
ORIGINAL RESEARCH
published: 10 January 2020

doi: 10.3389/fchem.2019.00924

Frontiers in Chemistry | www.frontiersin.org 1 January 2020 | Volume 7 | Article 924

Edited by:

Xiao Jun Yao,

Macau University of Science and

Technology, Macau

Reviewed by:

Tingjun Hou,

Zhejiang University, China

Xuemei Pu,

Sichuan University, China

*Correspondence:

Zhanchao Li

zhanchao8052@gdpu.edu.cn

Xiaoyong Zou

ceszxy@mail.sysu.edu.cn

Specialty section:

This article was submitted to

Medicinal and Pharmaceutical

Chemistry,

a section of the journal

Frontiers in Chemistry

Received: 29 July 2019

Accepted: 18 December 2019

Published: 10 January 2020

Citation:

Li Z, Huang Q, Chen X, Wang Y, Li J,

Xie Y, Dai Z and Zou X (2020)

Identification of Drug-Disease

Associations Using Information of

Molecular Structures and Clinical

Symptoms via Deep Convolutional

Neural Network. Front. Chem. 7:924.

doi: 10.3389/fchem.2019.00924

Identification of Drug-Disease
Associations Using Information of
Molecular Structures and Clinical
Symptoms via Deep Convolutional
Neural Network
Zhanchao Li 1,2*, Qixing Huang 1, Xingyu Chen 1, Yang Wang 3, Jinlong Li 1, Yun Xie 1,

Zong Dai 3 and Xiaoyong Zou 3*

1 School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China, 2 School of

Chemistry, Sun Yat-Sen University, Guangzhou, China, 3 Key Laboratory of Digital Quality Evaluation of Chinese Materia

Medica of State Administration of Traditional Chinese Medicine, Guangzhou, China

Identifying drug-disease associations is helpful for not only predicting new drug

indications and recognizing lead compounds, but also preventing, diagnosing, treating

diseases. Traditional experimental methods are time consuming, laborious and

expensive. Therefore, it is urgent to develop computational method for predicting

potential drug-disease associations on a large scale. Herein, a novel method was

proposed to identify drug-disease associations based on the deep learning technique.

Molecular structure and clinical symptom information were used to characterize drugs

and diseases. Then, a novel two-dimensional matrix was constructed and mapped to a

gray-scale image for representing drug-disease association. Finally, deep convolution

neural network was introduced to build model for identifying potential drug-disease

associations. The performance of current method was evaluated based on the training

set and test set, and accuracies of 89.90 and 86.51%were obtained. Prediction ability for

recognizing new drug indications, lead compounds and true drug-disease associations

was also investigated and verified by performing various experiments. Additionally,

3,620,516 potential drug-disease associations were identified and some of them were

further validated through docking modeling. It is anticipated that the proposed method

may be a powerful large scale virtual screening tool for drug research and development.

The source code of MATLAB is freely available on request from the authors.

Keywords: convolutional neural network, deep learning, drug-disease associations, fingerprint, symptoms

INTRODUCTION

Traditional drug development usually follows this paradigm of one drug, one gene, one disease,
which is an expensive and time-consuming process with stunningly high failure rate. By
conservative estimates, it takes about 15 years and $0.8–1.5 billion to bring a drug to market
(Dudley et al., 2011; Yu et al., 2015), and during the development stage, almost 90% of the small
molecules cannot pass the Phase I clinical trial and finally be eliminated (Wu et al., 2019). On
the other hand, disease burden is increasing globally due to the growth of population, outbreak
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of infectious disease and emergence of antibiotic resistance
(Shameer et al., 2018). In order to circumvent this dilemma, drug
repositioning has become a promising alternative strategy for
drug research and development (Wu et al., 2017).

Drug repositioning, also known as drug repurposing, drug
reprofiling, and drug redirecting, which aims to find potential
new indication for existing drug and apply the drug to the
treatment of disease other than the drug’s originally intended
disease (Luo et al., 2016). It offers a possible way to greatly save
time and cost, especially improve success rate, because of existing
pharmacological and toxicological properties, as well as safety
on known drug (Wang et al., 2014; Sun et al., 2017). However,
successful drug repurposing stories are rare and rather random
events (Sun et al., 2017). Well-known examples are sildenafil
(trade name Viagra) and minoxidil, which were originally used
to treat angina and hypertension. At present, they have been
repurposed for the treatment of erectile dysfunction and hair
loss, due to accidental discovery with a bit of luck (Bovac, 2013;
Varothai and Bergfeld, 2014; Wu et al., 2019). Weakness of drug
reprofiling is that it relies mainly on prior knowledge and clinical
trials (Park et al., 2017), which is unfeasible in general and much
too expensive to be applied on a large scale (Sun et al., 2017).
For example, there are 2,593 approved small molecule drugs in
DrugBank (Wishart et al., 2018) and 19,941 disease entries in
MalaCards (Rappaport et al., 2017), resulting in more than 50
million of drug-disease combinations. Undoubtedly, it is almost
impossible to effectively validate all possible associations of drug-
disease through laboratory works and clinical trials. Therefore,
it is urgent to develop in silico drug redirecting approaches for
discovering new indications for approved drugs on a large scale.

Fortunately, with the accumulation of drug and disease related
data, as well as the development of machine learning, numerous
theoretical methods have been proposed to find new indications
of drugs by identifying potential drug-disease associations. These
computational approaches can be roughly divided into three
mainstreams: drug-based, disease-based, and network-based.
The former two are according to the assumption that drugs
having similar structures/properties are inclined to be associated
with diseases having similar pathogenesis/symptoms, and vice
versa (Liu et al., 2016; Wu et al., 2017; Shameer et al., 2018).
For example, Gottieb et al. (2011) utilized multiple drug-drug
and disease-disease similarity measures for the prediction of
drug repurposing using the logistic regression classifier. Zhu
and Zhu (2015) introduced a method to identify repositioned
drug for breast cancer by integrating the breast cancer survival
data with the drug sensitivity information. By integrating
information of drug chemical substructure, target domain and
annotation, a novel method was presented to predict drug-
disease associations based on the Laplacian regularized sparse
subspace learning (Liang et al., 2017). Based on the drug features
and disease semantic information, Zhang et al. (2018a) proposed
a similarity constrained matrix factorization method for the
prediction of drug-disease associations. Khalid and Sezerman
(2018) combined the biological pathways, binding site structural
similarities, disease-disease similarity with logistic regression
classifier to predict approved and novel drug-disease associations.
Wang et al. (2013) trained a support vector machine model

to identify potential drug-disease interactions by integrating
molecular structure, molecular activity and phenotype data. A
support vector machine model was also built by Moghadam et al.
(2016) to recognize novel drug indications through adopting
kernel fusion technique and various features of drug and disease.
By considering information of drug chemical structures, drug
targets and gene expression patterns, Napolitano et al. (2013) also
developed a support vector machine classifier to predict novel
drug-disease associations.

The last one is based on the principle of “guilt-by-
association” that drugs treating with same disease share
structure/network properties and the diseases treated with
the same drug also share phenotype/network properties (Wu
et al., 2017). For instance, Zhao and Li (2012) defined a
network-based gene closeness profile to relate drug to disease.
Then, a Bayesian partition method was utilized to elucidate
drug-disease associations by identifying drug-gene-disease co-
modules. Huang et al. (2013) combined three different networks
with edge weights of drug, genomic and disease phenotype,
and developed network propagation approach to infer the drug-
disease associations. Oh et al. (2014) constructed an integrative
genetic network including protein-protein interaction network
and gene regulatory network. Then, the distance between
topology drug-module and disease-module were adopted as
features for the prediction of novel drug-disease associations
based on the random forest algorithm. A causal network
connecting drug-target-pathway-gene-disease was built by Yang
et al. (2014) who calculated the association scores between drugs
and diseases by evaluating a drug’s effects on multiple targets
and pathway. Finally, probabilistic matrix factorization models
were learned to identify therapeutic associations. Based on the
propagation flow algorithm, Martinez et al. (2015) developed
DrugNet for prioritization of drug-disease relationships through
a network of interconnected drugs, proteins and diseases. A
novel methodology was proposed by Yu et al. (2015) to discover
the drug-disease associations by constructing heterogeneous
network consisting of drugs, protein complexes and diseases. By
building a heterogeneous network including drug-drug similarity
network, disease-disease similarity network and known drug-
disease association network, Liu et al. (2016) proposed a two-
pass random walks with restart to predict new indications for
approved drugs. Yu et al. (2016) represented a cluster method for
prediction of new drug indications by using the identified drugs
and disease modules based on the constructed drug network and
disease network. Wu et al. (2017) constructed a novel weighted
drug-disease pair network, where a node is a drug-disease
pair and a weighted edge represents the node-node relation.
Then, a semi-supervised graph cut algorithm was adopted to
identify the potential drug-disease treatment interactions. Drug-
disease associations were formulated as a bipartite network,
Zhang et al. (2018b) presented the network topological similarity-
based inference method to predict unobserved drug-disease
associations based on the linear neighborhood similarity. Wu
et al. (2019) introduced a method to detect drug-disease
treatment relations by using drug-disease, drug-protein and
disease-protein interaction data based on the random forest
algorithm. By considering network similarities of drugs and
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diseases, Cui et al. (2019) proposed a novel method to predict
drug-disease interactions based on the Gaussian interaction
profile kernels and L2,1-norm.

Despite progresses in the past decade on identification
of drug-disease associations, accurate prediction of treatment
relations is still far from satisfaction. The first one recognized
limitation, especially for the drug-based and disease-based
methods, is the lack of a uniform or universal definition for
calculating similarity, resulting in dramatical change of similarity
score from one method to another. The second one, especially
for network-based methods, is only fit for drugs or diseases
included in the built network or dataset. Hence, some methods
usually fail to discover the novel drugs and new indications.
The third one is the restriction of only semantic similarity
for assessing disease similarity based on the human phenotype
ontology (Groza et al., 2015) and disease ontology (Bello et al.,
2018). However, precise semantic relationships are not often
captured (Zhu et al., 2013). Others or new attributes, such
as symptoms (i.e., clinical manifestations information) may be
adopted to characterize the disease, because symptoms are the
most directly observable characteristics of a disease and the basis
of clinical disease classification (Zhou et al., 2014), as well as
diseases with similar symptoms usually share common genetic
mechanisms (Xu et al., 2013). In addition, deep learning has
been widely used in various research fields as a modern machine
learning technique (Bai et al., 2019; Li et al., 2019; Steuer et al.,
2019). However, its effectiveness for drug-disease associations
prediction has not been evaluated.

In view of these reasons, a novel computational method
was developed to identify drug-disease associations based on
the information of molecular structures and clinical symptoms
through deep learning method. Instead of using the information
of drug related side effects, activity, target protein and their
interactions, as well as disease-related human phenotype
ontology, disease ontology, gene ontology and disease genes,
the chemical fingerprints and disease symptoms were only
utilized for enhancing the generalization ability. A novel two-
dimensional matrix was constructed to characterize drug-disease
association by considering the information of drug and disease,
simultaneously. Finally, deep convolutional neural network was
employed to construct model for identifying potential drug-
disease associations.

MATERIALS AND METHODS

Collection of Drug-Disease Associations
In order to construct a comprehensive and high-quality
dataset of drug-disease associations, firstly, we downloaded
the information of drug-disease associations contained in
the file CTD_chemiclas_diseases.tsv from the Comparative
Toxicogenomics Database (CTD, Ver. Feb, 2017) (Davis et al.,
2019), which is a robust, publicly available database and
provides manually curated information about chemical, gene,
protein, disease and their relationships. Secondly, removed drug-
disease pairs without annotation “therapeutic” in the field of
Direct Evidence and with annotation “drug combination” in
the field of Chemical Name, meaning that the obtained drugs
itself have therapeutic effects on diseases, rather than exert

functions by combining with other drugs. Thirdly, deleted
drug-disease associations in which drugs had no information
of CID numbers and SMILES (canonical simplified molecular
input line entry system) strings in the PubChem database (Kim
et al., 2016). Fourthly, canceled drug-disease pairs in which
diseases were un-included in the work of Zhou et al. (2014).
Finally, 26,521 drug-disease associations containing 4,501 drugs
and 2,093 diseases were obtained (Supporting Information 1).
These retrieved drug-disease associations were considered as
positive examples.

The goal of current research is to identify potential therapeutic
relationships from tremendous combinations between drugs
and diseases based on deep learning method. This is a
binary classification problem, therefore, it is necessary to build
negative examples (i.e., drug-disease non-association pairs).
Unfortunately, there is no database dedicated to collecting
drugs without treatment relationships for diseases due to lack
of research and application value. Consequently, we had to
use the following strategy to produced negative samples: (1)
Randomly selected drug and disease from positive samples
to form new drug-disease association pair. (2) Eliminated
the new association pair if it existed in the downloaded
file CTD_chemiclas_diseases.tsv, otherwise, considered it as a
negative sample. (3) Repeated steps (1) and (2), until the number
of negative samples equals the number of positive samples.

Finally, a benchmark dataset with equal size of true drug-
disease associations and false drug-disease associations was
established. The “1:1” ratio can overcome the limitation
of a larger number of negative examples and lead to
unbiased prediction.

Characterization of Drug-Disease
Associations
In order to increase the applicability of the current method,
the Pubchem molecular fingerprint descriptor was calculated
to characterize drug molecule by using the information of
SMILES format and PaDEL-descriptor software (Yap, 2011).
This fingerprint descriptor is a binary feature vector with
881 dimensions, in which every element corresponds to one
specific chemical substructure and is encoded as either 1 or
0 to show clearly whether the substructure is contained in
the drug molecular. For simplicity, the molecular fingerprint
descriptor of drug i is represented by Fi, n (n = 1,2,. . . . . . .,881).
The molecular fingerprint is a simple but effective descriptor
in the wide use of quantitative structure-activity relationship
(Banerjee and Preissner, 2018; Zheng et al., 2019). Based
on the fingerprint descriptor, the similarity of any two
drug molecules was evaluated by calculating the Jaccard
similarity coefficient (Levandowsky and Winter, 1971; Fuxman
Bass et al., 2013; Li et al., 2016). Similarity values and
statistical results are shown in Figures 1A,B. Clearly, the
similarity values are in the range of 0–0.9956, about 10,
15, 19, 20, 18, and 11% are located in the range of [0–
0.1], [0.1–0.2], [0.2–0.3], [0.3–0.4], [0.4–0.5], and [0.5–0.6],
suggesting that drug molecular structures are very diverse
and complex.

For each disease, the symptom information was retrieved
from the human symptoms-disease network (Zhou et al.,
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FIGURE 1 | The results of drug, disease and drug-disease association similarity. (A) The calculation results of any two drug similarity. The 4501-by-4501 grid of pixels

where 4501 is the number of drugs. Each pixel represents a similarity of two drugs and has a different color changing from green (0) to yellow (1). “1” represents that

the structures of two drugs are exactly the same, and “0” means that their structures are completely different. (B) The statistical results of similarity of drug, disease

and drug-disease association. (C) The calculation results of any two disease similarity. (D) The calculation results of any two drug-disease associations.

2014), resulting in 105,892 connections between 2,093 diseases
and 322 symptom terms. The associations between diseases
and symptoms were acquired based on the co-occurrence of
disease terms and symptom terms in the MeSH metadata field
of PubMed and quantified using the term frequency-inverse
document frequency. Therefore, a disease can be characterized
by a feature vector with 322 dimensions, in which every element
corresponding to one specific symptom and is encoded as a
value larger than or equal to zero to explain the strength of the
association between disease and symptom. For convenience of
description, the symptomatic feature of disease j is characterized
by Dj, m (m = 1,2,. . . . . . ,322). This representation is reasonable
and based on this fact thatmany symptoms are not always present
for a disease and occur with varying frequency. For any two
diseases, we calculated the cosine value of the included angel
between corresponding two symptom feature vectors to assess
disease diversity. The statistical results and cosine values were
shown in Figures 1B,C. It is clear that most (about 76%) of the
cosine values are lower than 0.1, revealing that diseases in the
benchmark dataset belong to various categories.

Different from previous studies, a novel gray-scale image
method was proposed to characterize drug-disease relationships
by considering both drug and disease properties. For drug i and
disease j, a two-dimensional matrix FDij with 881 × 322 was
constructed. Value of element located in the n-th row and m-th

column was calculated according to the following Equation (1):

FDi,j(n,m) = Fi(n)+ Dj(m) (1)

Then, the matrix was mapped to a gray-scale image to
characterize the relationship between drug i and disease j. The
rationality of the method is rooted in the paradigm of “structure
determines function” and the fact that the clinical manifestation
of disease is symptoms, which are widely used in disease
diagnosis, treatment and classification research. Therefore, we
utilize molecular fingerprint descriptors to characterize drug
chemical structure and provide information on its functions, as
well as adopt symptom features to represent disease and provide
information on its pathological mechanisms, respectively. The
introduced method is helpful to elucidate the relationship
between drug and disease at the level of molecular structure and
clinical phenotype.

For any two drug-disease associations Dr1-Di1 and Dr2-Di2,
their similarity is defined by the following Equation (2):

SimDr1−Di1 ,Dr2−Di2 =
Jac (Dr1, Dr2) + Cos (Di1, Di2)

2
(2)

Where, Jac(Dr1, Dr2) and Cos(Di1, Di2) mean the Jaccard
similarity coefficient and cosine value, respectively. According
to the definition, the similarity value of two drug-disease pairs
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is always located in the range of 0 and 1, and the higher value
means the more similar. The statistical results and similarity
values between any two drug-disease associations were shown
in Figures 1B,D. Clearly, about 98% of the similarity values are
in the range of 0–0.5, revealing that the benchmark dataset is
complex and contains various drug-disease associations.

Construction and Assessment of Model
The goal of this work is to identify whether an unknown drug-
disease association has a therapeutic relationship or not, which
is a two-class classification problem. Hence, deep convolution
neural network was utilized to discriminate potential drug-
disease associations owing to the success in image recognition
and biomedicine (Esteva et al., 2017; Pelt and Sethian, 2018;
Sullivan et al., 2018). The architecture and parameters of deep
convolution neural network were optimized based on experience,
and listed in Table 1. In addition, we used the optimizer of
stochastic gradient descent with momentum 0.9. Initial learning
rate was 0.01 and reduced the learning rate by a factor of 0.1 every
10 epochs. Maximum number of epochs for training was set to 50
and used a mini-batch with 128 observations at each iteration.
The default values were used for all other parameters and the
program was executed based on the MATLAB software.

In order to evaluate the performance of current method,
20,000 positive and negative samples were randomly chosen
from the benchmark dataset to construct a training set, and the
remaining positive and negative samples were used to build a
test set. In addition to accuracy (AC), sensitivity (SE), specificity
(SP), precision (PR) and Matthew’s correlation coefficient
(MCC), we also utilize receiver operating characteristic curve
(ROC), precision recall (RE) curve (PRC) and corresponding
area (ROCA and PRCA) to estimate the predictive ability of
the model.

TABLE 1 | The architecture and parameters of deep convolution neural network.

Layer Size

Image input 881 × 322

Convolutional 32 filters with 5 × 5, stride 2 × 2

ReLU –

Max pooling 2 × 2, stride 2 × 2

Convolutional 64 filters with 5 × 5, stride 2 × 2

ReLU –

Max pooling 2 × 2, stride 2 × 2

Convolutional 128 filters with 5 × 5, stride 2 × 2

ReLU –

Max pooling 2 × 2, stride 2 × 2

Fully connected 500, dropout = 0.5

Fully connected 500, dropout = 0.5

Fully connected 500, dropout = 0.5

Fully connected 500, dropout = 0.5

Fully connected 2

Softmax _

Classification 2

Flowchart of the current method is shown in Figure 2, and
detailed steps were described as follows:

Step 1. Retrieved drug-disease associations from the
CTD database.
Step 2. Obtained the SMILES strings of drug molecules from
the PubChem compound database and symptoms of diseases
from the human symptoms-disease network, respectively.
Step 3. Produced molecular fingerprint descriptors and
disease symptom features to characterize drugs and
diseases, respectively.
Step 4. Generated two-dimensional matrixes and map it to
gray-scale images to characterize drug-disease associations.
Step 5. Divided the benchmark dataset into training set and
test set to build model and evaluate performance, respectively.

RESULTS AND DISCUSSION

Performance Evaluation of Current Method
In order to evaluate the performance for the negative sample
random generation method, parallel experiments are performed
10 times for generating the negative samples, building the model
and evaluating the performance. The statistical results of AC,
SE, SP, PR, and MCC, as well as ROC and PRC derived from
the training set and test set are shown in Figure 3 and listed in
Table 2, respectively. For training set, average values of AC, SE,
SP, PR, MCC, ROCA, and PRCA are 89.90, 88.96, 90.85, 90.67%,
0.7982, 0.9637 and 0.9651, with the relative standard deviations
0.30, 0.44, 0.16, 0.19, 0.66, 0.19, and 0.19%. For test set, average
values and the corresponding relative standard deviations are
86.51 and 0.21%, 86.23 and 0.36%, 86.79 and 0.19%, 86.72
and 0.17%, 0.7302 and 0.50%, 0.9360 and 0.14%, 0.9352 and
0.17%, respectively. The AC, SE, SP, and PR from the training
set and test set are higher than 85%. Meanwhile, the relative
standard deviations are lower than 1%. These results reveal that
the developed method can effectively capture information of
drug-disease associations, and also has a strong robustness for
generating negative samples and an outstanding ability to identify
drug-disease associations.

Comparison of Molecular Fingerprint
Descriptors
In addition to the Pubchem fingerprint descriptor, we also
calculated six kinds of fingerprint descriptors such as 2D atom
pairs, Estate, CDK, CDK graph, MACCS, and Substructure
(their detailed description can refer to the help file of PaDEL-
descriptor). Then themodel was constructed and evaluated based
on the benchmark dataset. The statistical results, ROC and PRC
were illustrated in Figure 3 and listed in Table 2, respectively.

We can see that the Estate descriptor achieve the lowest
average AC, SE, SP, PR, MCC, AUCR, and AUCP for both
the training set and test set, which may be caused by the
fact that the descriptor has only a 79-dimensional feature
vector and cannot adequately describe the molecular structure
information. For 2D atom pairs, CDK, CDK graph, MACCS
and Substructure, AC from the training set and the test
set are about 89 and 86%, about 0.9 and 0.5% lower than
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FIGURE 2 | Flowchart of the current method.
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FIGURE 3 | Mean ROC and PRC curves of execute 10 times based on the training set and test set. (A) Results of training set. (B) Results of test set.

those of Pubchem, respectively. For AC from the training set
and test, statistical hypothesis tests including Wilcoxon rank
sum test and two-sample Kolmogorov-Smirnov test between
Pubchem and other descriptors were performed, and the
corresponding results were listed in Table 3. For Wilcoxon
rank sum test, most of the p-values are <1.8 × 10−4, only
p-value between the Pubchem and the CDK graph derived
from test set is 1.309 × 10−3. All p-values indicate that
significant differences existed in the AC from Pubchem and
other six descriptors. For two-sample Kolmogorov-Smirnov
test, the lowest and highest are 3.286 × 10−5 and 9.050
× 10−3, respectively. All these p-values show significant
differences. Therefore, Pubchemmolecular fingerprint descriptor
is the optimal feature for characterizing molecular structure in
current research.

Proportion of Positive and Negative
Samples
In order to overcome the problem of classification hyperplane
skewness, a very common phenomenon in the field of machine
learning, the ratio between positive and negative samples was set
to 1:1. In fact, the number of negative samples is much larger than
that of positive samples for identifying drug-disease associations.
To assess the effect of positive and negative sample ratios on
the performance of current method, we constructed a series of
datasets in which the ratio was set to 1:2, 1:3, . . . , 1:10. Then, 3/4
of the positive and negative samples were randomly choose as the
training set for building model, and the remaining positive and
negative samples were considered as the test set for evaluating
performance. The whole process was repeated five times, and the
statistical mean results were display in Figure 4. For convenience

of comparison, the statistical results in section of performance
evaluation of current method also exhibited in Figure 4.

As shown in Figures 4A,C, average values of AC and SP
increase slowly as the ratio changes from 1:1 to 1:10 for training
sets and test sets. However, average values of SE and PR are
slowly decreasing. For Figures 4B,D, we can see that average
values of MCC and AUCP are also slowly decreasing as the
ratios increase. The average values of AUCR fluctuate within a
very small range. This result indicates that as the ratio improves,
the number of negative samples in the training set dramatically
increases and provide more negative sample information for
trainingmodel, whichmakes themodel easier to identify negative
samples, but more difficult to identify positive samples. Although
AC takes into account the prediction results of positive and
negative samples simultaneously, its value is mainly determined
by the prediction result of negative samples. Therefore, average
values of AC improve as the ratios increase. On the contrary,
average values of MCC and AUCP decrease. We also note that
AUCR is insensitive to the ratio between positive and negative
samples in the current research. Hence, it is reasonable to set the
ratio of positive and negative samples to 1:1, which can ensure
the model has high sensitivity, because the aim of our research is
to identify potential drug-disease associations.

Identification Power of New Indications for
Existing Drugs
Finding new indications for marketable drugs can help
pharmaceutical companies reduce costs and time. Our approach
ability for drug repositioning was further estimated through
generating new training set and test set based on the step-by-
step strategy: (1) Randomly selected a positive sample (i.e., drug-
disease association Dr1-Di1) to enter the training set. (2) Chose
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TABLE 2 | The statistical results of performed 10 times based on the training set and independent test set (Rsd: relative standard deviation).

Dataset Fingerprint AC(%)/

Rsd(%)

SE(%)/

Rsd(%)

SP(%)/

Rsd(%)

PR(%)/

Rsd(%)

MCC/

Rsd(%)

AUCR/

Rsd(%)

AUCP/

Rsd(%)

Training set Pubchem 89.90/

0.29

88.96/

0.44

90.85/

0.16

90.67/

0.19

0.7982/

0.66

0.9637/

0.19

0.9651/

0.19

2D atom pairs 88.73/

0.18

87.36/

0.23

90.10/

0.17

89.82/

0.17

0.7749/

0.42

0.9531/

0.08

0.9560/

0.09

Estate 83.51/

0.27

80.22/

0.40

86.79/

0.18

85.86/

0.21

0.6716/

0.66

0.9106/

0.25

0.9161/

0.22

CDK 88.66/

0.78

87.97/

1.0

89.37/

0.58

89.22/

0.63

0.7733/

1.8

0.9557/

0.59

0.9571/

0.57

CDK graph 89.28/

0.78

88.55/

0.33

90.02/

0.23

89.87/

0.24

0.7858/

0.63

0.9606/

0.18

0.9617/

0.20

MACCS 88.46/

0.75

86.77/

0.99

90.15/

0.54

89.80/

0.60

0.7696/

1.7

0.9531/

0.50

0.9520/

0.43

Substructure 88.83/

0.10

87.38/

0.14

90.28/

0.07

89.99/

0.08

0.7769/

0.66

0.9558/

0.06

0.9590/

0.06

Test set Pubchem 86.51/

0.21

86.23/

0.36

86.79/

0.19

86.72/

0.18

0.7302/

0.50

0.9360/

0.14

0.9352/

0.16

2D atom pairs 85.57/

0.10

84.57/

0.21

86.58/

0.16

86.31/

0.13

0.7116/

0.24

0.9257/

0.08

0.9261/

0.09

Estate 83.04/

0.32

80.07/

0.62

86.00/

0.10

85.12/

0.15

0.6619/

0.79

0.9041/

0.23

0.9057/

0.21

CDK 86.02/

0.40

85.69/

0.76

86.35/

0.31

86.26/

0.29

0.7204/

0.96

0.9309/

0.39

0.9304/

0.22

CDK graph 86.09/

0.22

85.75/

0.34

86.43/

0.18

86.34/

0.18

0.7218/

0.53

0.9330/

0.15

0.9326/

0.22

MACCS 85.17/

0.38

83.92/

0.79

86.43/

0.35

86.08/

0.29

0.7037/

0.50

0.9217/

0.25

0.9172/

0.24

Substructure 85.60/

0.16

84.74/

0.25

86.46/

0.29

86.22/

0.25

0.7121/

0.38

0.9278/

0.08

0.9283/

0.10

TABLE 3 | The p values of hypothesis tests between Pubchem and other

molecular fingerprint descriptors based on the AC.

Pubchem

Wilcoxon rank sum

(Train/Test)

Kolmogorov-Smirnov

(Train/Test)

2D atom pairs 1.827e-04/

1.817e-04

1.888e-05/

1.888e-05

Estate 1.827e-04/

1.817e-04

1.888e-05/

1.888e-05

CDK 2.165e-05/

7.361e-04

3.286e-05/

9.050e-03

CDK graph 3.791e-04/

1.309e-03

1.216e-03/

6.899e-03

MACCS 1.827e-04/

1.827e-04

1.888e-05/

1.888e-05

Substructure 1.827e-04/

1.827e-04

1.888e-05/

1.888e-05

all positive samples including disease Di1 into the training set. (3)
Repeated the steps 1 and 2, until the number of positive samples
chosen reached 3/4 of all positive samples. The remaining 1/4
was entered into the test set. (4) Randomly selected a negative
sample (i.e., drug-disease non-association pair NDr1-NDi1) into

the training set. (5) All negative samples containing disease NDi1
were also entered into the training set. (6) Repeated steps 4 and 5
until the number of negative samples selected achieved 3/4 of all
negative samples. The remaining 1/4 was contained in the test set.

Based on the strategy, a disease is either involved in the
training set or in the test set, which can guarantee disease
information in the test set not existing in the training set. All of

the above steps were repeated 10 times, 10 new training sets and

corresponding test sets were then generated, and their prediction
results were illustrated in Figures 5A,B.

For training sets, AC, SE, SP, and PR are located in the range
of [87.82–88.47%], [86.39–87.64%], [88.52–89.65%], [88.39–
89.39%], respectively. The MCC, AUCR, and AUCP change from

0.7567 to 0.7694, 0.9493 to 0.9547, 0.9512 to 0.9665, respectively.

The corresponding relative standard deviations are 0.26, 0.42,

0.37, 0.33, 0.60, 0.18, and 0.20%, respectively. The average values

are 88.14, 87.18, 89.10, 88.89%, 0.7630, 0.9519, and 0.9539, only
about 1.76, 1.78, 1.75, 1.78%, 0.035, 0.012, and 0.011 lower than
those of the training set derived from the benchmark dataset with
the Pubchem descriptor (listed in Table 2).

For test sets, the minimum and maximum values of AC, SE,
SP, PR, MCC, AUCR, and AUCP are 74.46 and 77.60%, 65.50
and 71.40%, 82.72 and 85.22%, 89.30 and 82.31%, 0.4960 and
0.5568, 0.8147 and 0.8486, 0.8279 and 0.8541, respectively. The
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FIGURE 4 | The statistical average results of various dataset, in which the ratios between positive and negative samples are 1:1, 1:2, 1:3, …, 1:10. The panels in

(A–D) represent the mean values of AC, SE, SP, PR, MCC, AUCR, and AUCP, respectively. The red vertical bars indicate the standard deviations. (A) The statistical

results of AC, SE, SP, and PR from training sets. (B) The statistical results of AUCR and AUCP from training sets. (C) The statistical results of AC, SE, SP, and PR

derived from independent test sets. (D) The statistical results of AUCR and AUCP derived from independent test sets.

corresponding relative standard deviations are 1.4, 2.7, 1.1, 1.2,
3.8, 1.4, and 1.1%, respectively. The average values are 76.28,
68.60, 83.97, 81.05%, 0.5320, 0.8340 and 0.8414, only about 10.23,
17.63, 2.82, 5.67%, 0.1982, 0.1290, and 0.0938 lower than those
of the test set from the benchmark dataset with the Pubchem
descriptor (listed in Table 2).

These results uncover that our method still obtains high
predictive accuracy even though both training test and test
sets are constructed rigorously, indicating that it has ability for
identifying new drug indications.

Recognition Ability of Potential Drug
Molecules
Pharmaceutical companies are more interested in which drug or
compound is effective on a new disease, i.e., whether this novel
disease is associated with known or potential drug molecule.
To this end, we appraise the performance of our method for
identifying potential drug molecules or lead compounds by
generating a serious of training test and test sets base on
the step-by-step strategy mentioned above. In Steps 2 and 5,
selected all positive examples including drug Dr1 and all negative

examples comprising drug NDr1 into the training set and test set,
respectively. The process was executed 10 times, 10 training sets
and test sets were then obtained, and their prediction results were
shown in Figures 5C,D.

For training sets, values of Acc, Sen, Spe, Pre, MCC, AUCR,
and AUCP fluctuate from 90.08 to 91.50%, 88.91 to 90.63%,
91.16 to 92.37%, 90.96 to 92.23%, 0.8018 to 0.8301, 0.9638 to
0.9730, 0.9648 to 0.9725, respectively. The corresponding relative
standard deviations and average values are 0.54 and 90.85%, 0.68
and 89.91%, 0.44 and 91.80%, 0.46 and 91.64%, 1.2% and 0.8172,
0.33% and 0.9691 and 0.25% and 0.9671, respectively. These
results are very close to the results of the training set derived
from the benchmark dataset with the Pubchem descriptor (listed
in Table 2).

For test sets, values of Acc, Sen, Spe, Pre, MCC, AUCR,and
AUCP are in the range of [78.51–80.61%], [70.34–74.61%],
[86.14–87.84%], [83.96–85.51%], [0.5780, 0.6171], [0.8556,
0.8764] and [0.8642, 0.8829], respectively. the corresponding
relative standard deviations and average values are 0.79 and
79.77%, 1.9 and 72.69%, 0.72 and 86.84%, 0.67 and 84.68%, 2.0
and 0.6015, 0.74% and 0.8675, 0.72% and 0.8732. Although the
average Acc of test sets is about 10% lower than that of training
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FIGURE 5 | The prediction results of various training sets and independent test sets based on the step-by-step strategy. In polar coordinate system, radius is 100

(A,C) and 1 (B,D), respectively. The solid and dashed lines represent the training set and the independent test set, respectively. Black+plus sign, blue+asterisk,

green+ tetragonum, red+diamond, yellow+cross, magenta+circle and cyan+ pentagon mean the AC, SE, SP, PR, MCC, AUCR, and AUCP, respectively. (A,C) The

results of AC, SE, SP, and PR. (B,D) The results of MCC, AUCR, and AUCP.

sets, it is reasonable because the drug information in the test
sets are excluded from the training sets. Therefore, these results
suggest that current method can recognize candidate drugs or
lead compounds with a high prediction accuracy.

Prediction Capability of Potential
Drug-Disease Associations
We further investigated performance for recognizing potential
drug-disease associations by constructing a series of non-
redundant benchmark dataset. Here, a non-redundant drug-
disease associations database was constructed by randomly
winnowing those association pairs that have more than a
given threshold (i.e., similarity) to other pairs presented in the
benchmark dataset. Then, 3/4 of positive and negative examples
were adopted as training set to train model, and the remaining
examples were utilized as test set to evaluate performance.
The similarity threshold was set to 0.5, 0.6,. . . ,0.9, and the
construction of non-redundant dataset was repeated 10 times
for each threshold, respectively. Note that thresholds of 0.1, 0.2,

0.3, and 0.4 were not employed, because the number of samples
in the non-redundant dataset was too small to be statistically
significant. The statistical results of training sets and test sets
based on the various thresholds were shown in Figure 6.

For training set, we can observe that with the decrease of
the threshold from 0.9 to 0.5, average values of AC, SE, SP, PR,
MCC, AUCR, andAUCP are also gradually reduced from 89.37 to

86.65%, 88.22 to 84.56%, 90.51 to 88.74%, 90.29 to 88.21%, 0.7876

to 0.7339, 0.9592 to 0.9403, 0.9595 to 0.9396. The current method
still obtains average accuracy of 86.65%, even if the threshold is
reduced to 0.5.

For test set, average values of AC, SE, SP, and PR decrease

gradually with the decrease of threshold from 0.9 to 0.5, but these

values are consistently higher than 80% for threshold from 0.9 to
0.6. Meanwhile, average values of MCC, AUCR, and AUCP are
always higher than 0.63, 0.89, and 0.88, respectively. Even when
the threshold is decreased to 0.5, the current method still achieves
the average AC of 80.33%, SE of 78.78%, SP of 81.88%, PR of
81.29%, Mcc of 0.6071, AUCR of 0.8766, AUCP of 0.8769.
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FIGURE 6 | The statistical results of various training sets and independent test sets based on the different cutoffs. The panels in (A–D) indicate the mean values of

AC, SE, SP, PR, MCC, AUCR, and AUCP, respectively. The black vertical bars indicate the standard deviations. (A,B) for training sets. (C,D) for independent test sets.

These results demonstrate that the proposed method still
achieves state-of-the-art performance, and has ability to identify
novel drug-disease associations.

Identify Ability of Independent Test Set
After evaluated the performance of the proposed method for
identifying new indications, potential drugs and novel drug-
disease associations, we further assessed the true predictive power
based on the independent test set, which were generated by
collecting drug-disease associations information from the CTD
database (Ver. Jun, 2019). The independent test set contains
1,323 drug-disease associations (Supporting Information 2),
which are not included in the benchmark dataset. In the new
associations, drugs and diseases in 377 and 38 drug-disease pairs
did not appear in the benchmark dataset, respectively.

The final identification model was built based on the all
drug-disease associations in the benchmark dataset, and then
used it to predictive the new drug-disease associations in the
independent test set. We find that 973 drug-disease associations

were correctly identified, and the prediction accuracy was 73.54%
(973/1,323). For the 377 and 38 associations, 271 and 27 were
correctly recognized, accuracy was 71.88% (271/377) and 71.05%
(27/38), respectively.

These results reveal that our approach still achieves more than
70% prediction accuracy for these new drug-disease associations,
indicating the reliability of the method.

Large-Scale Prediction of Drug-Disease
Associations
We further conducted a comprehensive and large-scale
prediction for unknown drug-disease associations by using the
final model. In order to generate the unknown associations,
we firstly downloaded the information on structure and
physicochemical properties of compounds/drugs from the
DrugBank dataset. Secondly, deleted those compounds/drugs
according to the Lipinski’s rule of five (i.e., molecular mass
<500 daltons, <5 hydrogen bond donors and 10 hydrogen bond
acceptors, octanol-water partition coefficient logP <5). Thirdly,
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FIGURE 7 | The complex model (A) of ligand compound (Pubchem CID: 4421) and receptor protein (UniprotKB: HAIR_HUMAN) as well as their interactions (B).

randomly combined the compounds/drugs collected from the
DrugBank and diseases involved in the benchmark dataset.
Finally, 24,266,646 unknown associations were generated. The
final model identified 3,620,516 potential associations. We
rank all the potential associations according to the probability
in descending order, and the results show that 294,354
associations (Supporting Information 3) are the most likely
to be putative associations because their probability values are
higher than 0.99.

Here, we take the one recognized associations as examples to
illustrate the practical application of current method. Alopecia,
also known as hair loss or baldness, refers to partial or
complete loss of hair from part of the head or body. It
usually can be classified into four types: male-pattern hair
loss, female-pattern hair loss, alopecia areata and telogen
effluvium, and the corresponding cause is genetics and male
hormones, unclear, autoimmune, physically or psychologically
stressful event (Vary, 2015). Although medications minoxidil,
finasteride, and dutasteride have been used to treat hair
loss, they have limited effects and can only prevent further
baldness without regenerating lost hair (Rogers and Avram,
2008; Banka et al., 2013). The current method identified a
possible association between the disease and compound nalidixic
acid (Pubchem CID: 4421). The compound is a synthetic
quinolone and composed of 1,8-naphthyridin-4-one substituted
by carboxylic acid, ethyl and methyl groups at positions 3,
1, and 7, respectively. Some studies have shown that lysine-
specific demethylase hairless (UniprotKB: HAIR_HUMAN) is a
protein related with hair loss (Klein et al., 2002; Liu et al., 2014).
Docking simulations between the compound and the protein
was executed by using the AutoDock (Santos-Martins et al.,
2014) program and DS visualizer software. The 3-dimensional
structural information of protein was downloaded from the
SWISS-MODEL Repository. The Lamarckian genetic algorithm
was adopted to search the docking conformation. Finally, the
optimized docking model with binding energy −6.26 kcal/mol
and inhibition constant (Ki) 25.66µM was obtained. Complex

model of protein and compound as well as their interactions were
displayed in Figures 7A,B.

We can observe that Var der Waals interactions exist
between the compound and amino acid residues Leu901, Leu938,
Ala941, Leu942, Gln987, Leu988, Ala990, and Lys1004. The
small molecule is connected to the protein through π-donor
hydrogen bond between six-membered ring and residue Arg940.
Moreover, there are some hydrophobic interactions such as
π-alkyl interactions between six-membered ring and residues
His939, Arg940, and Trp989, alkyl interactions between the
compound and residues Leu937 and Trp989. Therefore, we can
assume that the compound may be used as a drug to treat hair
loss through interacting with the target protein, which is worthy
of further experimental verification.

CONCLUSIONS

In this study, clinical manifestations information and molecule
fingerprint descriptor are utilized to characterize disease
and drug, respectively. A novel two-dimensional matrix is
constructed and then map it into a gray-scale image to
characterize drug-disease association. Deep convolutional neural
network is introduced to construct model to identify potential
drug-disease associations. The performance of current method
is evaluated by building the benchmark dataset, and the
optimal molecule fingerprint descriptor is determined by
comparing with other various descriptors. In addition, the
prediction ability of our method for identifying new drug
indications, lead compounds, potential and true drug-disease
associations has also been validated through a series of
experiments. Finally, the practical application capability has
been demonstrated by molecular simulation experiments.
Our work gives a new insight for study of drug-disease
associations at the level of disease clinical symptom and
drug molecule structure. It is anticipated that the proposed
method may be a powerful tool for new drug research
and development.
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