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Abstract
COVID-19 is an infectious disease caused by a newly discovered corona virus SARS-COV-2. It is the most dangerous epi-
demic existing currently all over the world. To date, there is no licensed vaccine and not any particular efficient therapeutic 
agent available to prevent or cure the disease. So development of an effective vaccine is the urgent need of the time. The 
proposed study aims to identify potential vaccine candidates by screening the complete proteome of SARS-COV-2 using 
the computational approach. From 14 protein entries in UniProtKB, 4 proteins were screened for epitope prediction based 
on consensus antigenicity predictions and various physico-chemical criteria like transmembrane domain, allergenicity, 
GRAVY value, toxicity, stability index. Comprehensive analysis of these 4 antigens revealed that spike protein (P0DTC2) 
and nucleoprotein (P0DTC9) show the greatest potential for experimental immunogenicity analysis. These 2 proteins have 
several potential CD4+ and CD8+ T-cell epitopes, as well as high probability of B-cell epitope regions as compared to 
well-characterized antigen the matrix protein 1 [Influenza A virus (H5N1)]. In addition, the epitope SIIAYTMSL predicted 
from spike protein (P0DTC2) and epitope SPRWYFYYL predicted from nucleoprotein (P0DTC9) exhibited more than 60% 
population coverage in the target populations Europe, North America, South Asia, Northeast Asia taken in this study. These 
epitopes have also been found to exhibit highly significant TCR–pMHC interactions having a joint Z value of 4.51 and 4.37 
respectively. Therefore, this analysis suggests that the predicted epitopes might be suitable vaccine candidates and should 
be subjected to further in-vivo and in-vitro studies.
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Introduction

COVID-19 is a deadly disease caused by SARS corona 
viruses world-wide. More than 59 million (59,481,31) con-
firmed cases and more than 1 million (1,404,542) deaths 
have been reported to WHO till 25 November 2020.A pneu-
monia of unknown cause detected in Wuhan, China was 
first reported to the WHO Country Office in China on 31 
December 2019. The outbreak was declared a Public Health 

Emergency of International Concern on 30 January 2020. 
On 11 February 2020, WHO announced a name for the new 
coronavirus disease: COVID-19.

SARS-COV-2 has round or elliptic and often pleomorphic 
form, and a diameter of approximately 60–140 nm (Cascella 
et al. 2020). It is a positive sense ssRNA virus of about 
30 kb genome size. This virus belongs to family coronaviri-
dae and genus Betacoronavirus. SARS-COV-2 genome con-
tains two flanking untranslated regions (UTRs) and a single 
long open reading frame encoding a polyprotein. The 2019-
nCoV genome is arranged in the order of 5′-replicase (orf1/
ab)-structural proteins [Spike (S)-Envelope (E)-Membrane 
(M)-Nucleocapsid (N)]-3′ (Chan et al. 2020). Two-thirds 
of viral RNA, mainly located in the first ORF (ORF1a/b) 
translates two polyproteins, pp1a and pp1ab, and encodes 
16 non-structural proteins (NSP), while the remaining ORFs 
encode accessory and structural proteins. The rest part of 
virus genome encodes four essential structural proteins, 
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including spike (S) glycoprotein, small envelope (E) protein, 
matrix (M) protein, and nucleocapsid (N) protein (Cui et al. 
2019), and also several accessory proteins, that interfere 
with the host innate immune response.

Based on virus genome sequencing results and evolution-
ary analysis, bat has been suspected as natural host of virus 
origin, and SARS-COV-2 might be transmitted from bats 
via unknown intermediate hosts to infect humans. Direct 
contact with intermediate host animals or consumption of 
wild animals was suspected to be the main route of SARS-
COV-2 transmission. However, the source(s) and transmis-
sion routine(s) of SARS-COV-2 remain elusive (Guo et al. 
2020).

COVID-19 affects different people in different ways. 
Symptoms may appear 2–14 days after exposure. Serious 
symptoms include difficulty in breathing, chest pain and loss 
of speech or movement. The most common symptoms of 
COVID-19 are fever, dry cough, and tiredness. Other symp-
toms that are less common and may affect some patients 
include aches and pains, nasal congestion, headache, con-
junctivitis, sore throat, diarrhoea, loss of taste or smell or a 
rash on skin or discoloration of fingers or toes.

Transmission of the disease occurs mainly through person 
to person. When the person infected with COVID-19 coughs, 
sneezes or speaks, small droplets expelled from them land on 
surfaces and objects around them. Other people then catch 
COVID-19 by touching these objects or surfaces, then touch-
ing their eyes, nose and mouth or by breathing these drop-
lets. Major complications due to COVID-19 include acute 
respiratory failure, pneumonia, acute respiratory distress 
syndrome, acute kidney injury, acute liver injury, acute car-
diac injury, septic shock, blood clots, rhabdomyolysis, dis-
seminated intravascular coagulation, secondary infections 
(Zaim et al. 2020).

Researchers worldwide are working around the clock to 
find a vaccine against SARS-CoV-2, the virus causing the 
COVID-19 pandemic. There are no effective vaccines or 
specific antiviral drugs for COVID-19 (Dhama et al. 2020). 
Possible vaccines and some specific drug treatments are 
under investigation. Three vaccines, two adenoviral vec-
tor vaccines and a protein-based vaccine, have been given 
early or limited approval without waiting for the results of 
phase III trials. Sputnik V formerly known as Gam-COVID-
Vac developed by the Gamaleya Research Institute in Mos-
cow, Russia, was approved by the Ministry of Health of the 
Russian Federation on 11 August 2020. Another vaccine 
developed by the Chinese company CanSino Biologics, was 
approved by the Chinese military in June 2020 for a year 
as “a specially needed drug”. A second vaccine in Russia, 
EpiVacCorona, developed by the State Research Center of 
Virology and Biotechnology, has also been granted regula-
tory approval On 14 October 2020, also without entering 
Phase 3 clinical trials (Robinson 2020 online). According to 

WHO Draft landscape of COVID-19 vaccine candidates 12 
November 2020, there are 48 vaccine candidates in clinical 
evaluation and 164 in preclinical evaluation.

The conventional approach to vaccine development is 
based on dissection of the pathogen using biochemical, 
immunological and microbiological methods. Although 
successful in several cases, this approach has several lim-
itations. This method can employ many years to identify 
a protective and useful antigen, and has failed to provide 
a vaccine against those pathogens that did not have obvi-
ous immunodominant protective antigens. The availability 
of complete genome sequences in combination with novel 
advanced technologies, such as bioinformatics, microarrays 
and proteomics, have revolutionized the approach to vac-
cine development and provided a new impulse to microbial 
research (Capecchi et al. 2004). To use computers to ration-
ally design vaccines starting with information present in 
the genome, without the need to grow the specific microbe, 
this new approach was denominated ‘reverse vaccinology’ 
(Rappuoli 2000). The first example of reverse vaccinology 
approach is the development of a vaccine against serogroup 
B Neisseria minigitidis (MenB), a pathogen that causes 50% 
of the meningococcal meningitis worldwide. It took less 
than 18 months to identify more and some novel vaccine 
candidates in MenB than had been discovered during the 
past 40 years by conventional methods (Pizza et al. 2000). 
Reverse vaccinology is now being applied to many bacte-
rial, viral and eukaryotic pathogens and has been success-
ful in all cases in providing novel antigens for the design 
of new vaccines (Bagnoli et al. 2011). Vaccine candidates 
identified from a pathogen’s genome or proteome can then 
be expressed as recombinant proteins and tested in appropri-
ate in vitro or in vivo models to assess immunogenicity and 
protection (Seib et al. 2000).

In the present study, SARS-COV-2 (NC_045512.2) refer-
ence strain, which is known to cause COVID-19 pandemic 
was undertaken to characterize its antigens as potential vac-
cine candidates.

Materials and Method

Retrieval of Proteome Data Set

The complete proteome sequence of SARS-COV-2 has been 
retrieved from Viralzone Expasy server (viralzone.expasy.
org). The sequences have been stored as fasta file containing 
all 14 annotated UniProtKB protein entries. A well charac-
terized viral antigen showing proper immune response in 
humans the matrix protein 1 [Influenza A virus (H5N1)] 
has been taken as control to compare and validate the out-
comes. It has been tested as an adjuvanted virosomal H5N1 
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vaccine and found to induce a balanced Th1/Th2 CD4(+) T 
cell response in man (Pederson et al. 2014).

Antigenicity Prediction

Antigenicity prediction of all the protein sequences has been 
performed to determine their overall possible role in initiat-
ing an immune response. Consensus antigenicity predictions 
have been performed using Vaxijen and ANTIGENpro tools. 
VaxiJen is the first server for alignment-independent predic-
tion of protective antigens. It was developed to allow antigen 
classification solely based on the physicochemical proper-
ties of proteins without recourse to sequence alignment. It 
is freely available through https:// www. ddg- pharm fac. net/ 
vaxij en/ VaxiJ en/ VaxiJ en. html (Doytchinova and Flower 
2007). ANTIGENpro is a sequence-based, alignment-free 
and pathogen-independent predictor of protein antigenicity. 
The predictions are made by a two-stage architecture based 
on multiple representations of the primary sequence and five 
machine learning algorithms. ANTIGENpro is integrated in 
the SCRATCH suite of predictors available at: http:// scrat ch. 
prote omics. ics. uci. edu (Magnan et al. 2010).

Characterization of Predicted Antigenic Proteins

Genome-wide characterization of vaccine candidates has 
been performed using various computational tools. Trans-
membrane regions have been predicted using TMHMM web 
server. It is based on hidden Markov model (Krogh et al. 
2001). Assessment of allergenic potential has been carried 
out using AllerCatPro tool. It is entropy-adjusted hexamer 
hit approach as well as switching from a linear sequence 
window similarity to a B-cell epitope-like 3D surface 
similarity with predicted structures for 74% of all known 
allergens in a workflow guided by safety rationale (Maurer 
et al. 2019). Physical chemical parameters are calculated 
using ProtParam tool available at expasy. These parameters 
include the molecular weight, theoretical pI, instability 
index, aliphatic index and grand average of hydropathicity 
(GRAVY) (Gasteiger et al. 2005).

B Cell Epitope Prediction

The antigenic regions of protein recognized by the binding 
sites of immunoglobulin molecules are called B cell epitopes 
(Van Regenmortel 1993). B cell epitopes can be classified 
into two categories: conformational/ discontinuous epitope, 
where residues are distantly separated in the sequence and 
brought into physical proximity by protein folding and lin-
ear/continuous epitope comprised of a single continuous 
stretch of amino acids within a protein sequence that can 
react with anti-protein antibodies (Barlow et al. 1986). The 
designing of conformational epitopes is difficult and so 

experimental B cell epitopes largely include linear epitopes. 
A web server, BepiPred has been used to determine the prob-
ability of presence of linear B cell epitopes in the selected 
antigen sequences. It is based on a random forest algorithm 
trained on epitopes annotated from antibody-antigen protein 
structures. It is available at http:// www. cbs. dtu. dk/ servi ces/ 
BepiP red/ (Jespersen et al. 2017).

T Cell Epitope Prediction

T-cell epitope prediction aims to identify the shortest pep-
tides within an antigen that are able to stimulate either CD4 
or CD8 T-cells (Ahmed and Maeurer 2009). T-cell epitopes 
are presented on the surface of an antigen presenting cell 
(APC), where they are bound to major histocompatibility 
(MHC) molecules in order to induce immune response 
(Madden 1995). Cytotoxic T lymphocytes (CTL) epitope 
prediction has been performed using NetCTL, a web based 
tool designed for predicting human CTL epitopes in any 
given protein. It does so by integrating predictions of peptide 
MHC class I binding, proteasomal C terminal cleavage and 
TAP transport efficiency. MHC class I binding and proteaso-
mal cleavage is performed using artificial neural networks. 
TAP transport efficiency is predicted using weight matrix. 
Peptides with a combined prediction score greater than or 
equal to default threshold value (0.75) are marked as poten-
tial HLA class I supertype CTL epitopes. NetCTL provides 
a comprehensive prediction about epitopes binding to 12 
HLA class I supertypes including 5 HLA-A [A1, A2, A3, 
A24, A26] and 7 HLA-B [B7, B8, B27, B39, B44, B58, 
B62] (Larsen et al. 2007). It is available at http:// www. cbs. 
dtu. dk/ servi ces/ NetCTL. These predicted CTL epitopes have 
been again subjected to antigenicity prediction using Vaxijen 
server to assure the credibility. Furthermore, to predict bind-
ing of peptides to HLA-DR, MHC class II alleles, NetMH-
CII 2.2 server has been used. Predictions can be obtained for 
25 HLA-Dr alleles, 20 HLA-DQ, 9 HLA-DP, and 7 mouse 
H2 class II alleles. It is based on artificial neural networks 
and publicly available at www. cbs. dtu. dk/ servi ces/ NetMH 
CII (Nielsen and Lund 2009).

Population Coverage Analysis

T cells recognize a complex between a specific major his-
tocompatibility complex (MHC) molecule and a particu-
lar pathogen-derived epitope. A given epitope will elicit a 
response only in individuals that express an MHC molecule 
capable of binding that particular epitope. MHC molecules 
are extremely polymorphic and over a thousand different 
human MHC (HLA) alleles are known (Bui et al. 2006). 
Specific HLA alleles are expressed at dramatically different 
frequencies in different ethnicities (Gjertson and Lee 1998; 
Imanishi et al. 1992). A web based tool, IEDB population 

https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://scratch.proteomics.ics.uci.edu
http://scratch.proteomics.ics.uci.edu
http://www.cbs.dtu.dk/services/BepiPred/
http://www.cbs.dtu.dk/services/BepiPred/
http://www.cbs.dtu.dk/services/NetCTL
http://www.cbs.dtu.dk/services/NetCTL
http://www.cbs.dtu.dk/services/NetMHCII
http://www.cbs.dtu.dk/services/NetMHCII
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coverage, has been used for population coverage analysis. 
This method calculates the fraction of individuals predicted 
to respond to a given epitope or epitope set on the basis 
of HLA genotypic frequencies and on the basis of MHC 
binding and/or T cell restriction data (Bui et al. 2006). It 
can be accessed through http:// tools. iedb. org/ popul ation/. 
COVID-19 has affected all over the world, in this study 
Europe, North America, South Asia, Northeast Asia have 
been taken as target populations. The analysis focused on 
MHC I because of the fact that viral peptides are presented 
only on MHC I via the endogenous pathway (Srivastava 
et al. 2016).

pMHC‑TCR Interaction Analysis

Proper interaction of peptide-MHC complex with TCR is 
very important for adaptive immune responses. PAComplex 
server has been utilized for this purpose. The PAComplex 
is a web server for predicting TCR-pMHC interactions and 
inferring antigen families across organisms, of a query pro-
tein or a set of peptides. This server first identifies signifi-
cantly similar TCR–pMHC templates (joint Z-value ≥ 4.0) 
of the query by using antibody–antigen and protein–protein 
interacting scoring matrices for peptide-TCR and pMHC 
interfaces, respectively (Liu et al. 2011). The joint Z-value 
(Jz) is defined as:

√Jz = Z MHC × Z TCR (Marrack et al. 2008)
Here, J z ≥ 4.0 is considered a significant similarity 

according to the statistical analysis.
PAComplex then identifies the homologous peptide anti-

gens of these hit templates from complete pathogen genome 
databases and experimental peptide databases. Finally, the 
server outputs peptide antigens and homologous peptide 
antigens of the query and displays detailed interacting 
models of hit TCR-pMHC templates (Liu et al. 2011). The 
PAComplex server is available at http:// PAcom plex. life. nctu. 
edu. tw. Here, the CTL epitope set predicted by NetCTL and 

optimized by IEDB for the different target population, has 
been used as the target peptide set and TCR-pMHC interac-
tions have been analyzed.

Results and Discussion

Selection of Antigens

The complete protein repertoire of SARS-COV-2 has been 
screened for proteins having sufficient antigenicity property. 
Consensus predictions have been made using Vaxijen and 
ANTIGENpro tools at pre-defined threshold value 0.4 for 
both. Out of 14 proteins, 7 have shown antigenic probabil-
ity ≥ 0.4. Therefore, based on consensus prediction these 
7 antigenic proteins have been taken for further analysis 
(Table 1). Control antigen has been found to be antigenic 
by both the tools.

Characterization of Selected Antigens

Proteins with more than one transmembrane (TM) region 
have been found to be difficult to clone, express and purify; 
thus 7 antigenic proteins predicted in the previous step 
have been subjected to predict presence of transmembrane 
domains using TMHMM server. Out of 7 antigenic proteins, 
2 antigens (P0DTC1, P0DTD1) have been predicted to con-
tain 14 TM regions, 1 antigen (P0DTC3) with 3 TM regions, 
2 antigens (P0DTC2, P0DTC7) with 1 TM region and 2 anti-
gens (P0DTC9, P0DTD2) with no TM regions (Table 1). So, 
these 4 antigens (P0DTC2, P0DTC7, P0DTC9, P0DTD2) 
are taken for further analysis. The control antigen has also 
not shown any TM regions. In allergenicity prediction using 
AllerCatPro tool, all the 4 antigenic proteins have been pre-
dicted as non- allergen. The control antigen has also been 
found to be non-allergen. The physical chemical parameters 
calculated using ProtParam tool has been shown in Table 2. 

Table 1  List of proteins predicted to be antigenic with corresponding antigenic probabilities

Protein no UniProtKB id Protein name Antigenic Probability No. of TM regions 
predicted using 
TMHMMVaxiJen ANTIGENpro

1 P0DTC1 Replicase polyprotein 1a (pp1a) 0.47 0.64 14
2 P0DTD1 Replicase polyprotein 1ab (pp1ab) 0.46 0.68 14
3 P0DTC2 Spike glycoprotein (S) 0.46 0.71 1
4 P0DTC3 ORF3a protein (NS3a) 0.49 0.40 3
5 P0DTC7 ORF7a protein 0.64 0.40 1
6 P0DTC9 Nucleoprotein (N) 0.50 0.93 0
7 P0DTD2 ORF9b protein 0.90 0.74 0
Control Q9Q0L8 Matrix protein 1 0.47 0.86 0

http://tools.iedb.org/population/
http://PAcomplex.life.nctu.edu.tw
http://PAcomplex.life.nctu.edu.tw
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Antigen P0DTC7 has been shown instability index > 40 
i.e. 48.66, GRAVY value positive i.e. 0.318 so it has been 
removed from further analysis. Thus, based on screening 
so far, finally 3 candidate antigens (P0DTC2, P0DTC9, 
P0DTD2) have been selected for epitope prediction.

B Cell Epitope Prediction

According to BepiPred linear B cell epitope predictions at 
threshold 0.45, high probability of B cell epitope has been 
found in all the three antigens. Antigens P0DTC2, P0DTC9 
and P0DTD2 have been predicted to have 25, 9 and 2 regions 
respectively as probable B cell epitopes regions. Similar cri-
teria set has been used for control antigen and 6 regions have 
been predicted as probable B cell epitope regions.

T Cell Epitope Prediction

For HLA class I supertypes, based on highest value of com-
bined score obtained using NetCTL, a total of 419 putative 
CTL epitopes have been predicted for antigen P0DTC2, 
104 putative CTL epitopes have been predicted for antigen 
P0DTC9 and 33 putative CTL epitopes have been predicted 
for antigen P0DTD2. The control antigen has been predicted 
to show 88 putative CTL epitopes. Antigenicity analysis of 
these predicted CTL epitopes using Vaxijen server at thresh-
old 0.4 has shown that many of them have been found to 
be non-antigen. So those non-antigenic peptides have been 
removed and peptides predicted to bind more than one HLA 
class I supertype have been selected. Thus, 53 putative CTL 
epitopes have been selected from antigen P0DTC2, 10 puta-
tive CTL epitopes have been selected from antigen P0DTC9 
and 8 putative CTL epitopes have been selected from antigen 
P0DTD2 for further analysis as listed in Table 3.

For HLA class II supertypes using NetMHC II algorithm, 
341, 79 and 33 putative HTL epitopes have been predicted 
for P0DTC2, P0DTC9 and P0DTD2 respectively. The con-
trol antigen has been predicted 67 HTL epitopes binding to 
15 HLA-DR supertypes.

Population Coverage Analysis

Epitope vaccines trigger an immune response by confront-
ing the immune system with immunogenic peptides. Bind-
ing of these peptides to proteins from the major histocom-
patibility complex (MHC) is crucial for immune system 
activation. However, since the MHC is highly polymorphic, 
crucial step in design of a peptide vaccine is the selection of 
the set of epitopes which yields the best immune response 
in a given population or individual (Jain et al. 2019). It 
has been demonstrated that a correlation exists between 
immunogenicity and MHC class I binding affinity (Sette 
et al. 1994). It is, therefore, reasonable to use MHC class 
I binding affinity prediction methods for the prediction of 
immunogenicity.

CTL epitope sets obtained in the previous step have 
been taken as input for population coverage analysis. IEDB 
population coverage server outputs percentage population 
coverage of individual epitope in the epitope set for all 
the target populations taken. Table 4 shows the top scor-
ing epitopes and their respective population coverage 
percentage.

pMHC‑TCR Interaction Analysis

T cells do not recognize soluble native antigen but rather 
recognize antigen that has been processed into antigenic 
peptides, which are presented in combination with MHC 
molecules. T-cell epitopes must be viewed in terms of their 
ability to interact with both a T-cell receptor and an MHC 
molecule. The interaction between the T-cell receptor and 
an antigen bound to an MHC molecule is central to both 
humoral and cell-mediated responses (Goldsby et al. 2007). 
The results obtained in TCR-pMHC interaction analysis 
using PAComplex are described below.

For peptide set from antigen P0DTC2, the same hit pep-
tide has been obtained for all the four target populations. The 
epitope SIIAYTMSL has been found to have a joint Z value 
of 4.51, illustrating that this peptide demonstrates highly 

Table 2  Physical chemical parameters calculated using ProtParam tool

UniprotKB id Protein name Molecular 
weight (KDa)

Theoretical pI Instability Index Aliphatic Index GRAVY

P0DTC2 Spike glycoprotein (S) 141.17 6.24 33.01 84.67 − 0.079
P0DTC7 ORF7a protein 13.74 8.23 48.66 100.74 0.318
P0DTC9 Nucleoprotein (N) 45.62 10.07 55.09 52.53 − 0.971
P0DTD2 ORF9b protein 10.79 6.56 33.11 105.46 − 0.085
Q9Q0L8
(Control)

Matrix protein 1 27.85 9.42 38.72 82.90 − 0.246
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Table 3  Selected CTL epitopes and their binding to different MHC 
class I supertypes

Protein Epitope MHC I supertypes

P0DTC2
Spike glycoprotein (S)

AALQIPFAM B7, B58

AIVMVTIML A2, B7

DEDDSEPVL B39, B44

EPVLKGVKL B7, B8

ESNKKFLPF A26, B62

FAMQMAYRF B58, B62

FEYVSQPFL B39, B44

FLHVTYVPA A2, B8

FRKSNLKPF B8, B27

FTISVTTEI A2, A26, B58

FVFLVLLPL A2, A26, B8, B62

GAA AYY VGY A1, B58, B62

GAEHVNNSY A1, B62

GQTGKIADY B27, B62

IAIPTNFTI A24, B58

IGAGICASY B58, B62

IGIVNNTVY B58, B62

ITDAVDCAL A1, B39, B58

KGIYQTSNF B58, B62

KIADYNYKL A2, B39

KIYSKHTPI A2, B8

KTSVDCTMY A1, A3, B58, B62

KVTLADAGF B58, B62

LLALHRSYL A2, B8

LPFFSNVTW B7, B58

LSETKCTLK A1, A3

MTSCCSCLK A1, A3

NGVEGFNCY A26, B62

NLLLQYGSF B8, B62

NTSNQVAVL A26, B39

QIITTDNTF A24, A26, B58, B62

QLTPTWRVY A1, B62

RVVVLSFEL A2, B7, B58, B62

SIIAYTMSL A2, A26, B62

SLSSTASAL A2, B7, B62

SPRRARSVA B7, B8

STECSNLLL A1, B39

STQDLFLPF A1, A24, A26, B62

Table 3  (continued)

Protein Epitope MHC I supertypes

TFEYVSQPF A24, B62
TLDSKTQSL A2, B39

TLLALHRSY A3, B62

TSNQVAVLY A1, A3, A26, B58, B62

VLKGVKLHY A1, A3, B62

VLPFNDGVY A1, B62

VRFPNITNL B27, B39

VVNQNAQAL B7, B62

VYDPLQPEL A24, B39

WTA GAA AYY A1, A26, B58, B62

WTFGAGAAL A26, B62

YLQPRTFLL A2, B39, B58, B62

YQDVNCTEV A1, A2, B39

YQPYRVVVL A2, A24, B8, B39, B62

YVPAQEKNF A26, B62

P0DTC9
Nucleoprotein (N)

DLSPRWYFY A1, A3, A26
FPRGQGVPI B7, B8
KAYNVTQAF A24, B7, B8, B58, B62
KMKDLSPRW B58, B62
LSPRWYFYY A1, A3, A26, B58, B62
QFAPSASAF A24, B62
QKKQQTVTL B8, B39
QRQKKQQTV B8, B27
SPRWYFYYL B7, B8
SSPDDQIGY A1, A26, B62

P0DTD2
ORF9b protein

GPKVYPIIL B7, B8
KISEMHPAL A2, B7, B8, B39, B58, 

B62
KVYPIILRL A2, A3, B58
LRLGSPLSL B27, B39
MARKTLNSL B7, B8
RLVDPQIQL A2, B62
SEMHPALRL B39, B44
SLEDKAFQL A2, B39

significant pMHC-TCR interactions (Fig. 1). This hit pep-
tide is homologous to template peptide GILGFVFTL (PDB: 
1oga), which is a linear peptidic epitope of matrix protein 1 
from influenza A virus as recorded in IEDB and shows 40 
peptides in peptide antigen family of template 1oga across 
25 organisms.

The peptide set from antigen P0DTC9 has also shown 
the same hit peptide for all the four target populations. The 
epitope SPRWYFYYL has been found to have a joint Z 
value of 4.37, indicating that this peptide exhibits immensely 
valuable pMHC-TCR interactions (Fig. 2). This hit peptide 
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Table 4  Population coverage 
analysis of optimized top 
scoring CTL epitopes for 
different target populations

Protein Target population Epitope Percentage 
coverage

Total 
HLA 
hits

P0DTC2
Spike glycoprotein (S)

Europe RVVVLSFEL 80.55% 31
SLSSTASAL 77.12% 31
YQPYRVVVL 75.44% 24
AIVMVTIML 72.91% 18
FVFLVLLPL 68.03% 20
TSNQVAVLY 63.35% 26
YLQPRTFLL 63.31% 26
SIIAYTMSL 60.53% 33

North America RVVVLSFEL 80.83% 31
SLSSTASAL 80.83% 31
SIIAYTMSL 78.10% 33
YQPYRVVVL 74.61% 24
AIVMVTIML 69.55% 18
TSNQVAVLY 67.13% 26
VVNQNAQAL 64.63% 23
YLQPRTFLL 64.56% 26

South Asia TSNQVAVLY 80.64% 26
KTSVDCTMY 76.42% 23
VLKGVKLHY 71.64% 17
LSETKCTLK 66.63% 10
MTSCCSCLK 66.63% 10
TLLALHRSY 66.62% 13
SIIAYTMSL 65.03% 33
RVVVLSFEL 61.94% 31

North East Asia TSNQVAVLY 82.88% 26
KTSVDCTMY 81.61% 23
RVVVLSFEL 79.33% 31
VLKGVKLHY 78.68% 17
TLLALHRSY 76.97% 13
SLSSTASAL 73.78% 31
VVNQNAQAL 68.07% 23
SIIAYTMSL 66.22% 33

P0DTC9
Nucleoprotein (N)

Europe KAYNVTQAF 77.43% 27
LSPRWYFYY 63.35% 26
SPRWYFYYL 60.10% 14
FPRGQGVPI 59.75% 12

North America KAYNVTQAF 76.89% 27
LSPRWYFYY 67.13% 26
DLSPRWYFY 54% 13
SPRWYFYYL 51.20% 14

South Asia LSPRWYFYY 80.64% 26
DLSPRWYFY 72.60% 13
KAYNVTQAF 63.14% 27
SPRWYFYYL 32.99% 14

North East Asia LSPRWYFYY 82.88% 26
KAYNVTQAF 76.27% 27
DLSPRWYFY 64% 13
SPRWYFYYL 25.03% 14
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is homologous to template peptide GILGFVFTL (PDB: 
2vlr), which is a linear peptidic epitope from matrix protein 
1 of influenza A virus as recorded in IEDB and shows 61 
peptides in peptide antigen family of template 2vlr across 
34 organisms.

Peptide set from antigen P0DTD2 has not shown any hit 
peptide for any of the four target populations.

The hit peptide antigen SIIAYTMSL from P0DTC2 
matches the profile of the homologous antigen family on 
positions 2, 4, 5, 8 and 9 (Fig. 3). The homologous peptide 
antigens prefers the nonpolar residues on second and fourth 
position (Met, Ile, Leu and Gly, Ala respectively) and the 
second position of the hit peptide is nonpolar residue Ile 
forming five VDW interactions with residues Tyr99, Val67, 
Met45, Tyr7, Phe9 and two hydrogen bonds with residues 
Lys 66, Glu63 on MHC molecule; fourth position of hit pep-
tide is nonpolar residue Ala forming hydrogen bond with 
residue Gln52 in TCR. Position 5 of homologous peptide 
antigens prefers the aromatic residues (Phe, Tyr and Trp) and 
fifth position of hit peptide is aromatic residue Tyr forming 
strong VDW interaction with residue Leu156 on MHC mol-
ecule. Additionally position 8 of homologous peptide anti-
gens prefers the polar residues (Ser, Thr and Asp) and Ser at 
position 8 in hit peptide forms VDW interaction with resi-
due Thr73 and two hydrogen bonds with residues Trp147, 
Lys146 on MHC molecule and one hydrogen bond with 
residue Asp32 in TCR. Position 9 of homologous peptide 

Table 4  (continued) Protein Target population Epitope Percentage 
coverage

Total 
HLA 
hits

P0DTD2
ORF9b protein

Europe KISEMHPAL 88.15% 38

KVYPIILRL 80.84% 20

GPKVYPIIL 60.10% 15

RLVDPQIQL 55.65% 14

North America KISEMHPAL 85.77% 38

KVYPIILRL 77.80% 20

RLVDPQIQL 55.50% 15

GPKVYPIIL 51.20% 14

South Asia KVYPIILRL 76.77% 20

KISEMHPAL 65.26% 38

GPKVYPIIL 32.99% 14

RLVDPQIQL 31.48% 15

North East Asia KVYPIILRL 81.77% 20

KISEMHPAL 81.09% 38

RLVDPQIQL 64.31% 15

SLEDKAFQL 37.92% 13

antigens prefers the nonpolar residues (Leu, Ile) and Leu at 
position 9 in hit peptide forms three VDW interactions with 
residue Leu81, Ile124, Trp147 and three hydrogen bonds 
with residue Asp77, Tyr84, Thr143 on MHC molecule.

Furthermore, the hit peptide antigen SPRWYFYYL 
from P0DTC9 relates the profile of the homologous anti-
gen family on positions 2, 5, 7 and 9 (Fig. 4). Position 2 of 
homologous peptide antigens prefers the nonpolar residues 
(Ile, Leu, Met) and second position in the hit peptide is 
nonpolar residue Pro forming five VDW interactions with 
residue Tyr99, Val67, Met45, Tyr7, Phe9 and two hydro-
gen bonds with residue Lys66, Glu63 on MHC molecule. 
Position 5 and 7 of homologous peptide antigens prefers 
the aromatic residues (Phe, Tyr); fifth and seventh posi-
tion of hit peptide are also aromatic residue Tyr forming 
strong VDW interaction with residue Leu156 and resi-
due Leu156, Val152, Tyr166, Trp147 on MHC molecule 
respectively. Additionally position 9 of homologous pep-
tide antigens prefers the nonpolar residues (Leu, Ile, Val, 
Met) and position 9 in the hit peptide is nonpolar residue 
Leu forming three VDW interactions with residue Leu81, 
Ile124, Trp147 and three hydrogen bonds with residue 
Asp77, Tyr84, Thr143 on MHC molecule.

Therefore, these two peptides can be considered as 
potential vaccine candidates and can be capable of evok-
ing significant immune response. Further in-vivo/in-vitro 
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assessment should facilitate the effectiveness, development 
of polytopic vaccines and immune modulatory effects of 
the predicted peptides.

Conclusions

The world is in the midst of a COVID-19 pandemic. Vac-
cines can prevent infectious diseases and save millions of 
lives each year. Vaccines work by training and preparing 
the body’s natural defences, the immune system, to recog-
nize and fight off the viruses and bacteria they target. If 
the body is exposed to those disease-causing germs later, 
the body is immediately ready to destroy them, prevent-
ing illness. In recent years, peptide based vaccines have 
emerge as very convenient and crucial protection against 
infectious diseases. Immunoinformatics is a branch of 
bioinformatics that involves application of computational 
algorithms to analyse immunological data and problems. 
Advances in the field of immunoinformatics have led the 

development and widely distribution of hundreds of new 
vaccine design algorithms for exploration of proteomics. 
Prediction and analysis of antigenic peptides recognized 
by T helper and cytotoxic T lymphocytes from protein 
repertoire of pathogen followed by refined focus on the 
resulting set of peptides is central to modern vaccine 
development. The development of an effective and afford-
able vaccine against COVID-19 is the necessity of the 
hour for global public health. The present study involves 
application of various available bioinformatics tools for 
prediction of promising vaccine candidates by compre-
hensive mining of the proteome of SARS-COV-2. The 
pMHC-TCR interaction analysis in-silico demonstrated 
that the predicted peptides show homology to well-known 
potential antigens. Therefore, the present work is a very 
prominent strategy for rational antigen identification 
with further in-vivo/in-vitro experimentation required to 
emphasize the importance of the epitopes.

Fig. 1  PAComplex server showing pMHC-TCR interactions and homologous peptide for antigen P0DTC2
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Fig. 2  PAComplex server showing pMHC-TCR interactions and homologous peptide for antigen P0DTC9

Fig. 3  Frequency logo for the peptide antigen family of homologous 
template peptide 1oga (GILGFVFTL) of top hit peptide (SIIAYT-
MSL)

Fig. 4  Frequency logo for the peptide antigen family of homologous 
template peptide 2vlr (GILGFVFTL) of top hit peptide (SPRW-
YFYYL)
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