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Major depression is the commonest psychiatric disorder and in the U.S. has the greatest impact of all
biomedical diseases on disability. Here we review evidence of the genetic contribution to disease suscepti-
bility and the current state of molecular approaches. Genome-wide association and linkage results provide
constraints on the allele frequencies and effect sizes of susceptibility loci, which we use to interpret the vol-
uminous candidate gene literature. We consider evidence for the genetic heterogeneity of the disorder and
the likelihood that subtypes exist that represent more genetically homogenous conditions than have hitherto
been analyzed.
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Introduction
A lot is being asked of the genetic analysis of major depression

(MD): to find the biological underpinnings of one of the common-

est psychiatric illnesses and one of the world’s leading causes of

morbidity. While lifetime prevalence estimates vary, from 3% in

Japan to 16.9% in the U.S., in all countries the disorder is com-

mon, with a frequency typically varying from 8% to 12% (Demyt-

tenaere et al., 2004; Kessler et al., 2003). In the U.S., MD has the

greatest impactof all biomedical diseasesondisability; inEurope,

it is the third leading cause of disability (Alonso et al., 2004b; Nier-

enberg et al., 2001; Penninx et al., 2001; Ustün et al., 2004).

Despite its prevalence and MD’s enormous burden on our

health care systems (Scott et al., 2003), our treatments are

almost entirely symptomatic. There is even dispute about the

value of medication (Khin et al., 2011; Kirsch et al., 2008; Turner

et al., 2008; Vöhringer and Ghaemi, 2011) and psychological

therapies (Cuijpers et al., 2008, 2010, 2011). Genetic analysis,

by identifying risk variants and thereby increasing our under-

standing of how MD arises, could lead to improved prevention

and the development of new and more effective therapies.

Although genetic analysis has identified risk loci formany other

common medical diseases (Hindorff et al., 2009), success has

yet to visit MD. In this Review, we consider what has so far

been learnt, consider reasons for the difficulties encountered,

and propose how these might be overcome. We start by review-

ing evidence from the genetic epidemiology literature relevant to

the genetic basis of MD. We then consider what genome-wide

association studies (GWASs) have told us. The GWAS results

are particularly important for interpreting the large, forbidding

literature on candidate gene studies, which we review next. In

addition, GWAS findings inform us about the extent to which

rare but more highly penetrant genetic variants might contribute

to liability to MD. We finally examine whether there exist forms of

MD that might be more genetically homogeneous and consider

how these might be identified.

Genetic Epidemiology
Studies showing thatMD aggregates within families date back to

the early decades of the 20th century (reviewed in Tsuang and
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Faraone, 1990). Meta-analysis of the highest-quality family

studies produced an estimated odds ratio for increased risk for

MD in first-degree relatives of MD probands of 2.84 (Sullivan

et al., 2000). Surprisingly, no high-quality adoption study of MD

has been performed, so our evidence of the role of genetic

factors in its etiology comes solely from twin studies. While the

first of these also date to early in the 20th century, only six

high-quality studies were identified in the Review completed in

2000 (Sullivan et al., 2000). Meta-analysis estimated heritability

for MD to be 37% (95% confidence intervals 31–42). There

was no evidence from these studies that shared environmental

factors contributed meaningfully to the familial aggregation for

MD. One particularly large-sample twin study of MD estimated

the heritability of MD at 38% (Kendler et al., 2006).

Epidemiological studies of MD have consistently shown a

higher prevalence rate for women (Weissman et al., 1993,

1996). Therefore, twin researchers have been interested in

asking whether the heritability of MD differs across sexes and,

more interestingly, whether the same genetic factors impact on

risk for MD in men and women. The two major studies that

have addressed this question found reassuringly similar answers

(Kendler et al., 2001, 2006). In both studies, MD was appreciably

more heritable in women than in men (40% versus 30% and 42

versus 29%, respectively) and clear evidence was found for

sex-specific genetic effects with genetic correlations estimated

at +0.55 and +0.63. A substantial proportion of genetic risk

factors for MD appeared to be shared in men and women. How-

ever, these results also predict that when the individual genetic

variants that impact on risk for MD are definitively characterized,

an appreciable proportion of themwill be relatively sex specific in

their effect.

Genome-wide Association Studies
Table 1 summarizes the nine published genome-wide associa-

tion studies for MD. GWASs are typically carried out in two

stages: a discovery phase, in which the entire genome is

screened, and a replication phase, in which a subset of SNPs

are tested in an independent cohort. Some studies report the

replication and discovery results separately; others combine
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Table 1. Summary of Genome-wide Association Studies of Major Depression

Sample

Origin Sample Cases Controls SNPs Phenotype Marker OR p Value Position

Lewis et al., 2010

UK Discovery 1,636 1,594 471,747 RMD rs9416742 0.719 1.30 3 10�7 chr10:60542444

UK Meta 1,418 1,918 – – rs606149 1.248 2.57 3 10�6 chr1:193921298

Muglia et al., 2010

Europe Meta (two

samples)

1,359 1,782 494,678 RMD rs4238010 0.58 5.80 3 10�6 chr12:4118067

Sullivan et al., 2009

Netherlands Discovery 1,738 1,802 435,291 MD rs2715148 0.79 7.70 3 10�7 chr7:82449785

Netherlands Replication 6,079 5,893 – – rs2715148 NA 8.20 3 10�1 chr7:82449785

Shyn et al., 2011

U.S. Discovery 1,221 1,636 382,598 RMD 901;

MD 735

rs12462886 0.76 1.73 3 10�6 chr19:29263440

U.S. Meta 3,957 3,428 – – rs1106634 1.295 6.78 3 10�7 chr8:20065799

Shi et al., 2011

U.S. Discovery 1,020 1,636 671,421 RMD 1,000;

MD 20

rs17077450 1.61 1.83 3 10�7 chr18:65285279

Wray et al., 2012

Australia/

Europe/U.S.

Discovery 2,431 3,673 1,251,157 RMD 1,145;

MD 1,286

rs182358 0.78 8.80 3 10�6 chr1:97462900

Australia/

Europe/U.S.

Meta 5,763 6,901 – – rs12446956 1.22 1.10 3 10�6 chr16:73501786

Ripke et al., 2013b

Australia/

Europe/U.S.

Discovery 9,240 9,519 1,235,109 RMD/MD rs11579964 0.846 1.00 3 10�7 chr1:224538690

Australia/

Europe/U.S.

Replication 6,783 50,695 – – rs1969253 1.049 4.79 3 10�6 chr3:183876262

Kohli et al., 2011

Europe/U.S. Discovery 353 366 365,676 MD/RMD rs1545843 2.84 5.53 3 10�8 chr12:84563818

Europe/U.S. Replication 3,738 10,635 – – rs1545843 1.315 1.40 3 10�9 chr12:84563818

Rietschel et al., 2010

German Discovery 604 1,364 491,238 MD rs2765493 1.45 2.26 3 10�7 chr1:157797750

German Meta 1,013 1,905 – – rs7713917 0.75 1.48 3 10�6 chr5:78828999

This table gives the number of cases and controls for each GWAS and summarizes results. The sample sizes listed are those used in the discovery

phase, replication, and meta-analyses (meta). The number of SNPs given is that used in the association analysis, which in some cases (Wray et al.,

2012; Ripke et al., 2013b) includes imputed data. The highest scoring markers are listed for each study, with their odds ratio (OR) and chromosomal

location. Studies used different inclusion criteria; these are summarized under the column headed phenotype, in which ‘‘RMD’’ is recurrent major

depression and ‘‘MD’’ is major depression. Where provided, the numbers of each phenotypic category are listed.
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the p values of all studies (including the discovery sample) in a

meta-analysis. Information on sample sizes for the two phases

is shown in Table 1.

A simple summary of Table 1 is that nothing significant has

been found and indeed many of the papers and reviews of this

field make that point (e.g., Cohen-Woods et al., 2013). However,

one paper claims a genome-wide significant association: a

marker within a gene desert on chromosome 12 (Kohli et al.,

2011). We need to consider not only whether this finding is likely

to be true, but also whether the negative findings are meaningful.

In short, how do we assess false-positive and false-negative

rates in Table 1?

Interpreting the results presented in Table 1 requires an under-

standing of what GWAS detects. GWAS interrogates common
variation in the genome, usually variants with frequencies greater

than 5%, and typically requires a genome-wide significance

threshold of 53 10�8 (Pe’er et al., 2008) (this threshold depends

on a number of factors, including the number of variants tested,

also listed in Table 1). For the diallelic SNPs that are genotyped

on GWAS arrays, allele frequencies are usually reported as the

frequency of the least common allele (which will always be

<0.5). This is the minor allele frequency (MAF).

Genotypes from dense sets of SNPs are partially, and locally,

correlated (Sachidanandam et al., 2001). The pattern of correla-

tion is nonrandom, since recombination does not occur uni-

formly across the genome but is localized to hotspots (McVean

et al., 2004), giving rise to blocks of linkage disequilibrium. The

extent of linkage disequilibrium (that is to say the degree of
Neuron 81, February 5, 2014 ª2014 Elsevier Inc. 485
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Figure 1. Power to Detect a Locus using GWAS
Simulated data are plotted to assess power under two different sets of con-
ditions: varying the size of the locus effect (expressed as an odds ratio [OR])
and varying the number of loci used in the GWASs. Results are shown for an
Affymetrix 500K array (which yields approximately 400,000 useful genotypes
per individual) and simulations using all variants in HapMap (release 2). The
simulations are taken from Spencer et al. (2009). The significance level was set
at 5 3 10�8. Sample size is shown for the number of cases required; the
simulations assume an equal number of controls.
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correlation between markers) is one determinant of the ability of

a set of markers on a genotyping array to detect genetic signal.

An important consequence is that genotyping only a subset of

loci captures most of the common variation in the genome.

Conversely, if a causative variant is not correlated with any

markers on a genotyping array, it cannot be detected. The

degree to which genotyping arrays capture genomic information

is partly population specific, because population history affects

the extent of linkage disequilibrium. Thus, linkage disequilibrium

tends to increase the further away a population is from Africa

(Conrad et al., 2006), consistent with the hypothesis that humans

migrated out of Africa, experiencing severe population bottle-

necks on the way to colonizing the rest of the world (DeGiorgio

et al., 2009; Jakobsson et al., 2008). Standard GWAS

approaches do not work so well in African populations (Teo

et al., 2010).

One explanation for the failure of GWAS applied to MD might

be that the causative variants, or markers sufficiently close to

them, have not been genotyped on the available arrays. In fact,

due to the blocks of linkage disequilibrium, in non-African popu-

lations GWAS is remarkably effective at detecting a large fraction

of common variants of reasonable effect size (odds ratios greater

than 1.2) that contribute to complex traits, even though a very

small fraction of the total amount of sequence variation segre-

gating in a population is actually genotyped. To illustrate this,

Figure 1 shows the results of simulations that compare GWAS
486 Neuron 81, February 5, 2014 ª2014 Elsevier Inc.
carried out using an Affymetrix 500K genotyping array, with the

results from using all the variants in HapMap (Frazer et al.,

2007). Even this relatively sparse array (current platforms interro-

gate millions of variants) has power of 82% (for a sample size of

9,000) to detect a locus with an odds ratio ofR1.2, compared to

88% with the complete set of SNPs (9,240 is the largest discov-

ery sample size used in GWAS of MD [Ripke et al., 2013b]). In

other words, differences in coverage between chips do not

translate into big differences in power. Furthermore, imputation

(Howie et al., 2009) using the very high density of variants

available from the 1000 Genomes Project (Abecasis et al.,

2010), has further extended the scope of genotyping arrays to

interrogate millions of ungenotyped variants. In short, failure of

GWAS to detect common variants (MAF > 5%) conferring risk

to MD is unlikely to be due to insufficient information about these

variants from genotyping arrays.

The most likely explanation for the failure of GWAS for MD is

that studies have been underpowered to detect the causative

loci (Wray et al., 2012). While GWAS coverage of common vari-

ants is good, GWAS requires large sample size in order to obtain

adequate power to detect variants of small effect (odds ratios

less than 1.2). In the following sections, we treat with common

variants and the power of GWAS (and candidate gene studies)

to find them. We turn later to the detection of rare variants of

larger effect.

Figure 1 demonstrates the nonlinear relationship between

sample size and effect size for common variants. To detect loci

with an odds ratio of 1.1 or less, sample sizes in the tens of thou-

sands will be required (note that this depends on the prevalence

of the disease; in the following discussions, we assume that MD

has a prevalence of 10%). Table 1 shows that the largest GWAS

forMDused 9,240 cases and 9,519 controls (Ripke et al., 2013b).

Figure 1 shows that such a sample has �90% power to detect

loci with an odds ratio ofR1.2; it will detect effects of this magni-

tude or greater at more than 93% of all known common variants.

Note that the one positive finding reported in Table 1 is an outlier:

no other GWAS detected the signal (Kohli et al., 2011). The study

used a discovery sample of 353 cases and 366 controls to

detect, at genome-wide significance, an association between

MD and a marker next to the SLC6A15 gene (Kohli et al.,

2011). Without further replication, the status of this finding is

dubious and is likely to be a false positive.

While Table 1 only includes GWASs of MD, there are also a

number of studies of phenotypes that are genetically related to

MD, such as the personality trait of neuroticism (Kendler et al.,

1993; Shifman et al., 2008) or depressive symptoms (Foley

et al., 2001; Hek et al., 2013). These studies are also negative.

The largest is a study of depressive symptoms in 34,549 individ-

uals that reports one, unreplicated, p value of 4.78 3 10�8.

Overall, we can conclude that no study has robustly identified

a locus that exceeds genome-wide significance for MD or genet-

ically related traits. We can also conclude that GWAS results

have set some constraints on the effect sizes likely to operate

at common variants contributing to susceptibility to MD.

Candidate Genes
Candidate gene studies of MD have generated many publica-

tions but few robust findings. At the time of writing (2013),
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searching for articles dealing with genetic association and MD

returned more than 1,500 hits. Almost 200 genes have been

subject to testing, many by multiple groups (Bosker et al.,

2011; López-León et al., 2008). The difficulty, common in this

area of research, is that few groups agree with each other.

Resolution of conflicting results is usually attempted through

meta-analysis and Table 2 summarizes data for 26 genes

analyzed by meta-analysis, of which seven yield a significant

(p < 0.05) result: 5HTTP/SLC6A4, APOE, DRD4, GNB3,

HTR1A, MTHFR, and SLC6A3.

We can use the results from Table 1 to interpret the results

presented in Table 2. First, we note that the mean effect size

(expressed as an odds ratio) across the studies that report a

significant effect is 1.35. Second, all of the variants tested,

whether significant or not, are common; none have an MAF

less than 10%, and the mean is 38% (column headed MAF in

Table 2). This means that the results of GWAS are relevant (recall

that GWAS interrogates common variants). Virtually all of the

candidate variants should be detectable by the published

GWAS, particularly if imputation is used to obtain data from

markers not present on the arrays (Howie et al., 2009) (Figure 1).

The fact that the candidate variants do not occur in Table 1 sug-

gests that the results in Table 2 are false positives (recall that the

largest published GWAS has greater than 80% power to detect

an odds ratio greater than 1.2).

Most GWASs include a section reporting the analysis of vari-

ants in candidate genes, and by providing a much larger sample

size than almost any of the meta-analyses listed in Table 2, their

findings are likely to be more robust than the meta-analyses.

Boomsma and colleagues tested 92 SNPs in 57 candidate genes

in a GWAS sample of 1,738 cases and 1,802 controls (Bosker

et al., 2011). Two SNPs (in C5orf20 [Willis-Owen et al., 2006]

and in NPY [Heilig et al., 2004]) scored p values less than 0.05,

where four would have been expected by chance. The finding

is therefore compatible with no effect at any locus tested. At

the gene level (testing for enrichment of significant SNPs), two

genes passed the 5% threshold, TNF (Jun et al., 2003) and the

norepinephrine transport (NET) (Inoue et al., 2004), again

compatible with chance expectations. Wray and colleagues

tested 180 candidate genes, and after correcting for the number

of tests carried out, found that no candidate gene was signifi-

cantly associated (Wray et al., 2012).

Table 2 shows the power of each meta-analysis, using the

effect size estimated from each meta-analysis (Purcell et al.,

2003) and assuming a disease prevalence of 10%. The mean

odds ratio estimated over all candidate gene meta-analyses is

1.15, requiring a sample size of greater than 3,000 cases. Only

six meta-analyses use sample sizes in excess of 3,000, and

just two of these six reported a significant finding. Note that for

those studies reporting a significant result, the mean power

was only 60%.

In summary, the data from Table 2 are consistent with a lack of

significant findings in any candidate gene meta-analysis. More-

over, the meta-analyses discussed here represent less than a

quarter of all the genes tested in the literature (and a smaller frac-

tion of the variants). With lower sample sizes than reported in the

meta-analyses, the findings for individual genes are weaker than

for those reported in Table 2.
However, lack of evidence does not mean an effect can be

excluded; the negative findings are also compatible with a lack

of power to detect an effect. In fact, as we discuss below, esti-

mates of the likely number of genetic variants contributing to

MD risk run into the thousands. Given that about 18,000 genes

are expressed in the brain (Lein et al., 2007), it would not be

surprising if some of the candidates in Table 2 are true risk

variants, but nowhere near the effect size currently considered

plausible. This raises the question, so far unanswered, at what

point can we say a candidate has been excluded.

Nevertheless the conclusion is straightforward: candidate

gene studies provide little convincing support for the involve-

ment of any candidate gene in MD. This point should be born

in mind by all those wishing to use association data to support

a particular explanation of the biological causes of depression.

Neuroscientists sometimes claim that genetic results can be

interpreted as evidence in favor of their particular theory (Duman

et al., 1997; Holsboer, 2000; Luscher et al., 2011; Samuels and

Hen, 2011). Any such claims should be treated with extreme

caution.

The Contribution of Common Variants to Disease Risk
GWAS data can be used to constrain further the likely genetic

architecture of MD, by using marker results that do not reach

genome-wide significance. This is important because it might

be that the genetic architecture of MD consists primarily of

rare but relatively large effect loci. For example, it could be that

there are many susceptibility alleles with frequencies much

less than 5% and odds ratios greater than 3. Nothing we have

so far said has excluded this possibility. However, GWAS results

make that extremely unlikely, as can be appreciated from the

following argument.

Suppose that the genetic architecture of MD consists of

many small-effect loci, smaller than can be detected at

genome-wide significance by currently available samples. For

example, suppose the odds ratio for these risk variants are

1.05 and suppose the variants have a frequency of 50% (alleles

with a higher frequency are easier to detect, so this is a conser-

vative assumption). Power to detect a single variant of this

effect size at this frequency in a sample size of 10,000 cases

and 10,000 controls is less than 0.001%, at a p value of 1 3

10�7 and disease prevalence of 10% (Purcell et al., 2003).

But there is a 67% chance that such a variant will have a

p value less than 0.5. This means that if all SNPs are ranked

by their p values, then p values less than 0.5 will be enriched

with SNPs that contribute to disease susceptibility. In other

words, if there are small-effect variants contributing to MD,

then the distribution of SNP p values will depart from null ex-

pectations. This method is referred to as polygenic scoring

and has been used to investigate the polygenic nature of com-

plex traits.

A second class of method uses the SNP data to estimate

genetic similarity and thereby assess heritability. GWAS SNPs

are common variants, shared by descent from common ances-

tors. Regions of the genome contributing to disease susceptibil-

ity will be enriched among those with the same disease. The

degree of sharing of common variants will reflect the heritability

of the trait, at least that portion due to such common variation.
Neuron 81, February 5, 2014 ª2014 Elsevier Inc. 487



Table 2. Candidate Gene Meta-analyses

Reference

Number of

Studies

Number of

Cases

Number of

Controls p Value OR 95% CI Variant MAF Power

Number for

80% Power

5-HTR2A

Anguelova et al., 2003 7 768 959 0.597 0.96 0.84–1.11 rs6311 0.44 6.2% 55,781

Jin et al., 2013 11 1,491 2,937 0.12 NA NA rs6311 0.44 NA NA

5HT-6R

Fukuo et al., 2010 4 701 2,422 0.406 0.94 0.80–1.08 rs1805054 0.17 8.4% 19,021

5HTTLPR/SLC6A4

Clarke et al., 2010 39 6,836 14,903 0.007 1.09 1.02–1.16 44 bp ins/del 0.43 65.8% 9,575

Anguelova et al., 2003 11 941 2,110 0.198 1.08 0.96–1.22 44 bp ins/del 0.43 12.3% 11,958

Anguelova et al., 2003 10 592 2,094 >0.5 NA NA intron 2 VNTR 0.35 NA NA

Furlong et al., 1998 4 275 739 0.049 1.2 1.00–1.45 44 bp ins/del 0.43 17.3% 2,112

Lasky-Su et al., 2005 14 1,961 3,402 0.28 1.05 0.96–1.14 44 bp ins/del 0.43 10.5% 32,911

López-León et al., 2008 22 3,752 5,707 <0.05 1.11 1.04–1.19 44 bp ins/del 0.43 51.6% 7,356

López-León et al., 2008 8 NA NA NS 1.33 0.78–2.27 intron 2 VNTR 0.35 NA NA

ACE

Wu et al., 2012 15 2,479 7,744 NS 1.15 1.02–1.3 Ins/del intron 16 0.45 65.9% 3,465

López-León et al., 2006 4 586 5,169 >0.1 0.85 0.55–1.3 Ins/del intron16 0.45 33% 1,992

López-León et al., 2008 8 NA NA NS 1.08 0.97–1.2 Ins/del intron16 0.45 NA NA

BDNF

Gyekis et al., 2013 3 331 688 0.103 0.83 0.67–1.04 rs16917204 0.24 20.7% 2,001

Gyekis et al., 2013 2 285 746 0.527 1.16 0.74–1.82 rs2030324 0.46 22.5% 2,340

Gyekis et al., 2013 2 777 1,541 0.831 0.98 0.85–1.14 rs988748 0.26 5.4% 193,287

Gyekis et al., 2013 23 4,173 12,747 0.402 0.96 0.89–1.05 rs694 0.43 14.1% 43,058

Chen et al., 2008b 9 3,879 3,151 0.918 1 0.94–1.07 rs694 0.43 NA NA

López-León et al., 2008 8 NA NA NS 1.01 0.93-1.09 rs694 0.43 NA NA

Verhagen et al., 2010 14 2,812 10,843 >0.1 1.06 0.94–1.19 rs694 0.43 19.5% 18,385

CLOCK

Kishi et al., 2011 6 930 2,305 0.47 0.95 0.83–1.09 rs1801260 0.22 8.4% 25,381

COMT

López-León et al., 2008 6 NA NA NS 0.98 0.86–1.13 rs4680 0.39 NA NA

DRD3

López-León et al., 2008 4 541 606 NS 1.06 0.85–1.34 rs6280 0.45 13.8% 5,721

DRD4

López León et al., 2005 5 318 814 0.003 1.73 1.29–2.32 48 bp ins/del 0.45 95.6% 185

GABRA3

López-León et al., 2008 6 NA NA NS 0.91 0.68–1.2 CA repeat intron 8 0.29 NA NA

GNB3

López-León et al., 2008 3 375 492 <0.05 1.38 1.13–1.69 rs5443 0.48 51.2% 743

HTR1A

Kishi et al., 2009 7 1,658 2,046 0.0327 0.821 0.695–0.984 rs6295 0.48 65.9% 2,315

López-León et al., 2008 4 NA NA NS 1.16 0.98–1.38 rs6295 0.48 NA NA

Kishi et al., 2013 13 3,199 4,380 0.006 0.87 0.78–0.96 rs6295 0.48 61.9% 4,901

HTR1B

López-León et al., 2008 3 NA NA NS 0.96 0.77–1.2 rs6296 0.35 NA NA

HTR2A

Anguelova et al., 2003 7 768 959 0.597 0.96 0.84–1.11 rs6311 0.44 6.2% 55,781

Jin et al., 2013 11 1,491 2,937 0.12 NA NA rs6311 0.44 NA NA

Gu et al., 2013 4 780 1,528 0.1 0.91 0.74–1.12 rs6311 0.44 13.9% 8,229

(Continued on next page)
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Table 2. Continued

Reference

Number of

Studies

Number of

Cases

Number of

Controls p Value OR 95% CI Variant MAF Power

Number for

80% Power

López-León et al., 2008 4 NA NA NS 1.01 0.85–1.21 rs6311 0.44 NA NA

López-León et al., 2008 8 NA NA NS 0.96 0.84–1.09 rs6313 0.43 NA NA

HTR2C

López-León et al., 2008 2 NA NA NS 1.03 0.85–1.25 rs6318 0.17 NA NA

HTR6

Fukuo et al., 2010 4 701 2,422 0.406 0.94 0.80–1.08 rs1805054 0.17 8.4% 19,021

MAOA

López-León et al., 2008 4 NA NA NS 0.86 0.65–1.13 VNTR promoter 0.34 NA NA

MTHFR

Peerbooms et al., 2011 17 3,341 13,840 0.579 1.016 0.96–1.07 rs1801133 0.32 6.2% 250,625

Lewis et al., 2006 9 1,241 1,1021 0.003 1.36 1.11–1.67 rs1801133 0.32 99.1% 518

Gilbody et al., 2007 10 1,280 10,429 <0.05 1.14 11.04–1.26 rs1801133 0.32 43.4% 3,121

Zintzaras, 2006 5 291 897 >0.1 1.15 0.97–1.36 rs1801133 0.32 13.4% 3,223

López-León et al., 2008 6 875 3,859 <0.05 1.2 1.07–1.34 rs1801133 0.32 51.5% 1,719

Gaysina et al., 2008 4 1,222 835 0.39 0.96 0.84–1.09 rs1801133 0.32 6.4% 80,906

NET/SLC6A2

Zhao et al., 2013 6 1,673 1,410 0.78 1.02 0.91�1.13 rs5569 0.27 5.5% 281,312

Zhao et al., 2013 6 1,681 2,938 0.78 1.03 0.84�1.27 rs2242446 0.26 6.7% 90,329

López-León et al., 2008 3 NA NA NS 0.97 0.8–1.18 rs2242446 0.26 NA NA

DAT/SLC6A3

López-León et al., 2008 3 151 272 <0.05 2.06 1.25–3.4 VNTR 3-UTR 0.48 90.1% 112

López-León et al., 2008 3 NA NA NS 0.94 0.84–1.05 VNTR 3-UTR 0.48 NA NA

TPH1

Chen et al., 2008a 10 1,812 2,223 >0.1 NA NA rs1800532 0.36 NA NA

TPH1

López-León et al., 2008 9 NA NA NS 0.88 0.71–1.09 rs1800532 0.36 NA NA

This table summarizes the data frommeta-analyses of candidate genes in which variants have been tested for association with major depression (MD).

The table is sorted by gene to allow comparison between studies of the same gene. Note that some studies test different variants within the same gene.

The column headed ‘‘Variant’’ gives the variant tested. Throughout the table, ‘‘NA’’ means ‘‘not available’’ and NS ‘‘nonsignificant.’’ The table gives

sample sizes for the number of studies included in the meta-analysis (Number of Studies), the total number of cases and controls (Number of Cases

and Number of Controls), the p value (where available), the odds ratio (OR), and associated 95% confidence interval (95% CI). Where the variant is an

SNP, an rs number is provided along with the minor allele frequency (MAF) in European populations. For repeats, the frequency of the commonest

variant is given. The power of each study, expressed as a percentage (Power) was calculated from the odds ratio of the meta-analysis, using the

Genetic Power Calculator (Purcell et al., 2003). Power was calculated assuming an additive model and with marker allele frequencies set to 0.5

(a conservative assumption).
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Thus, by assessing the amount of sharing by descent between

individuals with the disease, it is possible to estimate the herita-

bility from SNPs (hence sometimes called SNP heritability).

There are currently two implementations of this idea (So et al.,

2011; Yang et al., 2011).

Two papers report SNP heritabilities for MD ranging from 21%

(Lee et al., 2013) to 30% (Lubke et al., 2012). The discrepancy

between SNP- and family-based heritability estimates (of about

38%) is in part attributable to the fact that causal variants are not

in linkage disequilibrium with genotyped markers (Yang et al.,

2010a); this means that the SNP-based heritability is a lower

bound on that arising from common variants.

Even though the SNP heritabilities have wide confidence

intervals (from 15%–50%), they provide a critically important

constraint on our understanding of the genetics of MD: they
indicate that common variants of small effect (with odds ratio

less than 1.2, and probably much less) make a large contribution

to the genetic susceptibility to the disease, accounting for more

than 50% of the heritability. Indeed, the SNP heritability is

consistent with the view that the genetic basis of MD consists

of many thousands of independently acting loci, each of very

small effect, that contribute to disease susceptibility. Before

we consider some alternative possibilities, we pursue what this

conclusion means for genetic studies of MD. What is needed

to find robust, genome-wide significant association? Can we

estimate the sample size needed?

Complex traits show clear differences in the number of

samples required to obtain a significant finding. Figure 2 shows

results for two diseases (cancer and Crohn’s disease) and two

quantitative traits (height and weight) (Park et al., 2010). Which
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Figure 2. GWAS Sample Size
Sample sizes (horizontal axis) required for a GWAS to have 80% probability of
detecting the number of loci shown on the vertical axis, at a significance level
of 5 3 10�8. Results are shown for four complex traits: two disease and two
quantitative phenotypes. The graph assumes that the number of loci detected
increases linearly with increasing sample size (data are from Frayling et al.,
2007; Lango Allen et al., 2010; Loos et al., 2008; Park et al., 2010; Scuteri et al.,
2007; Speliotes et al., 2010; Thorleifsson et al., 2009; Wen et al., 2012; Willer
et al., 2009).
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Figure 3. The Effect of Disease Prevalence on Sample Size to Detect
at Least One Locus for Major Depression
Sample sizes (horizontal axis) required for a GWAS to have 80% probability of
detecting at least one locus contributing to the risk of major depression,
plotted against disease prevalence (vertical axis). In most surveys, major
depression has a prevalence of about 10%. The genetic architecture of major
depression is assumed to be either similar to height (black continuous line) or
weight (red dotted line).
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genetic architecture is most similar to that of MD? If we could

answer this question, we would be in a good position to estimate

the sample sizes needed to detect genetic loci, thus informing

our interpretation of existing data, and the design of future exper-

iments.

Wray and Visscher asked this question about the genetic

architecture of schizophrenia (Wray and Visscher, 2010). Their

answer involved finding a phenotype with a genetic architecture

predicted to be similar to schizophrenia and for which many

genetic loci have been found. They suggested, from similar

heritability estimates, risks to relatives, and the disease preva-

lence, that the genetic architecture of schizophrenia resembles

that of height. In order to compare genetic analysis of height

with schizophrenia, they assume that genetic liability to schizo-

phrenia is quantitative and that the dichotomous nature of

schizophrenia arises because the number of predisposing alleles

in some individuals exceeds a certain threshold. For example, an

individual with predisposing alleles at 100 loci or more might

present with schizophrenia, while someone with fewer such

alleles would show no symptoms. By considering that disease

prevalence represents the fraction of individuals whose genetic

susceptibility exceeds this threshold, and that schizophrenia

has otherwise the same genetic architecture as height, it is

possible to apply what we know from height GWAS data to esti-

mate sample sizes needed to detect schizophrenia risk loci

(Yang et al., 2010b).

In order to compare the power to detect a locus affecting a

disease in a case-control study with the power to detect a locus
490 Neuron 81, February 5, 2014 ª2014 Elsevier Inc.
affecting a quantitative trait (assuming that both have the same

genetic architecture and heritability), Visscher and colleagues

show that only the disease prevalence and proportion of cases

and controls need be known (Yang et al., 2010b). This means

that we can estimate sample sizes for a GWAS of MD by

comparing it with a quantitative trait that has a similar genetic

architecture and for which loci have been found. But which quan-

titative trait is appropriate?

Weight (ormore properly bodymass index) might be an appro-

priate model: many loci have been mapped (Berndt et al., 2013;

Speliotes et al., 2010) and it has a heritability similar to MD

(a recent estimate based on 20,000 sibling pairs gave 40%

[Hemani et al., 2013], though this is lower than a large meta-anal-

ysis of twin data [Nan et al., 2012]). In Figure 3, we show results

under the assumption that MD has a similar genetic architecture

to weight (red dotted line) or to height (black continuous line)

(Yang et al., 2010b). We estimated the number of samples

needed for an MD GWAS to have 80% power to detect at least

one locus, for different disease prevalences.

If MD has a genetic architecture similar to weight (red dotted

line), then, for a disease prevalence of 10% (typical of most

surveys of MD), a sample size of more than 50,000 cases will

be needed to detect at least one genome-wide significant hit.

About 10,000 cases are needed if MD has a genetic architecture

similar to height. Figure 3 also shows that disease prevalence

has a big impact on power. For example, while power to detect

a variant that explains 0.08%of the variance on liability toMDwill

be 4%, in a sample size of 10,000 cases and 10,000 controls,
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power in schizophrenia (prevalence 1%) is approximately 50%

for the same sample size.

The effect of disease prevalence (shown on the vertical axis) is

not linearly related to sample size. In order to find genes with a

smaller sample size, we need to collect a sample that has a lower

prevalence. That could be achieved in one of two ways. If MD is

truly a quantitative phenotype, then the extremes of the distribu-

tion will represent a less prevalent form of disease. We could

take disease that is so severe that it has a prevalence of 0.5%

or lower, so that fewer than 20,000 cases would provide 80%

power to detect at least one locus. The problem is finding the

appropriate severity scale.

Alternatively, we could identify rare subtypes of depression

that are less prevalent and we hope represent a more homoge-

nous condition than MD broadly defined. Ideally, such subtypes

would have a different genetic architecture, veering more toward

that of height than of weight, so that much smaller samples are

needed. Do such heritable subtypes of MD exist? We address

this question below. We start however with a review of the ge-

netics literature todeterminewhether theremight be rarebut rela-

tively large-effect loci that GWASs have been unable to detect.

The Contribution of Rare Variants to Disease Risk
The data we have summarized so far are compatible with the

hypothesis that the genetic basis of MD arises from the joint ef-

fect of very many loci of small effect, with odds ratios of much

less than 1.2. However, it is also compatible with the existence

of larger effect loci, under two alternative (but not incompatible)

hypotheses; first, some of the heritability of MD is explained by

rare relatively large-effect loci; second, larger effect sizes would

be observed if more homogeneous heritable phenotypic group-

ings could be identified.We consider in this section whether rare,

large-effect variants might exist and return to the issues of

phenotypic homogeneity later.

It is sometimes forgotten that linkage studies provide informa-

tion about rare, relatively penetrant susceptibility loci. Family-

based designs are typically not well powered to detect the small

effects found in GWASs. For example, on average, siblings share

50%of their genome.Where two siblings have the same disease,

departure from this 50%sharing indicates regions that harbor risk

variants; but since the SD for sharing is large (approximately

3.7%), large sample sizes are required to detect a significant

departure. Family designs can however detect one form of

genetic variation that is hidden fromGWASs: the joint effect of in-

dependent, rare, mutations in the same gene (recall that GWASs

are effective for common variants). In a linkage study, the effects

of independent mutations will combine together, since the unit of

analysis in linkage (theaveragedistancebetween recombinations

in the human genome in a single meiosis) is a much larger

genomic region than is thecase for associationanalyses. In cases

in which linkage asserts that there is an effect but association

fails to detect one, then one explanation is allelic heterogeneity:

multiple effects exist in the gene but on different haplotypes.

Linkage studies are summarized in Table 3. Results are

reported as a logarithm of the odds (LOD) score, rather than a

p value. The majority of the studies reported in Table 3 used an

affected sibling design (in which two siblings have MD). In this

design, an LOD score of 2.2 is suggestive evidence for linkage
(expected to occur once by chance in a genome scan), an

LOD score greater than 3.6 represents significant linkage

(expected to occur by chance with a probability of 5%), and an

LOD score of 5.4 is highly significant (probability of chance

occurrence is less than 0.1%) (Lander and Kruglyak, 1995).

Table 3 makes four points. First, there is clear heterogeneity

between studies. The outlier here is the Zubenko study (Zubenko

et al., 2003), which reports more loci at higher levels of signifi-

cance than all the others. Second, there is evidence for poor

internal consistency. Three groups report data in multiple publi-

cations, usually because they acquired additional data (Utah

families [Abkevich et al., 2003; Camp et al., 2005], DeNt [Breen

et al., 2011; McGuffin et al., 2005], and GenRED [Holmans

et al., 2004, 2007; Levinson et al., 2007]). The additional samples

collected by the GenRED consortium failed to confirm the 15q

linkage reported in their initial paper (Holmans et al., 2004). The

authors considered that the first finding might be a false positive,

that the second finding might be a false negative, or that both

findings were true, the difference being attributable to variation

in the clinical features of the families (Holmans et al., 2007).

Third, there are overlaps in the locations identified by linkage

results (Table 3). The confidence intervals for the position of

loci found by linkage studies are notoriously broad (Roberts

et al., 1999), so that overlaps between localizations often occur

by chance. However, if we restrict analysis to a window of just

5 Mb, then five regions are repeatedly found: chromosome 11,

75–80 Mb (Breen et al., 2011; Zubenko et al., 2003), chromo-

some 15, 37–42 Mb (Zubenko et al., 2003; Camp et al., 2005),

chromosome 15, 87–92 Mb (Breen et al., 2011; Holmans et al.,

2004, 2007; Levinson et al., 2007), chromosome 3, 4–9 Mb

(Breen et al., 2011; Middeldorp et al., 2008), and chromosome

2, 64–68 Mb (Middeldorp et al., 2008; Schol-Gelok et al.,

2010). This is partly, but not entirely, due to the large number

of loci found in one study (Zubenko et al., 2003), a study that

has attracted criticism (e.g., unusually low simulation-based

LOD score thresholds reported for analyses without covariates

[Levinson, 2006]), so we cannot come to any firm conclusions,

but this result suggests that some of the signal may be true.

Finally, there is some evidence that sex differences matter.

Four groups report differences in linkage results when the anal-

ysis incorporates sex as a covariate. As predicted by the twin re-

sults summarized earlier, some loci appear to be sex specific

(Abkevich et al., 2003; Camp et al., 2005; Holmans et al., 2007;

McGuffin et al., 2005; Zubenko et al., 2003).

One interpretation of the linkage studies is that rare but rela-

tively penetrant variants might contribute to the genetic risk.

Nevertheless, it is also possible that the linkage findings could

be explained as false positives or the overinterpretation of

nonsignificant results. In this respect, it is useful to consider

the results of a study of weight in 20,240 siblings (from 9,570

nuclear families) showing that a highly polygenic genetic archi-

tecture (such as that underlyingMD) can falsely indicate the pres-

ence of large-effect loci in a linkage analysis (Hemani et al., 2013).

There is some limited evidence from other sources that

Mendelian-acting mutations give rise to MD. Attempts to fit

morbid riskdata to singlemajor locusmodels haveall been incon-

clusive (Gershon et al., 1976; Goldin et al., 1983; Price et al.,

1985), as have been attempts to find markers that cosegregate
Neuron 81, February 5, 2014 ª2014 Elsevier Inc. 491



Table 3. Linkage Studies

Phenotype Study Name Families Individuals %F

Clinical

Instrument

Peak

Marker

Peak

LOD

Score Marker Location Sex

Zubenko et al., 2003

RMD 375 pairs; MD 520 pairs;

mood disorder 610 pairs;

depression spectrum 520

Pittsburgh

families

81 1,242 51.63 SADS-L D1S1597 3.6 chr1:13,684,

108-13,884,418

–

RMD 375 pairs; MD 520 pairs;

mood disorder 610 pairs;

depression spectrum 520

Pittsburgh

families

81 1,242 51.63 SADS-L D1S1609 2.7 chr1:243,965,

857-244,166,112

–

RMD 375 pairs; MD 520 pairs;

mood disorder 610 pairs;

depression spectrum 520

Pittsburgh

families

81 1,242 51.63 SADS-L D2S427 2.77 chr2:232,106,

263-232,306,614

–

RMD 375 pairs; MD 520 pairs;

mood disorder 610 pairs;

depression spectrum 520

Pittsburgh

families

81 1,242 51.63 SADS-L D5S1503 3.32 chr5:98,071,

660-98,272,056

–

RMD 375 pairs; MD 520 pairs;

mood disorder 610 pairs;

depression spectrum 520

Pittsburgh

families

81 1,242 51.63 SADS-L D5S1505 3.74 chr5:119,001,

596-119,201,988

–

RMD 375 pairs; MD 520 pairs;

mood disorder 610 pairs;

depression spectrum 520

Pittsburgh

families

81 1,242 51.63 SADS-L D8S1477 1.74 chr8:31,966,

957-32,167,504

–

RMD 375 pairs; MD 520 pairs;

mood disorder 610 pairs;

depression spectrum 520

Pittsburgh

families

81 1,242 51.63 SADS-L D10S1221 3.01 chr10:57,429,

886-57,630,151

–

RMD 375 pairs; MD 520 pairs;

mood disorder 610 pairs;

depression spectrum 520

Pittsburgh

families

81 1,242 51.63 SADS-L D10S2470 2.61 chr10:92,264,

596-92,464,872

–

RMD 375 pairs; MD 520 pairs;

mood disorder 610 pairs;

depression spectrum 520

Pittsburgh

families

81 1,242 51.63 SADS-L D11S1984 4.2 chr11:1,466,

686-1,667,029

–

RMD 375 pairs; MD 520 pairs;

mood disorder 610 pairs;

depression spectrum 520

Pittsburgh

families

81 1,242 51.63 SADS-L D11S2002 2.1 chr11:79,865,

382-80,065,662

–

RMD 375 pairs; MD 520 pairs;

mood disorder 610 pairs;

depression spectrum 520

Pittsburgh

families

81 1,242 51.63 SADS-L D15S1012 1.96 chr15:38,907,

527-39,107,917

–

RMD 375 pairs; MD 520 pairs;

mood disorder 610 pairs;

depression spectrum 520

Pittsburgh

families

81 1,242 51.63 SADS-L D18S858 2.93 chr18:

54796986-

54997312

–

RMD 375 pairs; MD 520 pairs;

mood disorder 610 pairs;

depression spectrum 520

Pittsburgh

families

81 1,242 51.63 SADS-L D19S586 2.49 chr19:9,704,

793-9,905,143

–

Abkevich et al., 2003

RMD 784; MD 161; BPD 162 Utah families 110 1,357 68.98 BPS D12S1600 6 chr12:99,200,

748-99,401,155

Male

Camp et al., 2005

RMD 1,513; anxiety 1,141,

of which only 718 used

Utah families 87 NA NA – D3S1752 3.81 chr3:97,645,

283-97,845,588

–

RMD 1,513; anxiety 1,141,

of which only 718 used

Utah families 87 NA NA – D7S517 2.89 chr7:4,397,

915-4,598,292

–

RMD 1,513; anxiety 1,141,

of which only 718 used

Utah families 87 NA NA – D18S1270 3.75 chr18:61,292,

502-61,492,816

–

RMD 1,513; anxiety 1,141,

of which only 718 used

Utah families 87 NA NA – D15S515 2.88 chr15:43,497,

354-43,697,543

Male

(Continued on next page)
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Table 3. Continued

Phenotype Study Name Families Individuals %F

Clinical

Instrument

Peak

Marker

Peak

LOD

Score Marker Location Sex

RMD 1,513; anxiety 1,141,

of which only 718 used

Utah families 87 NA NA – D4S2631 2.6 chr4:155,863,

840-156,064,129

Male

McGuffin et al., 2005

RMD 929 DeNt 417 929 70.94 SCAN D1S450 3.03 chr1:9,485,

419-9,685,791

Female

RMD 929 DeNt 417 929 70.94 SCAN D12S1613 1.57 chr12:107,538,

542-107,738,864

–

RMD 929 DeNt 417 929 70.94 SCAN D13S170 1.47 chr13:81,009,

094-81,209,378

–

RMD 929 DeNt 417 929 70.94 SCAN D1S2667 2.54 chr1:11,386,

961-11,587,307

Female

RMD 929 DeNt 417 929 70.94 SCAN D1S508 2.19 chr1:7,507,

384-7,707,656

Female

RMD 929 DeNt 417 929 70.94 SCAN D12S1683 1.29 chr12:106,085,

479-106,285,844

–

RMD 929 DeNt 417 929 70.94 SCAN D15S1047 1.14 chr15:81,041,

079-81,241,425

–

RMD 929 DeNt 417 929 70.94 SCAN D15S999 1.08 chr15:86,145,

362-86,345,589

–

Breen et al., 2011

RMD 2,164 DeNt NA 2,412 72.43 SCAN D3S1515 4.01 chr3:6,311,

334-6,511,566

–

RMD 2,164 DeNt NA 2,412 72.43 SCAN D7S513 1.91 chr7:11,551,

237-11,751,614

–

RMD 2,164 DeNt NA 2,412 72.43 SCAN D11S937 1.75 chr11:77,754,

318-77,954,608

–

RMD 2,164 DeNt NA 2,412 72.43 SCAN D10S1653 1.6 chr10:15,577,

832-15,778,169

–

RMD 2,164 DeNt NA 2,412 72.43 SCAN D1S450 0.75 chr1:9,485,

419-9,685,791

–

RMD 2,164 DeNt NA 2,412 72.43 SCAN D12S1613 <1 chr12:107,538,

542-107,738,864

–

RMD 2,164 DeNt NA 2,412 72.43 SCAN D15S999 1.41 chr15:86,145,

362-86,345,589

–

RMD 2,164 DeNt NA 2,412 72.43 SCAN D13S170 <1 chr13:81,009,

094-81,209,378

–

Holmans et al., 2004

RMD 809 GenRED 297 1,039 79.00 DIGS D15S652 3.73 chr15:92,417,

335-92,617,665

–

Holmans et al., 2007

RMD 1,720; MD 28 GenRED 656 2,176 79.63 DIGS D15S652 3.05 chr15:92,417,

335-92,617,665

–

RMD 1,720; MD 28 GenRED 656 2,176 79.63 DIGS D17S974 4.77 chr17:10,418,

666-10,618,972

Male

RMD 1,720; MD 28 GenRED 656 2,176 79.63 DIGS D8S1106 3.49 chr8:12,735,

859-12,936,149

Male

Levinson et al., 2007

RMD 1,687 GenRED 631 2,161 79.00 DIGS NA 4.69 chr15:92,600,000 –

Pergadia et al., 2011

MD and smoking 220 Australian/

Finland

116 810 56.79 CIDI D3S1304 4.14 chr3:6,819,

242-7,019,583

–

(Continued on next page)
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Table 3. Continued

Phenotype Study Name Families Individuals %F

Clinical

Instrument

Peak

Marker

Peak

LOD

Score Marker Location Sex

Middeldorp et al., 2009

MD Australian/

Dutch

133 558 61.12 CIDI ATA58E08 2.1 chr17:19,426,

481-19,426,503

–

MD Australian/

Dutch

133 558 61.12 CIDI D8S504 1.9 chr8:917,

443-1,117,767

–

MD Australian/

Dutch

133 558 61.12 CIDI GATA66D01 1.7 chr2:66,951,

054-67,151,286

–

Schol-Gelok et al., 2010

Symptoms of MD 115 Dutch ERF 45 1,144 71.3 HADS-D

and CES-D

rs715271 0.93 chr2:57133160 –

Symptoms of MD 115 Dutch ERF 45 1,144 71.3 HADS-D

and CES-D

rs890478 0.99 chr2:64540177 –

Symptoms of MD 115 Dutch ERF 45 1,144 71.3 HADS-D

and CES-D

rs372169 2.14 chr5:3180951 –

Symptoms of MD 115 Dutch ERF 45 1,144 71.3 HADS-D

and CES-D

rs1965277 2.27 chr11:134850365 –

Symptoms of MD 115 Dutch ERF 45 1,144 71.3 HADS-D

and CES-D

rs1688128 2.66 chr19:3029918 –

The table summarizes information from linkage studies of major depression. Most studies are represented by more than one publication (reporting

additional data, or more in-depth analyses), so the second column provides a study name to indicate which studies report on the same data sets.

Studies used different inclusion criteria; these are summarized under the column headed phenotype where RMD is recurrent major depression,

MD is major depression, BPD is bipolar disease. Where provided, the numbers of each phenotypic category are listed. The table gives the acronym

of the clinical instrument used, the peak marker, and associated LOD score for nonparametric linkage (some studies also report parametric results

[Schol-Gelok et al., 2010]), without added covariates. In cases where a significant sex difference was found, this is reported in the column headed Sex.
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with MD in a Mendelian inheritance pattern (Ashby and Crowe,

1978; Weitkamp et al., 1980; Wilson et al., 1989). A review of

the online catalog of Mendelian disorders (OMIM) identified four

single gene disorders in which MD is present as a clinical feature

(Table 4). In addition (and not reported in the table), there arewell-

known relationships betweenMDand familial Cushing syndrome

andParkinson disease. The examples in Table 4 are rare, such as

Perry syndrome, for which eight families are known worldwide,

and typically present with additional phenotypes that would not

lead them to be classified among the majority of cases of MD.

Table 4 contains one example of a Mendelian mutation that

underlies pure MD: Wolfram syndrome, a rare autosomal reces-

sive disorder due to a mutation on the short arm of chromosome

4 (Polymeropoulos et al., 1994). The important point here is that

Wolfram is a recessive condition. The disease itself (in homo-

zygotes) is characterized by a broad spectrum of psychiatric

and neurological disorders, but heterozygote carriers show a

purer MD phenotype: in one report, out of 11 individuals carrying

aWolframmutation, eight were hospitalized for major MD, signif-

icantly more than the three relatives expected if there were no

association between psychiatric hospitalizations and mutations

at this locus (Swift and Swift, 2005). The authors argue that ‘‘if

the population frequency of wolframinmutations that predispose

carriers to psychiatric illness is about 1%, with an odds ratio of

7.1, wolframin mutation carriers would be estimated to be about

7% of patients hospitalized for MD’’ (Swift and Swift, 2005).

Overall, we cannot rule out the possibility that rare large-effect

risk alleles exist, but we also cannot extend much hope for their
494 Neuron 81, February 5, 2014 ª2014 Elsevier Inc.
discovery. It is possible that risk alleles with odds ratios between

3 and 4, occurring at low frequencies (less than 5%), make a

contribution to MD, but their discovery will require either a new

generation of genotyping arrays, interrogating rare variants, or

the deployment of population-scale sequencing.

Genetics and the Nosology of MD
The second hypothesis to explore is the idea that larger-effect

loci might be detected if MD were to be analyzed differently.

For example, consider the possibility that MD is not one but

two disorders that cannot be differentiated on a clinical basis

alone. Suppose that 50 variants contribute to disease through

one pathway (leading to one subtype of MD) and 50 to a second

pathway (leading to the second subtype). Unbeknownst to in-

vestigators, a study contained equal numbers of the two sub-

types. Since variation in the first pathway is irrelevant to disease

susceptibility in the second subtype, the genetic effect of loci

acting on one pathway is reduced by half, and power is similarly

reduced. This point is not merely important in helping design

genetic studies, it is critically important for their interpretation.

Without knowledge of the existence of two unrelated mecha-

nisms, it would be difficult, perhaps impossible, to interpret the

results of the study. We would be left guessing whether the

100 variants represented one, two, or more mechanistic path-

ways.

Do subforms of genetically homogeneous MD exist? A large

literature addresses this issue, not all of it readily summarized;

here we tackle two questions that are key to understanding



Table 4. Mendelian Conditions in which Major Depression Has Been Listed as a Phenotype

MIM Name Clinical Features Prevalence Inheritance Gene

#168605 Perry sydrome The earliest and most prominent

symptom may be MD not responsive

to antidepressant drugs or

electroconvulsive therapy. Sleep

disturbances, exhaustion, and

marked weight loss are features.

Eight families in the world Dominant DCTN1

#314250 Dystonia 3, torsion,

X-linked; DYT3

The odds ratio for overall MD was

increased OR = 2.85, 95% CI =

0.56–5.14) in patients with DYT3

compared to the control group.

5.24 in 100,000 on Panay Island,

Philippines

X-linked TAF1

#128100 Dystonia 1, torsion,

autosomal dominant; DYT1

Carriers of DYT1 are over four times

more likely than noncarriers to exhibit

recurrent MD. Relative risk of 3.62

In France, an estimated disease

frequency of 0.13 in 100,000

Dominant DYT1

#222300 Wolfram syndrome 1; WFS1 Additional clinical features include

diverse psychiatric disorders

Heterozygous carriers of the Wolfram

syndrome, estimated to represent

approximately 1% of the United States

population, are predisposed to MD.

Recessive WFS1

The column headed MIM provides the reference number in Mendelian Inheritance in Man (http://www.omim.org).
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how genetic effects operate in MD: first, how separate is MD

from other disorders? Second, is MD one disorder or two, or

more?

How Separate Is MD from Other Disorders?
Two disorders that most frequently overlap diagnostically with

depressive illness are anxiety and bipolar disorder. The prevail-

ing view is that MD is highly comorbid with anxiety: about 60%

of individuals with MD report a lifetime history of one or more

anxiety disorders (Alonso et al., 2004a; Angst, 1993; Blazer

et al., 1994; Hunt et al., 2004; Kessler et al., 1996, 2003; Merikan-

gas et al., 1996; Mineka et al., 1998; Pini et al., 1997; Zimmerman

et al., 2008). The most closely related condition, symptomati-

cally, is generalized anxiety disorder (GAD). Longitudinal studies

indicate that while GAD precedes the occurrence of MD in about

one-third of cases, conversely in about a third of cases, MD

precedes GAD (Moffitt et al., 2007).

While there is general agreement in the literature for comorbid-

ity between anxiety andMD, bipolar disorder andMD are usually

thought to be separable. A distinction between unipolar (MD

only) and bipolar (episodes of MD and mania) can be drawn on

the basis that bipolar disorder’s onset age is on average 15 years

younger than unipolar, recursmore frequently, is associated with

different personality types (MD is associated with neuroticism

and bipolar with sensation seeking or extraversion) (Perris,

1966b), and has an increased risk of bipolar illness in relatives

(Gershon et al., 1982; Lieb et al., 2002; Weissman et al., 1984).

Genetics provides a way of testing the diagnostic uniqueness

or otherwise of MD by determining the degree of genetic corre-

lation between diseases. Do the same genetic loci that increase

susceptibility to MD also increase susceptibility to other disor-

ders? Two quantitative Reviews (meta-analyses) agree that there

is a high genetic correlation between anxiety and MD (Cerdá

et al., 2010; Middeldorp et al., 2005). Of 16 twin studies that

report genetic covariation between anxiety and MD, all found

that the genetic correlation between GAD and MD is not sig-
nificantly different from unity. Demirkan and colleagues have

recently confirmed the genetic correlation between MD and

anxiety using SNP data to generate genetic risk scores (Demir-

kan et al., 2011). Thus, for anxiety, the comorbidity can be attrib-

uted, in part, to a common genetic basis. At a genetic level, GAD

and MD are the same.

For many years, genetic data have been employed to support

a separation of unipolar from bipolar affective illnesses: rela-

tives of those with bipolar are more likely to develop bipolar,

and conversely relatives of unipolar probands more likely to

develop unipolar illness (MD, in other words) (Perris, 1966a).

With few exceptions, subsequent studies have confirmed this

observation: bipolar illness aggregates in the families of bipolar

probands much more than in families of unipolar probands

(Weissman et al., 1984). However, it is also true that in compar-

ison to the general population, relatives of both bipolar and uni-

polar probands have increased risks of both forms of affective

disorder (Gershon et al., 1982; Lieb et al., 2002; Weissman

et al., 1984). The risk for bipolar disorder in relatives of MD

probands is only modestly increased, approximately 2-fold

across studies (on a relative risk scale) (Tsuang and Faraone,

1990). Conversely, there is about a 3-fold increase in risk of

developing unipolar depression for a first-degree relative with

bipolar disorder. Note that the base rates of unipolar and bipo-

lar illnesses are very different: about 1% for bipolar as against

10% for unipolar. Altogether, a third to over a half of the affec-

tively ill family members of bipolar patients manifest depressive

illness (Weissman et al., 1984). Gershon argued from a study of

1,254 relatives of probands and controls that different affective

disorders represent ‘‘thresholds on a continuum of underlying

multifactorial vulnerability’’ (Gershon et al., 1982). If true, then

bipolar disorder would be a more severe form of unipolar

depression.

Genetic correlation data to test this hypothesis are limited: one

twin study of 67 pairs of twins with bipolar and 177 with unipolar

depression yielded a genetic correlation of 0.65 between the
Neuron 81, February 5, 2014 ª2014 Elsevier Inc. 495
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two disorders. However, the data were not consistent with the

threshold model, namely that bipolar is a more severe subform

of unipolar (McGuffin et al., 2003). A larger study of 486 twin pairs

with affective illness provided some support for the threshold

model, but the number of bipolar probands was small, so power

to discriminate models was low (Kendler et al., 1995b).

Using SNP heritability approaches (So et al., 2011; Yang et al.,

2011), there are now estimates of the genetic correlations

between MD and bipolar disorder (Lee et al., 2013). The genetic

correlation with bipolar disorder was 0.47 (SE 0.06), compatible

with the twin-study genetic correlation of 0.64 (McGuffin et al.,

2003). This finding suggests an overlap between unipolar and

bipolar illnesses in which some loci contribute to both condi-

tions. Consistent with this, genetic analysis of loci that act across

disorders has been used to implicate calcium-channel signaling

in the etiology of affective disorders (Cross-Disorder Group of

the Psychiatric Genomics Consortium, 2013).

However, before concluding that molecular genetic analysis

trumps the phenotypic separation of unipolar from bipolar, two

points should be born in mind. GWAS results show that the

majority of heritability can be assigned to many loci of small

effects. How many that might be depends on the unknown

contribution of rarer variants of large effect, but we can provide

a rough estimate by assuming that depression is a quantitative

trait, in which MD is one extreme (following the same reasoning

for the power estimates for a successful MD GWAS [Yang et al.,

2010b]). From the distribution of effect sizes of other quantitative

traits, we can estimate the number of loci required to explain the

heritability of MD. Assuming an exponential distribution (Gold-

stein, 2009), about 2,500 loci are required to explain half the

heritability. This estimate is conservative, since the distribution

of variants more closely follows a Weibull distribution than an

exponential (Park et al., 2010). In short, the number of variants

required to explain MD heritability implies that about one in five

genes expressed in the brain are likely to be involved.

If thousands of variants confer susceptibility to MD, then this

could explain a genetic correlation with other psychiatric disor-

ders. We have no reason to expect the genetic architecture of

anxiety, BP, or schizophrenia to be very different from MD:

they are all likely to involve many loci of small effect, and they

are all, at some level, brain disorders. Indeed, Ripke and col-

leagues estimate that 8,300 independent SNPs contribute to

the genetic basis of schizophrenia, accounting for 50% of the

variance in liability to schizophrenia (Ripke et al., 2013a). With

18,000 genes expressed in the brain (Lein et al., 2007), and

each disorder influenced by variants in thousands of genes, ge-

netic correlation may be inevitable.

The second point to note about the correlation between MD

and other disorders concerns how well the phenotypic distinc-

tions have been drawn. For example, no one has been able to

identify features that distinguish with high accuracy episodes

of MD in unipolar cases from episodes of MD in cases with bipo-

lar illness. Furthermore, there is evidence that MD and BP share

more characteristics than is sometimes appreciated: several

authors have claimed that a large number of patients diagnosed

with unipolar disorder have features of bipolar illness (Angst

et al., 2010, 2011; Cassano et al., 2004; Zimmermann et al.,

2009). When symptoms of subthreshold mania are sought
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(elevated mood, irritable mood, or increased activity), a large

proportion of unipolar cases are found to qualify: up to half of

all cases with unipolar illness (Angst et al., 2010, 2011; Zimmer-

mann et al., 2009). However, subthreshold diagnoses depend

critically on the quality of the assessments and the exact inter-

pretation of what constitutes subclinical mania (it is easy to

confuse a state of hypomania with elation from ‘‘normal’’ causes

like falling in love, or getting a grant funded in grim times, or hy-

peractivity from the agitation that occurs in some depressive

subtypes).

We can conclude that genetic and phenotypic classifications

concur in identifying considerable overlap between anxiety and

MD,withmixed support for a distinction betweenMDand bipolar

disorder. The genetic data point to genetic overlap, but this

may be, to some extent, a consequence of the polygenicity of

complex traits. We turn next to the question of whether there

exists a pure MD, rarer and harder to distinguish from bipolar

than currently acknowledged, which has at least partly distinct

genetic roots. Or more generally, we ask, are there genetically

homogenous subtypes of MD?

Is Major Depression One Disorder?
Those unfamiliar with the literature debating the division of MD

into subtypes may be surprised not only at the diversity of the

proposed classificatory systems employed (e.g., dimensional,

hierarchical, or categorical) but also at the vehemence with

which each position has been defended, or more usually

attacked (Eysenck, 1970; Parker, 2000). The importance of this

acrimonious debate is the extent to which genetic research

strategies might resolve it and potentially guide interpretation

of the underlying pathogenic mechanisms. Genetic data do in

fact indicate heterogeneity. Most striking is the effect of sex.

As reviewed above, genetic effects on MD differ between

men and women. It is more heritable in women and the genetic

correlation between the sexes is approximately +0.60. To put

this in perspective, the figure is comparable to the genetic corre-

lations estimated between bipolar disorder and MD from twin

studies (0.64; McGuffin et al., 2003) and SNP heritability (0.47;

Lee et al., 2013). How canMDbe one condition, when the degree

of genetic correlation between the sexes is of the same magni-

tude as that between two supposedly separate disorders?

Heterogeneity is also evident at a phenotypic level. Currently,

MD is diagnosed when depressed mood, or a loss of interest or

pleasure in daily activities, is present for more than 2 weeks, and

five or more out of nine symptoms (including low mood and loss

of interest) occur nearly every day. Do these nineDSM symptom-

atic criteria for MD reflect a single underlying genetic factor?

Surprisingly, only one study has addressed this question

(Kendler et al., 2013). The best-fitting model to explain MD

concordance in 7,500 adult twin pairs required three genetic

factors, reflecting the psychomotor/cognitive, mood, and neuro-

vegetative features of MD. As might have been predicted from a

set of criteria chosen on the basis of clinical judgment rather than

psychometric properties or validation from biological features,

the nine DSM symptomatic criteria for MD do not appear to

represent a single underlying genetic factor.

Second, do certain forms of MD breed true? That is to say, if

we look in families, do we find that related individuals share
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similar phenotypic features? For example, some subjects report

an atypical pattern of increased sleep and appetite (rather than

the opposite); does this represent a heritable feature that might

identify a genetically homogenous subtype? While some studies

examining the inheritance of clinical features find that they do

not breed true (Weissman et al., 1986, 2006), latent class

analysis of 14 symptoms of depression, assessed in 1,029

female twin pairs, revealed that members of a twin pair concor-

dant for depression were significantly more likely than expected

to share features of the latent class-derived syndrome (Kendler

et al., 1996). This raises a third question, as to which, if any, fea-

tures characterize an inherited form of MD.

Is there amore genetic formofMD?An old distinction between

‘‘endogenous’’ and ‘‘reactive’’ MD (Gillespie, 1929) is based

upon the presumed occurrence of depressive episodes that

were independent of precipitating events, compared to episodes

that were an exaggerated reaction to life events. Is it possible

that the endogenous form of MD is more genetically determined

than others? The short answer to that question is no; in fact,

contrary to the hypothesis that subjects whose MD appears to

be devoid of precipitating events should have increased genetic

predisposition (indexed by greater family history), the opposite is

true: those reporting more stressful life events are more likely to

have a family history (Kendler and Karkowski-Shuman, 1997).

However, this finding does indicate, as the large literature on

familial MD confirms (reviewed in Rutter et al., 1999; Sullivan

et al., 2000), that clinical differences exist between those with

and those without a family history of MD. Distinguishing features

are relatively nonspecific: those with a family history of MD have

more clinically severe illness, tend to present at an earlier age,

and suffer higher rates of recurrence (Kendler et al., 1994,

1999; Lieb et al., 2002; Weissman et al., 2006).

Environmental influences are also likely to stratify MD. Evi-

dence from twin studies (Kendler et al., 1995a, 2004; Silberg

et al., 2001) indicate that genetic risk factors for MD not only alter

average risk but also impact on sensitivity to the depressogenic

effects of environmental adversities, particularly various forms of

childhood maltreatment and recent stressful life events. The

finding of increased genetic susceptibility to environmental

stressors, or in short a gene by environment interaction, sug-

gests the possibility of subdividing MD on the basis of en-

vironmental effects: theoretically genetic effects will be more

homogeneous, relatively larger, and easier to detect in popula-

tions with clearly defined exposures.

While twin studies have shown that aggregate genetic risk

factors for MD interact with stressful events, in recent years

the field has been preoccupied with one of the many possible

ways in which this effect might be explained at the molecular

level. The dispute is whether or not the serotonin transporter

5-HTTLPR variant is involved in a gene by environment inter-

action. The original studywas carried out on a longitudinal cohort

in New Zealand, and empirical literature dealing with whether

that finding is robust, and replicable, is unclear and considerably

polarized (Caspi et al., 2010; Kaufman et al., 2010; McGuffin

et al., 2011).

Two meta-analyses found no evidence for an interaction

(Munafò et al., 2009; Risch et al., 2009), while one meta-analysis

concluded that there was an effect (Karg et al., 2011). The differ-
ence lies in the way studies were selected for themeta-analyses.

The authors of the positive GxE meta-analysis take the view that

the effect of GxE is broad: ‘‘rather than focus on a specific class

of studies, we sought to perform a meta-analysis on the entire

body of work assessing the relationship between 5-HTTLPR,

stress, and MD’’ (Karg et al., 2011). The one study that came

closest to replicating the original design, a longitudinal study of

a birth cohort in New Zealand, failed to replicate the first report

(Fergusson et al., 2011). All that we can reasonably conclude is

that current attempts to subdivide MD on the basis of inter-

actions with environmental effects using candidate genes are

unlikely to yield quick insights into the origins of the disease.

Conclusion
Genetic analysis of MDwas recently recognized to be among the

greatest challenges facing health researchers (Collins et al.,

2011). For some complex traits, including schizophrenia (Ripke

et al., 2013a), there are now a number of verified genetic loci

that contribute to disease susceptibility; in some cases, their

discovery has implicated disease mechanisms, casting light on

known, suspected, or indeed novel biological processes that

explain why some people fall ill (Teslovich et al., 2010; van der

Harst et al., 2012). Research findings in MD have yet to reach

this stage. Despite convincing evidence for a genetic con-

tribution to disease susceptibility, there has been a dearth of

substantive molecular genetic findings. Nevertheless, there is

an impressive quantity of relevant literature. Does it amount

to anything? Yes, because negative findings impart important

lessons.

The failure of GWAS analysis of more than 9,000 cases of

MD (Ripke et al., 2013b) to find robust evidence for loci that

exceed genome-wide significance is compatible with a para-

digm in which the majority of the genetic variance is due to the

joint effect of multiple loci of small effect. Twin studies and

SNP-based heritability tests of the samples used for genome-

wide association discount the possibility that there are no ge-

netic effects to be found, leaving two nonmutually exclusive

possibilities: either the effects are smaller than expected and/

or the disorder is heterogeneous: different diseases might

manifest with similar symptoms (incorrectly identified as the

same illness), or there may be many different pathways to the

same outcome (different environmental precipitants trigger MD

in different ways, according to the genetic susceptibility of the in-

dividual).

We have reviewed evidence that indicates that MD is hetero-

geneous. This is clearly seen in the difference between sexes:

genetics sees a greater difference between MD in men and

MD in women than physicians recognize between anxiety and

MD. However, while there is considerable agreement in the liter-

ature that MD has heterogeneous causes, there is much less

agreement about its homogeneity as a clinical disease (Parker,

2000). Attempts to subdivide MD on the basis of inheritance

have so far yielded only limited fruit: relatively nonspecific fea-

tures, recurrence, and earlier onset indicate greater genetic

predisposition.

The picture is consistent with a fairly undifferentiated

phenotype emerging as the final common outcome of diverse

processes, a process called equifinality in the development
Neuron 81, February 5, 2014 ª2014 Elsevier Inc. 497



Neuron

Review
literature. The list of possible pathways is large: in addition to

long-running favorites such as abnormalities of monoamine

metabolism (including postreceptor components of the down-

stream cAMP signaling pathway [Duman et al., 1997]) and

impaired corticosteroid receptor signaling (Holsboer, 2000),

more recent hypotheses include the involvement of neurotro-

phins (Samuels and Hen, 2011), fibroblast growth factors (both

ligands and receptors) (Turner et al., 2012), GABAergic deficits

(Luscher et al., 2011), and epigenetic changes, specifically alter-

ations in methylation and acetylation profiles at the promoters of

glucocorticoid receptors and brain-derived neurotrophic factor

(McGowan et al., 2009). Genetics does not support the primacy

of one theory over another; indeed as our Review of the candi-

date gene literature indicates, genetics does not support any

of the biological theories put forward to date.

Recommendations
Our Review indicates two pathways forward. First, there is no

reason to suppose that undifferentiated MD is intractable to

GWAS, but success will require very large sample sizes

(Figure 3). However, interpreting the results of such a study is

likely to be challenging. We have seen that MD is highly co-

morbid with anxiety, and etiologically heterogeneous, at both

genetic and environmental levels.Without information on comor-

bidity, known risk factors, and clinical phenotypes, the role of

each locus will be unclear. Some will be sex specific, some will

act only in situations of environmental stress, and others will

predispose to anxiety. Genetic studies will need to include an

extensive amount of phenotypic information if we are to make

sense of hard-won mapping results.

Second, our Review indicates that we should not abandon

attempts to concentrate on subtypes ofMD. So far, studies using

recurrent and early-onset MD have been no more successful

than those that examine undifferentiated MD, but this may be

due to lack of power. If we consider MD as part of a quantitative

trait (representing liability to depression), then using a sample of

more extreme cases would be equivalent to analyzing a rare

disease (as Figure 3 demonstrates). Even a small improvement

in genetic tractability could result in a large saving in the number

of samples that need to be analyzed (reducing from 50,000 to

20,000, for example).

The problem is that we do not know for sure how to determine

the scale on which severity is measured: is it the number of

episodes of MD, the length of episodes, the number of symp-

toms, or some other feature or combination of features? Further-

more, the severity scale needs to differentiate cases with higher

genetic risk, not those cases resulting largely from environmental

adversities. Alternatively, subdividing MD on the basis of one or

more clinical features (e.g., typical versus atypical vegetative

features, standard versus postpartum onset), sensitivity to envi-

ronmental stress, or sex, might identify a rarer, or at least a more

genetically homogenous, subtype. At present, deciding which

features to investigate is likely to be an ad hoc enterprise.

Without knowing beforehand which to use, studies will need to

be comprehensive, collecting as broad a range as possible of

clinical features and known or putative risk factors.

Forty years ago, a perceptive Review of depressive disorders

in Science (Akiskal and McKinney, 1973) argued that a psycho-
498 Neuron 81, February 5, 2014 ª2014 Elsevier Inc.
analytic model of MD as object loss (a proximal cause of MD)

could be conceptualized as loss of reinforcement, or loss of

control over reinforcement, then subject to experimental in-

vestigation in animal models, and integrated with anatomical,

biochemical, and pharmacological data as a process occurring

in the diencephalic centers of reward. In this view, MD is a final

common pathway, a decrease in the functional capacity of the

reward system. Since then, MD has begun to appear as a rela-

tively thin covering serving to unite a plethora of independently

acting mechanisms. Genetic analyses can identify risk variants,

both rare and common, and in so doing cast much needed illu-

mination on the biology of the commonest psychiatric disorder.

The difficulties of sample size and clinical differentiation are

daunting but unavoidable if we are to take advantage of the

promise that genetics makes.
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Procardis Consortium (2010). Association analyses of 249,796 individuals
reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948.

Spencer, C.C., Su, Z., Donnelly, P., and Marchini, J. (2009). Designing
genome-wide association studies: sample size, power, imputation, and the
choice of genotyping chip. PLoS Genet. 5, e1000477.

Sullivan, P.F., Neale, M.C., and Kendler, K.S. (2000). Genetic epidemiology of
major depression: review and meta-analysis. Am. J. Psychiatry 157, 1552–
1562.

Sullivan, P.F., de Geus, E.J., Willemsen, G., James, M.R., Smit, J.H., Zandbelt,
T., Arolt, V., Baune, B.T., Blackwood, D., Cichon, S., et al. (2009). Genome-
wide association for major depressive disorder: a possible role for the presyn-
aptic protein piccolo. Mol. Psychiatry 14, 359–375.

Swift, M., and Swift, R.G. (2005). Wolframin mutations and hospitalization for
psychiatric illness. Mol. Psychiatry 10, 799–803.

Teo, Y.Y., Small, K.S., and Kwiatkowski, D.P. (2010). Methodological chal-
lenges of genome-wide association analysis in Africa. Nat. Rev. Genet. 11,
149–160.

Teslovich, T.M., Musunuru, K., Smith, A.V., Edmondson, A.C., Stylianou, I.M.,
Koseki, M., Pirruccello, J.P., Ripatti, S., Chasman, D.I., Willer, C.J., et al.
(2010). Biological, clinical and population relevance of 95 loci for blood lipids.
Nature 466, 707–713.

Thorleifsson, G., Walters, G.B., Gudbjartsson, D.F., Steinthorsdottir, V.,
Sulem, P., Helgadottir, A., Styrkarsdottir, U., Gretarsdottir, S., Thorlacius, S.,
Jonsdottir, I., et al. (2009). Genome-wide association yields new sequence
variants at seven loci that associate with measures of obesity. Nat. Genet.
41, 18–24.

Tsuang, M.T., and Faraone, S.V. (1990). The Genetics of Mood Disorders.
(Baltimore: The Johns Hopkins University Press).

Turner, E.H., Matthews, A.M., Linardatos, E., Tell, R.A., and Rosenthal, R.
(2008). Selective publication of antidepressant trials and its influence on
apparent efficacy. N. Engl. J. Med. 358, 252–260.

Turner, C.A., Watson, S.J., and Akil, H. (2012). The fibroblast growth factor
family: neuromodulation of affective behavior. Neuron 76, 160–174.



Neuron

Review
Ustün, T.B., Ayuso-Mateos, J.L., Chatterji, S., Mathers, C., and Murray, C.J.
(2004). Global burden of depressive disorders in the year 2000. Br. J. Psychi-
atry 184, 386–392.

van der Harst, P., Zhang, W., Mateo Leach, I., Rendon, A., Verweij, N., Sehmi,
J., Paul, D.S., Elling, U., Allayee, H., Li, X., et al. (2012). Seventy-five genetic
loci influencing the human red blood cell. Nature 492, 369–375.

Verhagen, M., van der Meij, A., van Deurzen, P.A., Janzing, J.G., Arias-
Vásquez, A., Buitelaar, J.K., and Franke, B. (2010). Meta-analysis of the
BDNF Val66Met polymorphism in major depressive disorder: effects of gender
and ethnicity. Mol. Psychiatry 15, 260–271.
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