the steric and electrostatic interaction energies. 

Considering all the 53 amino acids contained in the reduced model complex (10 Å radius), 23 

residues, namely Ile94, Pro97, Gly99, Lys101, Lys103, Val179, Tyr181, Gln182, Tyr183, Leu187, 

Tyr188, Ser191, Glu224, Pro225, Pro226, Phe227, Trp229, His235, Asp237, Asn136, Asn137, 

Glu138, and Thr139, appear more frequently in the best equations (E, J, L, and Q, Table 4). This 

indicates that these residues (~43%) are more important in the SAR than the others, independent of the 

kind of term contribution (i.e., steric, electrostatic or combined) related to them. 

Among these 23 residues, one (Tyr188) occurs in three equations (Eq.E, Eq.J, and Eq.Q), and 

eleven occur in two equations, namely Ile94 (Eq.E and Eq.L), Gly99 (Eq.J and Eq.Q), Tyr181 

(Eq.E and Eq.L), Leu187 (Eq.J and Eq.Q), Ser191 (Eq.E and Eq.J), Glu224 (Eq.J and Eq.L), 

Pro225 (Eq.L and Eq.Q), Pro226 (Eq.E and Eq.Q), Phe227 (Eq.J and Eq.Q), His235 (Eq.E and 

Eq.L), and Asn137 (Eq.E and Eq.L). 

In the four equations (Table 4), at least one term is related to one of the amino acid residues of the 

p51 subunit: Asn136 (term Asn136LJ of Eq.Q), Asn137 (term Asn137LJ of Eq.E and Eq.L), 

Glu138 (term Glu138C of Eq.L) and Thr139 (term Thr139 of Eq.J). As it will be discussed in 

details for Eq.E, this fact implies the importance of interchain interaction (p66-p51) in the equations 

that best describe the structure-activity relationship for this class of compounds. 

Additionally, Table 5 shows the cross-correlation matrix between the residual values (pIC50Obs − 

pIC50Pred) calculated for the training set compounds, using the four equations (E, J, L, and Q), so as to 

verify the correlation degree between these models. In such matrix, pairs of equivalent models may 
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have correlated residual values (r close or equal to 1) and may represent the training set in a similar 

manner. Furthermore, pairs of distinct models have residual values not correlated (r < 0.7) [43]. 

Analyzing the data on Table 5, it is observed that, according to this statement, the models are  

not correlated (i.e., they are distinct), as the highest correlation (r = 0.559) occurs between equations E 

and J, which are the two best models, while Eq.Q is the model that shows most divergence from  

the others.  

2.3. Analysis of the Best Equation of BD-I (Eq.E) 

In Eq.E (BD-I) (Tables 3 and 4, Figure 5), each one of the 10 independent variables (steric and 

electrostatic interaction energies calculated by amino acid residue) is represented by the corresponding 

amino acid three letters code, followed by the LJ (Lennard-Jones) or C (Coulomb) designation, which 

indicates that the interaction refers to the steric or electrostatic contribution, respectively. Figure 5 

shows the Eq.E three-dimensional graphic representation, using the most potent NH-DABO, 

compound 59, as example. 

Figure 5. Three-dimensional graphic representation of Eq.E (Tables 3 and 4, DB-I), using 

the most potent NH-DABO, compound 59 (stick-and-ball model colored by element), as 

example. The amino acids residues (stick model) colored in green (Ile94, Pro97, Lys101, 

Tyr181, Tyr188, His235 and Asn137) represent Lennard-Jones contributions and those 

colored in light blue (Gln182, Ser191 and Pro226) represent Coulomb contributions. The 

hydrogen atoms were omitted for better viewing. 

 

It should be noted that residues Lys101, Tyr181, Tyr188, and His235, which are described in  

the literature as often making interactions with several NNRTIs, were selected in this  

equation [20,21,63,92,93]. 

In Eq.E, only three terms (Gln182C, Ser191C, and Pro226C) represent Coulomb contributions, 

while the other seven terms (Ile94LJ, Pro97LJ, Lys101LJ, Tyr181LJ, Tyr188LJ, His235LJ, and 
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Asn137LJ) represent Lennard-Jones contributions. This result indicates a higher importance of the 

steric interaction than of the electrostatic one to the structure-activity relationship, corroborating the 

importance of the steric interaction in the hydrophobic cavity of NNBS as discussed by several authors 

[20,21,92,94]. In addition, the three electrostatic terms (Gln182C, Ser191C, and Pro226C) selected in 

this equation are related to residues that are located outside the radius of 5 Å, as defined previously, 

which might be justified because the electrostatic interaction has a larger range than the steric one. 

The values of pIC50 calculated (predicted) by Eq.E are influenced by the magnitude and the signal 

(+ or −) of the coefficient for each term in the equation and by the signal of the interaction energy 

itself. As an example, the coefficient of the term Tyr181LJ is negative (−0.110) in Eq.E, therefore, 

the steric interaction energy between this residue Tyr181 and a ligand should be negative for this 

energy term to contribute to increase the compound potency; if the interaction energy is positive, the 

term will help reduce the potency of the compound. 

In contrast, the term Ile94LJ presents the positive coefficient (22.417) in Eq.E, therefore, the steric 

interaction energy between this residue Ile94 and a ligand should be positive for this term of energy to 

increase the potency of the compound, if the interaction energy is negative, the term will reduce the 

potency of the compound.  

Figure 6 shows the average values of interaction energy (kcal·mol−1) of compounds 1–74 with the 

residues selected in Eq.E. Most inhibitors presents negative (or close to zero) interaction energies with 

most of the residues of the Eq.E, except with residue Ser191, in which the energy values are negative 

and of greater magnitude for the terms Lys101LJ, Tyr181LJ, Tyr188LJ and Pro226C, with an 

average energy of about −3.8 kcal·mol−1. The terms Pro97LJ and His235LJ, which also represent the 

negative values of energy, have an average energy of about −0.4 kcal·mol−1. Considering these six 

residues with the negative values of energy, the terms Lys101LJ, Tyr181LJ, Tyr188LJ, provide the 

coefficient of negative sign (Eq.E), to increase the potency, while the terms Pro97LJ, Pro226C and 

His235LJ, which have the coefficient of positive sign (Eq.E), contribute to decrease the potency.  

Figure 6. Average interaction energies (kcal·mol−1) of compounds 1–74 with each of the 

selected terms in accordance with Eq.E (DB-I).  
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The terms Ile94LJ, Gln182C and Asn137LJ, providing average energy of interaction close to zero, 

are those with the highest values (modular) coefficients, which allows them to balance the weight in 

relation to other terms in Eq.E. It is also interesting to note that these three terms are related to 

residues that may be found outside the radius of 5 Å, which may also explain the lower interaction 

energy (modular) we were able to calculate. 

Finally, the term Ser191C (Eq.E) is the only one that shows average values of positive interaction, 

which correspond to a repulsive electrostatic interaction, i.e., negative, with a value close to 0.3 

kcal·mol−1. Curiously, this term contributes to the increase in the potency, since it presents positive 

coefficient in Eq.E. Other authors have reported positive steric and electrostatic interaction energies 

for other systems [92]. 

Concerning the frequently mutated residues in RT related to NNRTIs, three of them were selected 

in Eq.E related to the terms Lys101LJ, Tyr181LJ and Tyr188LJ. As these three terms have negative 

steric interaction energy values and also negative coefficients in Eq.E, all contribute to increase  

the potency.  

Interestingly, after the mutation of Lys101Gly into the wild-type RT, the oxygen atom of the amide 

group’s main chain of Lys101 was capable of making hydrogen interaction (2.85 Å) with the -NH 

group of the 4-oxo-pyrimidine inhibitors, as shown in Figure 7 for compound 59. Additionally, the 

protonated amine side chain of this residue belonging to subunit p66 was able to make ionic interaction 

with the carboxylate group of the side chain of Glu28 (about 5 Å away) and Glu138 (at around 6.5 Å 

away), both belonging to the p51 subunit, and responsible, therefore, for interchain interactions (p66-p51).  

Figure 7. Three-dimensional graphic representation of Eq.E (Tables 3 and 4, DB-I), using 

the most potent NH-DABO, compound 59 (stick-and-ball model colored by element), 

highlighting the frequently mutated residues Lys101, Tyr181, and Tyr188 (stick model 

colored by element). The arrow indicates a possible hydrogen interaction between 59 and 

Lys101. The residues (stick model) colored in green (Ile94, Pro97, His235, and Asn137) 

and by element (Lys101, Tyr181, and Tyr188) represent Lennard-Jones contributions and 

those colored in light blue (Gln182, Ser191, and Pro226) represent Coulomb 

contributions. The hydrogen atoms were omitted for better viewing. 

2,85 Å2.85Å
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It’s curious that after the change into Gly101, the interaction between the residue and the hydrogen 

atom of the inhibitor could be maintained, since it involves the main chain's residue, which is not 

changed. However, the corresponding interchain interactions, which depend on the side chain of 

residue, were lost, affecting the composition of the NNBS (referring to the residue of the p51 subunit). 

The interchain interactions are important for the dimerization process of the RT and it is composed by 

residues from p66 and p51 [95]. 

In the best four equations, we have found at least one term that is related to an amino acid residue 

of the p51 subunit: Asn136 (Eq.Q), Asn137 (Eq.E), Glu138 (Eq.L), and Thr139 (Eq.J). Both 

Asn136 and Asn137 are highly conserved among the heterodimeric RTs, e.g., HIV-1, HIV-2 and 

simian immunodeficiency virus [95]. This fact points to a defined (but as yet unidentified) functional 

and/or structural role for these residues. The highly conserved Asn136 is in close proximity to the 

NNRTI lipophilic pocket of HIV-1 RT. Site-directed mutagenesis has revealed that the catalytic 

activity of HIV-1 RT mutated at position Asn136 is heavily compromised [95]. Only 0.07 to 2.1% of 

wild-type activity is retained, depending on the nature of the amino acid change at position 136 [95]. 

Furthermore, the mutations Tyr181Cys and Tyr188Leu belong to a more common case, in which 

the exchange between the residue affects directly the protein-ligand interaction, and not, as in the 

previous case, indirectly. In both mutations there is a loss of the π-π-stacking interactions between the 

side chain aromatic ring of Tyr181 and Tyr188 with the inhibitors aromatic ring, reducing the affinity 

for the NNBS [92,94]. 

2.4. Analysis of Residual Values of the Best Equation of DB-I (Eq.E)  

Table 6 shows the pIC50 (M) values observed (experimental) and predicted by Eq.E and their 

residual values (pIC50Obs − pIC50Pred) for the training (1–59) and test (60–74) sets.  

Table 6. Values of pIC50 observed, predicted and residual values (pIC50Obs − pIC50Pred) for 

the training (1–59) and test (60–74) sets according to the Eq.E (DB-I). 

# pIC50Obs pIC50Pred Res # pIC50Obs pIC50Pred Res 
1 4.23 4.23 0.00 38 6.10 5.95 0.15 
2 4.31 4.34 −0.03 39 6.10 6.09 0.01 
3 4.35 4.30 0.05 40 6.10 5.96 0.14 
4 4.59 5.41 −0.82 41 6.10 6.66 −0.56 
5 4.77 4.97 −0.20 42 6.22 6.27 −0.05 
6 4.79 5.35 −0.56 43 6.22 6.47 −0.25 
7 4.83 5.14 −0.31 44 6.22 5.87 0.35 
8 4.83 4.94 −0.11 45 6.30 6.04 0.26 
9 5.02 4.99 0.03 46 6.40 6.15 0.25 
10 5.07 5.37 −0.30 47 6.70 6.73 −0.03 
11 5.09 4.94 0.15 48 6.70 6.42 0.28 
12 5.27 5.24 0.03 49 6.70 6.56 0.14 
13 5.31 5.88 −0.57 50 6.92 6.48 0.44 
14 5.31 5.03 0.28 51 7.00 6.89 0.11 
15 5.32 5.79 −0.47 52 7.00 7.25 −0.25 
16 5.34 5.19 0.15 53 7.05 6.88 0.17 
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Table 6. Cont. 

# pIC50Obs pIC50Pred Res # pIC50Obs pIC50Pred Res 
17 5.37 5.67 −0.30 54 7.05 6.98 0.07 
18 5.42 5.24 0.18 55 7.10 6.45 0.65 
19 5.44 5.38 0.06 56 7.10 6.86 0.24 
20 5.47 5.42 0.05 57 7.15 6.61 0.54 
21 5.49 5.60 −0.11 58 7.30 7.51 −0.21 
22 5.52 5.59 −0.07 59 7.52 6.68 0.84 
23 5.52 6.04 −0.52 60 4.35 5.18 −0.83 
24 5.52 5.57 −0.05 61 4.48 5.01 −0.53 
25 5.54 5.53 0.01 62 5.27 6.03 −0.76 
26 5.55 5.16 0.39 63 5.47 5.88 −0.41 
27 5.59 5.61 −0.02 64 5.59 5.60 −0.01 
28 5.60 6.00 −0.40 65 5.60 5.08 0.52 
29 5.60 5.87 −0.27 66 5.62 6.02 −0.40 
30 5.62 5.23 0.39 67 5.74 4.68 1.06 
31 5.66 5.38 0.28 68 5.92 5.13 0.79 
32 5.72 5.40 0.32 69 6.22 8.52 −2.30 
33 5.80 6.37 −0.57 70 6.40 5.28 1.12 
34 5.89 4.23 −0.34 71 6.70 7.14 −0.44 
35 5.94 4.34 0.60 72 7.05 6.92 0.13 
36 5.94 6.50 −0.56 73 7.15 6.35 0.80 
37 5.96 5.75 0.21 74 7.30 7.06 0.24 

For the training set (1–59), Table 6 shows that 81% of the residual values of compounds were lower 

than 0.50 (in modular values). Moreover, no compound of the training set is classified as an outlier, 

since none presented residual values greater than twice the standard error of estimate of the Eq.E (2 × 

0.500 = 1.00). This shows an excellent internal predictive ability of the model. Figure 8A shows the 

residual values of the training set compounds as a graphic bar. 

Figure 8. Residual values of compounds of the (A) training (1–59) and (B) test (60–74) 

sets according to the Eq.E (DB-I). 
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Figure 8. Cont. 
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For the test set compounds (60–74), 40% have residual values lower than 0.50, while three 

compounds are considered outliers (67, 69 and 70). Figure 8B shows residual values of the test set 

compounds as a graphic bar. It is important to emphasize that the residual values from both training 

and test sets showed random variations along the predicted potency. This means that the model is not 

biased to a higher or lower value of activity. 

2.5. Analysis of Outliers of Eq.E (DB-I)  

As mentioned earlier, with relation to Eq.E, three outliers were identified (67, 69, and 70), all of 

them from the test set (Table 1). Compounds 67 (residue = 1.06) and 70 (residue = 1.12) have 

predicted potencies lower than the experimental ones, while the compound 69 (residue = −2.30) has a 

predicted potency higher than the experimental one. 

In the descriptors (interaction energies) selected in Eq.E, the terms which have more variation are 

Tyr181LJ and Gln182C related to steric and electrostatic contributions, respectively. For Tyr181LJ, 

the energy values obtained were: −2.540 kcal·mol−1 for compound 67, −7.517 kcal·mol−1 for 

compound 69 and 1.620 kcal·mol−1 for compound 70. This term has a negative coefficient (−0.110) in 

Eq.E, increasing the potency, something that may justify the higher potency predicted for 69, since the 

aromatic ring of residue Tyr181 makes hydrophobic π-π-stacking interactions with the aromatic rings 

of NNRTIs, as described above. However, it remains unclear why similar compounds containing the 

nitro substituent in para (30) or meta (43) position (Table 1) are not outliers, while 69 (ortho-nitro) is 

an outlier. 

For Gln182C, which also has a negative coefficient (−0.791) in Eq.E, increasing the potency, the 

behavior seems similar to the previous term, but with less intensity, since the energy values obtained 

are as follows: 0.188 kcal·mol−1 (67), −0.606 kcal·mol−1 (69), and 0.097 kcal·mol−1 (70). 

2.6. Analysis of MKC-442 According to Eq.E (DB-I)  

The potency of the compound MKC-442, which belongs to the class of HEPTs, was predicted by 

Eq.E, as an additional external validation test, since this compound is not part of the database of 
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DABOs. This was done because this compound was used as template in the construction and 

alignment of the DABOs in the NNBS (X-ray structure PDB 1RT1). 

Thus, according to Eq.E, the compound MKC-442 has a predicted potency lower than the 

experimental one (pIC50 = 6.68 M), since the value of IC50Obs for this compound is 0.04 M [64], i.e., 

pIC50Obs = 7.40 M. Consequently, the residual value is equal to −0.72, which is less than twice the SEE 

of Eq.E, indicating that the compound was well predicted. 

2.7. Analysis of the Cross-Correlation Matrix among the Eq.E Descriptors (DB-I) 

The analysis of the cross-correlation matrix between the terms of Eq.E (Table 7) shows that there is 

no significant correlation between the various descriptors (steric and electrostatic interaction energies), 

since there was no value of r (linear correlation coefficient) higher than 0.70 (in modular value) [31]. 

This shows that each descriptor brings unique information to the model, therefore, there is not 

redundant information in this equation. The highest correlation is found between the terms Tyr181LJ 

and Tyr188LJ (r = 0.543), probably due to the spatial proximity between these residues in the 

corresponding NNBS and due to the same type of amino acid (Tyr) being involved. 

Table 7. Cross-correlation matrix among the Eq.E descriptors. 
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Pro97 
LJ 

Lys101 
LJ 

Tyr181 
LJ 

Gln182 
C 

Tyr188 
LJ 

Ser191
C 

Pro226 
C 

His235
LJ 

Asn137 
LJ 

Ile94 
LJ 

1.000          

Pro97 
LJ 

−0.126 1.000         

Lys101 
LJ 

0.155 −0.122 1.000        

Tyr181 
LJ 

0.354 0.039 −0.131 1.000       

Gln182 
C 

0.238 −0.107 0.116 −0.073 1.000      

Tyr188 
LJ 

0.176 0.169 −0.212 0.543 −0.243 1.000     

Ser191 
C 

0.086 0.001 0.260 0.194 0.043 0.166 1.000    

Pro226 
C 

0.204 −0.083 0.214 0.200 0.056 0.029 0.313 1.000   

His235 
LJ 

0.080 0.131 −0.087 −0.030 −0.203 −0.037 −0.320 −0.214 1.000  

Asn137 
LJ 

0.435 −0.011 −0.099 0.036 0.216 0.012 −0.055 −0.012 0.135 1.000 

2.8. Comparison of CoMFA (RI-3D-QSAR) and ReLIE (RD-3D-QSAR) Models 

Recently, we reported a CoMFA (RI-3D-QSAR) model [62], using this same series of DABO 

derivatives. In short, the best CoMFA model was built with PM3 charges, default cutoff of 30 
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kcal·mol-1 for both steric and electrostatic fields, sp3 carbon atom with +1 charge as the probe atom 

and the grid spacing of 2.0 Å. This model showed good internal consistency in terms of r2 and SEE 

and good predictive ability (q2 = 0.691). In this study, the alignments, the partial atomic charges, the 

cutoff, and the probe atoms had little influence on the resulting statistical values and, consequently, on 

the models. 

The most important structural conclusions from the CoMFA study were the restriction in the 

volume of the substituent at position C2 of the 4-oxopyrimidine ring (Table 1), more bulky 

substituents in position C5 and the presence of electron-rich groups in the position C6 of the aromatic 

ring, which increase biological activity, making these areas important sites for future structural changes.  

The pharmacoforic hypothesis proposed in the ReLIE study was based on MKC-442 conformation 

and orientation in the NNBS. It was validated by the good statistical results obtained. The best model, 

Eq.E (DB-I), shows q2 = 0.660, and the external predictive ability was evaluated using a test set of 15 

compounds, the same used in the CoMFA. 

Although the CoMFA model is little more predictive than the ReLIE model, the incorporation of 

the X-ray data of protein-ligand complex in the ReLIE studies provided a more detailed interpretation 

of the contour maps of CoMFA, leading also to better understanding of the interaction of the complex. 

3. Conclusions 

In this work, we built and evaluated the first residue-ligand interaction energy (ReLIE) receptor-

dependent 3D-QSAR model of a series of S- and NH-DABOs as HIV-1 reverse transcriptase non-

nucleoside inhibitors, where the descriptors are the steric and electrostatic interaction energies between 

ligands and residues from the protein-ligand complexes simulated by molecular dynamics. 

The pharmacoforic hypothesis, based on MKC-442 conformation and orientation in the NNBS, was 

validated by the good statistical results obtained. In the four best equations, at least one term is related 

to one of the four amino acid residues of the p51 subunit: Asn136, Asn137, Glu138, and Thr139. This 

fact implies the importance of interchain interaction (p66-p51) in the equations that best describe the 

structure-activity relationship for this class of compounds. The best model, Eq.E (DB-I), shows q2 = 

0.660, SEcv = 0.500, PC = 6, r2 = 0.930, and SEE = 0.226, and the external predictive ability was 

evaluated using a test set of 15 compounds. The model interpretation was consistent with the 

crystallographic data and highlighted important amino acids that interact with DABOs, which are 

Ile94, Pro97, Lys101, Tyr181, Gln182, Tyr188, Ser191, Pro226, and His235. 

The steric interaction energy descriptor has more prevalence than the electrostatic one, since it is 

more present in the best equations for each DB, highlighting the importance of hydrophobicity in the 

SAR of this series of inhibitors. 

Comparing this work with a recent CoMFA (RI-3D-QSAR) study published by our group using the 

same set of compounds used here, we find that the ReLIE (RD-3D-QSAR) study provides much more 

valuable information than CoMFA. This information can be used in structure-activity relationship of 

this class of compounds, and the equations can be used for the prediction of other compounds that 

belong to the same class of DABOs. 
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Also, given the importance of the conserved Asn136 and Asn137, these residues therefore could 

become an attractive target for the design of novel NNRTIs with improved potency and increased 

ability to avoid development of drug-resistant viruses. 
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