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SUMMARY
Hematopoiesis in the embryo proceeds in a series of waves, with primitive erythroid-biased waves succeeded by definitive waves, within

which the properties of hematopoietic stem cells (multilineage potential, self-renewal, and engraftability) gradually arise. Whereas self-

renewal and engraftability have previously been examined in the embryo,multipotency has not been thoroughly addressed, especially at

the single-cell level or within well-defined populations. To identify when and where clonal multilineage potential arises during embryo-

genesis, we developed a single-cell multipotency assay. We find that, during the initiation of definitive hematopoiesis in the embryo, a

defined population ofmultipotent, engraftable progenitors emerges that is muchmore abundant within the yolk sac (YS) than the aorta-

gonad-mesonephros (AGM) or fetal liver. These experiments indicate that multipotent cells appear in concert within both the YS and

AGM and strongly implicate YS-derived progenitors as contributors to definitive hematopoiesis.
INTRODUCTION

In themammalian blood system, allmature blood lineages,

including erythrocytes, platelets, and all innate and adap-

tive immune cells, are generated from hematopoietic

stem cells (HSCs). In adults, HSCs reside almost exclusively

in the bone marrow. In the embryo, however, hematopoi-

esis is characterized by distinct yet overlapping waves of

blood development, appearing inmultiple sites, with prim-

itive erythroid-biased waves succeeded by definitive waves

with increasing lineage potential and functionality. The

functional properties that define adult HSCs do not appear

at once during development but emerge gradually over the

course of several days.

In the mouse embryo, the first blood-forming cells

appear approximately 7.5 days into gestation (embryonic

day [E] 7.5) within the blood islands that line the extraem-

bryonic yolk sac (YS) (Moore and Metcalf, 1970). These

‘‘primitive’’ blood-forming cells appear to be lineage-

restricted, form primarily large nucleated erythrocytes,

and express embryonic globins (Palis et al., 1999). They

also lack the ability to engraft when transplanted intrave-

nously into lethally irradiated adult mice, a hallmark prop-

erty of fully functional adult bone marrow HSCs (Müller

et al., 1994). After the establishment of a circulatory system

at e8.5, ‘‘definitive’’ erythromyeloid progenitors appear

within the YS (Palis et al., 1999), the placenta (PL)

(Alvarez-Silva et al., 2003), and the embryo proper (EP).
Stem
The earliest intraembryonic hematopoietic progenitors

are found within the para-aortic splanchnopleura (p-Sp),

which develops into the aorta-gonad-mesonephros

(AGM) that contains the dorsal aorta (Cumano et al.,

1996; Godin et al., 1993, 1995; Medvinsky et al., 1993).

Hematopoietic progenitors with the ability to self-renew

appear within the YS and AGM at e9.0 and appear within

the fetal liver (FL) a day or two later (Yoder and Hiatt,

1997). e9.5 YS cells lack the ability to home to the bone

marrow when transplanted into adult mice, but their

long-term self-renewal activity can be revealed in vivo by

transplantation into the liver or facial vein of sublethally

irradiated newborn mice (Yoder and Hiatt, 1997; Yoder

et al., 1997a, 1997b) or alternatively by first coculturing

with reaggregated AGM tissue (Taoudi et al., 2008) or on

the OP9 bone marrow stromal line (Rybtsov et al., 2011),

indicating that progenitors residing within the YS can

mature into functional HSC. These embryonic progenitors

were thought to be precursors to HSCs, or ‘‘pre-HSCs,’’ and

whereas not precisely defined, pre-HSCs expressed markers

associated with endothelial (VE-cadherin) and hematopoi-

etic (CD41 thenCD45) cells (Rybtsov et al., 2011). At e10.5,

fully functional HSCs have been isolated from the dorsal

aorta of the AGM region (Müller et al., 1994), the extraem-

bryonic YS, PL (Gekas et al., 2005), and from the vitelline

and umbilical vessels (de Bruijn et al., 2000). At e11.5,

HSCs are also found within the FL, which then becomes

the predominant site of hematopoiesis until the formation
Cell Reports j Vol. 2 j 457–472 j April 8, 2014 j ª2014 The Authors 457

mailto:minlay@uci.edu
http://dx.doi.org/10.1016/j.stemcr.2014.02.001
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stemcr.2014.02.001&domain=pdf


A

B

C

D

E F

Figure 1. Development of an In Vitro Clonal Multipotency Assay
(A) Lentiviral constructs used to generate a tetracycline-inducible Dll1 OP9 stromal line (ODT). Construct C329 (top) drives constitutive
expression of the tetracycline-inducible transactivator rtTA3. Construct C388 allows induction of Dll1 expression when the transactivator
is activated in the presence of doxycycline (DOX).
(B) Strategy for clonal assay. ODT stroma is plated the day prior to cell sorting (day�1). At day 0, cells are clone sorted directly onto ODT
stroma and cytokines are added (SCF, TPO, EPO, Flt3L, IL-7, and IL-15). At day 3, hematopoietic colonies are counted. At day 5, cells are fed
and Flt3L, IL-7, IL-15, and DOX (1 mg/ml) are added. At day 9 or 10, colonies are harvested and analyzed by FACS.
(C) Representative hematopoietic output at day 10 of culture of unsorted e12.5 FL. Representative examples of multipotent output from
single-cell cultures can be found in Figure S1.
(D–F) Testing multipotency assay on adult bone marrow (BM) stem/progenitor cells. (D) Sort gates for KIT+ Lin� SCA-1+ (KLS) cells and
subpopulations of KLS, including HSCs (CD34�, SLAMF1+) and three fractions of multipotent progenitors (MPP) are shown. (E) The

(legend continued on next page)
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of a bone-marrow cavity several days later (Gekas et al.,

2005; Müller et al., 1994). Thus, the maturation of blood-

forming cells takes place in discrete steps and likely at

several different sites.

A fundamental unresolved question is whether definitive

hematopoietic cells derive directly from the primitive

precursors that first appear in the YS blood islands (Moore

and Metcalf, 1970) or instead emerge separately from a

hematoendothelial precursor in the dorsal aorta called

hemogenic endothelium (Dzierzak and Medvinsky, 1995;

Nishikawa et al., 1998). A large body of evidence supports

the de novo generation of HSCs within the dorsal aorta,

including ex vivo tissue explants of the dorsal aorta prior

to circulation (Cumano et al., 1996, 2001; Medvinsky and

Dzierzak, 1996). Also, time-lapse imaging of AGM sections

in culture reveals the emergence of hematopoietic clusters

from within the luminal wall of the dorsal aorta in mice,

which express several HSC markers, such as KIT, SCA-1,

and CD41 (Boisset et al., 2010). Definitive hematopoietic

progenitors also exist within the YS (Huang and Auerbach,

1993; Kumaravelu et al., 2002). However, early studies

could not exclude the possibility that such progenitors

originated elsewhere and thenmigrated to the YS. Evidence

supporting a distinct YS origin of definitive hematopoiesis

comes from lineage-tracing experiments that used a

Runx1 Cre-estrogen receptor (ER) reporter to exclusively

label YS-derived hematopoietic cells; subsequent anal-

ysis of these mice revealed labeling of adult HSCs

(Samokhvalov et al., 2007). Similarly, inducible rescue of

Runx1 expression in Runx1 knockout embryos demon-

strated that definitive hematopoiesis could only be rescued

at the developmental stages when Runx1 expression was

restricted to the YS (Tanaka et al., 2012). In Ncx1�/�

embryos, which lack a heartbeat and thus circulation, all

hematopoietic cells are found within the YS and PL

prior to embryonic lethality at e10.5 (Lux et al., 2008;

Rhodes et al., 2008). Additionally, transplantation of YS

cells from e8 to e9 allogeneic donors into the YS cavities

of e8 to e9 hosts in utero led to YS blood-island engraft-

ment and, when analyzed several months after birth,

gave rise to donor-derived spleen colony-forming myeloer-

ythroid cells and thymic and peripheral T cells (Weissman

et al., 1977, 1978). Therefore, maturation of early YS stem/

progenitors to adult HSC was demonstrated, but the

cellular identity of HSC precursors, their sites of matura-

tion, and the molecular mechanisms involved remain a

mystery.
distribution of lineage potential of colonies from adult BM KLS cells, sh
and L in blue), two branches (MegE + GM in orange, GM + L in yellow,
white). Cells that produced lineages from all three branches (white) we
survive to day 10 are shown in black. The number of hematopoietic col
colonies derived from sorted KLS subpopulations. Note that only HSC
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Identification of the key populations that give rise to

each wave of embryonic hematopoiesis may provide

critical insights into the relationship between primitive

and definitive hematopoiesis. However, the surface

markers used to isolate adult HSCs and downstream stages

have proven unreliable for identifying the equivalent

embryonic populations (Cumano and Godin, 2007). As a

result, the cells that initiate each hematopoietic wave

remain poorly defined. Multipotency in hematopoiesis

refers to the ability of a progenitor to give rise to all blood

lineages: myeloid cells including erythrocytes, platelets,

monocytes, tissue macrophages, and granulocytes, as well

as lymphocyte lineages including T, B, natural killer (NK),

and dendritic cells. Multipotency also distinguishes defini-

tive hematopoiesis from more primitive cells with limited

lineage potential. Conclusive evidence of multipotency

requires a single-cell assay to prevent the false positives

that may occur when mixtures of lineage-committed

progenitors collectively produce all lineages. In the em-

bryo, multipotency was first observed within the AA4.1+

p-Sp population at e9.5 (Godin et al., 1995). YS AA4.1+

WGAhi cells possess myeloid and lymphoid potential

in vitro by e10.5 and robustly by e11.5, though this was

not demonstrated clonally (Huang and Auerbach, 1993).

Thus, whereas much is known about the timing of appear-

ance of progenitor potentials within the early embryo, the

clonal identities of the cells withmultipotent potentials are

less clear. Therefore, we sought to define the earliest clon-

ally multipotent cells and to determine their distribution

within the sites of early hematopoiesis.
RESULTS

Development of an In Vitro Clonal Multilineage Assay

In order to identify clonally multipotent populations

throughout embryonic development, we developed a

single-cell multipotency assay (Figure 1). The bone-

marrow-derived OP9 stromal line can be used to generate

most hematopoietic lineages in culture, with the notable

exception of T lymphocytes (Kodama et al., 1994). Alterna-

tively, a modified OP9 stromal line that expresses Dll1

(OP9-DL1) can promote T lineage development but

inhibits B cell development (Schmitt and Zúñiga-Pflücker,

2002). Because of the importance of detecting lymphocyte

potential in distinguishing definitive hematopoietic cells

from their primitive myeloid-restricted counterparts, we
owing cells that produced a single branch (MegE in red, GM in green,
and MegE + L in purple), and all three branches (MegE + GM + L in
re scored as multipotent. Cells that gave rise to colonies that did not
onies scored (n) is indicated. (F) Distribution of lineage potential in
s gave multipotent (white) readout.
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sought a method to generate both B cells and T cells from a

single cell within a single well. We previously published an

assay whereby common lymphocyte progenitors could be

cultured and expanded on OP9 stroma without commit-

ting to either the B or T cell lineages (Karsunky et al.,

2008). We therefore generated an OP9 stromal line with

an inducible Dll1 expression cassette (Figure 1A). In this

line, which we call ODT, addition of doxycycline (DOX)

rapidly induces surface expression of Dll1, driving uncom-

mitted lymphocyte progenitors to the T cell lineage,

whereas B-committed progenitors resist T cell induction

and continue to produce B cells (M.A.I. and I.L.W., unpub-

lished data). Hematopoietic progenitors were plated on

ODT stroma along with a combination of hematopoietic

cytokines (SCF, TPO, EPO, Flt3L, interleukin [IL]-7, and

IL-15); DOX was added 4 to 5 days into the culture (Fig-

ure 1B), leading to eight hematopoietic lineages (erythro-

cytes, platelets, macrophages, granulocytes, dendritic cells,

natural killer cells, B cells, and T cells), representing the

three major branches of hematopoiesis: megakaryocyte/

erythrocyte (MegE), granulocyte/monocyte (GM), and

lymphoid (L) (Figure 1C). Representative fluorescence-

activated cell sorting (FACS) plots of single-cell-derived

colonies scored as multipotent can be found in Figure S1

available online. To validate this assay, we sorted adult

bone marrow (BM) KIT+ Lin� SCA-1+ (KLS) cells, a popula-

tion that contains HSCs and multipotent progenitors, and

analyzed their clonal lineage potential (Figures 1D and 1E).

Individual KLS cells produced a variety of different lineage

outcomes: some cells yielded only a single lineage, others

generated multiple lineages, and about 15% of colonies

produced lineages representing each of the three major

hematopoietic branches. These colonies we scored as mul-

tipotent. We next separated the KLS population into four

subsets based on expression of CD34, SLAMF1, and FLK2,

markers that identify HSCs and other multipotent progen-

itor populations, and repeated the assay (Figures 1D and

1F). Whereas each population could collectively produce

all lineages, we found that only the HSC population

(CD34� FLK2� SLAMF1+ KLS) contained multipotent cells,

despite the fact that all KLS subpopulations are known to

bemultipotent in vivo. Thus, this assay can reveal multipo-

tency of individual cells, although not all multipotent cells

are revealed.

Nearly All Hematopoietic Colony-Forming Cells

Reside in the KIT+ CD43+ Fraction

In our assay conditions, hematopoietic stem and progeni-

tor cells give rise to distinct colonies by day 3, and thus

we could also use this assay to identify markers for these

cells. We initially screened eight markers (KIT, CD43,

CD34, CD41, SCA-1, CD45, AA4.1, and SLAMF1) from

YS, AGM, and FL tissues from e9.5 to e12.5 to identify
460 Stem Cell Reports j Vol. 2 j 457–472 j April 8, 2014 j ª2014 The Author
which markers could consistently enrich or deplete for

colony-forming activity (Figure S2). For most markers,

colony-forming activity was found in both the positive

and negative fractions. For example, whereas the hemato-

poietic marker CD41 could enrich hematopoietic colony-

forming ability at e9.5, it became downregulated at later

time points, resulting in colony-forming activity within

the CD41� fraction (Figure S2A). However, two markers,

KIT and CD43, nearly uniformly marked all colony-form-

ing cells in all tissues from e9.5 to e12.5.

Emergence of Multipotent KLS Cells during

Embryogenesis

Based on our initial screen, we restricted the search for

multipotent cells to subpopulations within the KIT+

CD43+ fraction. We stained tissues with a variety of anti-

bodies to identify candidate populations within the KIT+

CD43+ fraction that we could test for clonal multilineage

potential (Figures 2 and S3). In the adult, all multipotent

stem and progenitors are found in the KLS fraction. We

identified a similar population that is KIT+ CD43+ and

SCA-1+, which appears in e9.5 YS and AGM and e11.5 FL

(Figure 2). This population is highly enriched for colony-

forming activity (between 35% and 50% of plated cells

gave rise to colonies) and, as a population, gives rise to all

lineages in vitro (data not shown). We refer to this embry-

onic population as KLS (KIT+ Lin� SCA-1+) to reflect its

similarity to the analogous KLS population in adult BM,

although embryonic KLS cells also are defined by expres-

sion of CD43, and the only required lineage marker

for negative gating is the red-blood-cell marker TER119

(Figure S3A).

In adult BM, myeloid progenitors are found within the

KIT+ SCA-1� (MYP) fraction, which contains common

myeloid progenitors (CMP), granulocyte-monocyte pro-

genitors (GMP), and megakaryocyte-erythrocyte pro-

genitors (MEP) (Akashi et al., 2000). In the embryo, we

identified a similar MYP population, from which emerged

CMP and then MEP and GMP, both by surface phenotype

and in vitro lineage potential (Figure S3B; data not shown).

CD11A Expression Divides Embryonic KLS into Two

Distinct Fractions

The surface markers SLAMF1, FLK2, and CD34 are known

to subdivide adult KLS into HSCs and downstream multi-

potent progenitors (Figure 1D). We examined these

markers in embryonic KLS and found that their expression

levels varied from time point to time point and from tissue

to tissue,making the use of thesemarkers unreliable to sub-

divide embryonic KLS prior to e11.5 (Figure S4). However,

we did find that the KLS population could be consistently

subdivided based on expression of CD11A (Figure 3A).

CD11A (Itgal) is a component of the leukocyte adhesion
s
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complex lymphocyte function associated 1 (LFA-1), an

integrin involved in several immune system functions

including leukocyte trafficking and lymphocyte activation

(Hibbs et al., 1991; Hogg et al., 2011). In a related

manuscript, we show that adult BM HSCs can also be

subdivided based on CD11A expression and only the

CD11A� fraction contains functional HSCs (J.W.F., M.A.I.,

Nathaniel B. Fernhoff, J.S., and I.L.W., unpublished data).

CD11A� KLS cells uniformly expressed high levels of the

endothelial adhesion molecule VE-cadherin (VE-CAD),

whereas CD11A+ KLS cells expressed variable levels of VE-

cadherin (Figure 3A). We also examined the expression of

several other markers including the endothelial-associated

markers TIE2 and endoglin and the hematopoietic markers

CD45 and MAC-1 (Figure S5). Whereas the expression

patterns of these markers were less consistent than

CD11A and VE-cadherin across all tissues and time points,
Stem
in general we found that endothelial markers were

more highly expressed at earlier time points and on

CD11A� KLS cells, whereas hematopoietic markers were

more highly expressed at later time points and on

CD11A+ KLS cells.

We next tested CD11A� and CD11A+ KLS cells for clonal

multilineage potential (Figures 3B and 3C). In adult BM,

the KLS population contains all multipotent cells (Figures

1D–1F). At the population level, both CD11A� and

CD11A+ KLS cells were able to give rise to all lineages,

including lymphoid B, T, and NK cells (data not shown).

However, only the CD11A� fraction was able to simulta-

neously give rise to MegE, GM, and lymphoid cells at the

single-cell level, indicating the presence of multipotent

cells within this population (Figures 3B and 3C). We found

multipotent CD11A� KLS cells in all tissues examined,

from e9.5 to e11.5. Conversely, in the CD11A+ KLS
Cell Reports j Vol. 2 j 457–472 j April 8, 2014 j ª2014 The Authors 461
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Figure 4. Numeric Analysis of Hemato-
poietic Progenitor Cells in Embryonic
Development
(A) Absolute number of colony-forming
cells per embryo from YS (blue squares),
AGM (red downward triangles), and FL
(green diamonds) from e8.5 to e11.5. At
e8.5 and e9.5, the whole embryo proper (EP;
orange upright triangles) was cultured
instead of AGM and FL. Unsorted tissues
were plated onto ODT stroma at serial
dilutions and colonies counted at day 3. The
number of litters analyzed (n) for each time
point is indicated.
(B–D) The absolute numbers of CD11A� KLS
(B), CD11A+ KLS (C), and MYP (D) cells were
calculated for YS (blue), AGM (red), and FL
(green) from e9.5, e10.5, and e11.5. The
numbers shown are per tissue, per embryo.
Error bars are SD. The asterisk (*) in (B)
indicates a statistically significant differ-
ence (unpaired t test) between the absolute
number of CD11A� KLS cells in the YS and
AGM at e10.5 (p < 0.002). The number of
litters analyzed (n) for each tissue (YS in
blue, AGM in red, FL in green) is indicated.
(E) Estimation of the absolute number of
clonally multipotent cells per tissue per
embryo. These numbers were generated by
multiplying the absolute number of CD11A�

KLS (from B) times the percent of multi-
potent cells contained within (from Fig-
ure 3B).
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population, we found bipotent MegE/GM and GM/L col-

onies but never all three branches at once, regardless of

time point or tissue (Figure 3C). Thus, the CD11A� KLS

cells population contains all the multipotent cells from

e9.5 to e11.5 and appears in both extra- and intraem-

bryonic regions around e9.5.
Figure 3. Clonal Analysis of CD11A� and CD11A+ KLS
(A) VE-cadherin (VE-CAD; y axis) versus CD11A (x axis) expression of
(B) Percent of multipotent colonies from clone-sorted CD11A� and CD
adult BM KLS is indicated in black and was duplicated from Figure 1E.
entire embryo proper (EP) were analyzed. The number of multipotent co
(C) Lineage distribution of CD11A� and CD11A+ KLS colonies. The di
CD11A+ KLS cells onto ODT stroma from e9.5 to e11.5 is shown. A descr
The percentage of colonies scored as multipotent is shown as white b

Stem
YS Contains the Most Multipotent Cells from E9.5 to

E11.5

Our assay also allowed us to estimate the numbers of multi-

potent progenitors in each tissue from e9.5 to e11.5, based

on colony-forming activity (Figure 4A). We found that,

from e8.5 to e10.5, the YS contained the majority of
embryonic KLS from e9.5 to e11.5.
11A+ KLS subsets. The percent of multipotent colonies arising from
For e9.5 and e10.5, CD11A� and CD11A+ KLS cells derived from the
lonies observed out of total colonies scored is listed in parentheses.
stribution of lineages that resulted from clone-sorted CD11A� and
iption of the scoring system can be found in the legend to Figure 1E.
ars and is identical to the data shown in (B).
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progenitors, peaking around 1,000 colony-forming cells at

e10.5 and e11.5. By e11.5, the FL had surpassed the YS

and became the predominant source of hematopoiesis

from then on. At all time points examined, the AGM con-

tained the fewest colony-forming cells.

We also estimated the absolute number of CD11A� KLS,

CD11A+ KLS, and MYP (Lin� CD43+ KIT+ SCA-1�) popula-
tions in each tissue (Figures 4B–D). Collectively, these three

populations contain all KIT+ CD43+ cells and, thus, likely

all hematopoietic stem/progenitors. We found that the

YS contained approximately 300 CD11A� KLS cells per

embryo at e10.5, roughly six times as many as in the

AGM at this time point (Figure 4B). Furthermore,

CD11A� KLS numbers appeared to decrease in the YS at

e11.5 and increase in the AGM and FL. At e11.5, the FL

contained the most CD11A+ KLS and MYP (Figures 4C

and 4D). Because CD11A�KLS cells contain allmultipotent

activity at e11.5, this suggests that the bulk of the cells that

initially seed the FL are CD11A+ KLS and MYP, which we

hypothesize are downstream of CD11A� KLS.

With our estimates of the absolute number of CD11A�

KLS cells (Figure 4B) and the frequency of multipotent cells

within each tissue (Figure 3B), we could estimate the

absolute number of multipotent cells (Figure 4E). We

found that e10.5 YS contains the most multipotent cells

of all tissues and time points examined, and at e11.5, the

YS still contained more multipotent cells than AGM or

FL. Taken together, our examination of the absolute num-

ber of CD11A� KLS and multipotent cells suggests that

the YS is a major source of multipotent cells at the stages

when fully functional HSCs first appear in embryonic

development.

EPCRMarks a Subset of CD11A� KLS andCan Partially

Enrich for Multipotency

The protein C receptor EPCR (CD201; Procr) has previously

been reported to be expressed in adult HSCs, as well as

embryonic FL e12.5 HSCs (Balazs et al., 2006; Iwasaki

et al., 2010). We found that EPCR is expressed on a subset

of KLS cells as early as e9.5 and remains expressed

throughout gestation (Figure 5A). EPCR expression corre-

lates with high VE-CAD expression and lower CD11A

expression. Using the clonal multipotency assay, we

observed multipotent colony formation from both EPCR+

and EPCR� subsets of CD11A� KLS cells, though multipo-
Figure 5. Clonal Multipotent Analysis of EPCR+ and EPCR� KLS Su
(A) VE-CAD (y axis) versus EPCR (x axis) expression of KLS cells in YS, A
and EPCR� KLS cells are indicated. Nearly all EPCR+ cells were CD11A�

(B and C) Percent of multipotent colonies in EPCR+ and EPCR� KLS su
CD11A+ KLS, only VE-CAD+ cells were analyzed. ND, not detected; NA,
total colonies scored is indicated in parentheses. FACS analyses of repr
can be found in Figure S1.

Stem
tency appeared greater in the EPCR+ subfraction overall

(Figures 5B, 5C, and S1). We also identified CD11A� and

CD11A+ KLS cells in the placenta (Figure S6), a region

known to be a niche for hematopoietic stem cells (Gekas

et al., 2005; Ottersbach and Dzierzak, 2005), and included

placental populations in the analysis. Although we did

not observe multipotency in e10.5 PL CD11A� KLS, we

did find it within the EPCR+ CD11A� KLS at e11.5 in the

PL. Taken together, our data suggest that EPCR can partially

enrich for multipotent cells, though not all multipotent

cells are EPCR+.

Lineage-Tracing KLS Cells In Vivo

To better understand the lineage relationship between

CD11A� and CD11A+ KLS cells, we examined two line-

age-tracing reporter mouse strains (Figure S7). CD11A�

KLS cells generally express higher levels of TIE2 than

CD11a+ KLS cells (Figure S5A); thus, we crossed Tie2Cre

mice (Kisanuki et al., 2001) to the mT/mG reporter strain

(Muzumdar et al., 2007), which permanently switches

from Tomato to GFP fluorescence in any cell that expresses

Cre (Figure S7A). In the Tie2cre 3 mT/mG embryos, we

found that all KLS cells were GFP+ and thus derived from

TIE2-expressing precursors (Figure S7B). However, other

cell types express TIE2, including hemogenic endothelium,

sowenext crossedVE-cadherinCreERmice (Monvoisin et al.,

2006; Zovein et al., 2008) to mT/mG reporters (Figures

S7C–S7E). In this cross, when tamoxifen is administered,

all cells that express VE-cadherin during the 24 hr window

when tamoxifen is active will permanently express GFP in

themselves and in their progeny. Because VE-cadherin

expression is associated with earlier time points and more

multipotent cells, we hypothesized that VE-CAD+ cells

would precede VE-CAD� cells. We injected tamoxifen

into pregnant females and examined embryos at 24, 48,

and 72 hr after injection to monitor the distribution of

GFP-expressing KLS cells. We found that, at 24 hr, the

majority of labeled KLS cells were VE-CAD+ (both

CD11A� and CD11A+), but at 48 and 72 hr, the fraction

of labeled VE-CAD� KLS cells increased and the frequency

of labeled CD11A� KLS cells decreased, consistent with

the notion that VE-CAD+ KLS cells are giving rise to

VE-CAD� KLS cells. Whereas neither reporter conclusively

demonstrates that CD11A� KLS cells give rise to CD11A+

KLS cells, our data support our contention that early
bsets
GM, FL, and PL from e9.5 to e11.5. Gates and percentages of EPCR+

(data not shown).
bsets in e10.5 (B) and e11.5 (C) CD11A� and CD11A+ KLS cells. For
not analyzed. The number of multipotent colonies observed out of
esentative multipotent colonies from e11.5 EPCR+ CD11A� KLS cells
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Figure 6. Clonal Analysis of E12.5 FL KLS Subsets
(A)Gatingof CD11A� and CD11A+KLS cells in e12.5 FL. Only CD43+ CD34+ TER119� cells are shown. Percent of cellswithin eachgate are shown.
(B) Distribution of clonal lineage potential in e12.5 FL EPCR+ and EPCR� CD11A� and CD11A+ KLS cells. The legend is described in Figure 1E.
Only CD11A� KLS and VE-CAD+ CD11A+ KLS cells were analyzed.
(C) Percent of multipotent colonies in e12.5 FL CD11A� and CD11A+ KLS subsets. The number of multipotent colonies observed out of total
colonies scored is indicated in parentheses.
(D) Estimation of the absolute number of multipotent colonies per embryo in e12.5 FL CD11A� and CD11A+ KLS cells, calculated as in
Figure 4E.
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hematopoietic progenitors that express endothelial-

associated markers generally precede those that express

hematopoietic markers.

Multipotency Moves into the CD11A+ KLS Subfraction

at E12.5

By e12.5, the FL is by far the dominant site of hemato-

poiesis and is known to produce fully functional HSCs by
466 Stem Cell Reports j Vol. 2 j 457–472 j April 8, 2014 j ª2014 The Author
transplantation (Morrison et al., 1995). When we exam-

ined e12.5 FL KLS, nearly all (95%) of KLS cells were

CD11A+ (Figure 6A). When we examined both CD11A�

and CD11A+ KLS fractions for clonal multilineage poten-

tial, we now found multipotency in the CD11A+ KLS

fraction (Figures 6B–6D). Interestingly, only the VE-CADlo

subset of CD11A+ KLS cells showed multipotency, whereas

the VE-CAD� CD11A+ KLS subset, which represents over
s
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3/4 of CD11A+ KLS cells, lacked multipotency. By e12.5, the

multipotent CD11A� KLS population was exceedingly rare

compared to the robustly expanding CD11A+ KLS

population (Figures 6A and 6D). Thus, it appears that the

primary source of multipotent cells shifts from CD11A�

to CD11A+ KLS cells by e12.5.

Only CD11A� KLS Cells Produce All Hematopoietic

Lineages In Vivo

The in vitro multipotency assay demonstrates that, from

e9.5 to e11.5, only the CD11A� KLS population contains

clonalmultilineagepotential.Wenextcomparedthe invivo

lineage potential of CD11A� and CD11A+ KLS cells by

competitive transplantation (Figure 7). We sorted CD11A�

and CD11A+ KLS cells from cyan fluorescent protein

(CFP)+ and CFP� embryos and mixed CFP+ CD11A� KLS

cells withCFP�CD11A+KLS cells, and vice versa, to directly

compare engraftment and lineage potential between these

two populations in the same recipient animals. We also co-

transplanted 100 adult BM KLS cells as an internal control.

Cells were sorted from e11.5 YS, AGM, FL, and the vitelline/

umbilical (VU) region, which is also known to contain pre-

HSCs and HSCs at this time point (de Bruijn et al., 2000;

Gordon-Keylock et al., 2013). Because e11.5 hematopoietic

progenitors have poor engraftment potential when trans-

planted into adult animals,we instead transplanted intrave-

nously into irradiated newborn nonobese diabetic-severe

combined immunodeficiency-gc�/� (NSG) recipients.

Whenwe examined donor chimerism in the blood of recip-

ient mice, we found substantially more donor cells derived

from CD11A� KLS cells than from CD11A+ KLS cells in all

recipient mice (Figures 7A and 7B), despite transplanting

nearly a 5-fold excess of CD11A+ KLS cells (Figure 7A).

Whereas the level of donor chimerism varied considerably

from recipient to recipient, in every case, the contribution

of CD11A+ KLS cells was either minor or absent, indicating

these cells are much less effective at engraftment than

CD11A� KLS cells. We also examined the lineage distribu-

tion of donor-derived cells (Figures 7C and 7D). Whereas

all recipients contained donor-derived lymphocytes, only

two had significant donor myeloid cells (FL #1 and

VU #1). We focused on the recipient ‘‘FL #1’’ and found

that CD11A� KLS cells produced robust B cells, T cells,

NK cells, granulocytes, and macrophages (Figure 7C).

Conversely, CD11A+ KLS cells produced only a modest

number of B cells andTcells, which fadedover time (Figures

7C and 7D). Because erythrocytes and platelets do not

express CD45, a marker we used to distinguish donor and

recipient cells, we were unable to determine whether

CD11A� KLS could produce these lineages, but all other

major hematopoietic lineages were detectable and robust

at 15 weeks posttransplantation, suggesting that CD11A�

KLS cells are multipotent both in vivo and in vitro.
Stem
DISCUSSION

The essential properties of adult HSCs include the capacity

to maintain themselves indefinitely (self-renewal), the

ability to differentiate into all hematopoietic lineages

(multipotency), and the ability to circulate from the blood

to niches in the bone marrow (engraftability). It remains

unclear whether HSCs develop from hematopoietic-

committed precursor cells that contain some, but not all,

three HSC properties or instead whether HSCs arise de

novo from a hematoendothelial precursor. Earlier studies

had suggested that hematopoietic precursors to HSCs

(i.e., pre-HSCs) exist within the fetus and that these pro-

genitors lacked the ability to home to the bone marrow

but could be matured in vitro into bona fide, bone-

marrow-homing HSCs (Gordon-Keylock et al., 2013; Rybt-

sov et al., 2011).We have adopted an alternative strategy to

identify such precursors to HSCs.We hypothesize that HSC

precursors have the property of multipotency, and we

developed a single-cell assay to reductively identify, quan-

tify, and characterizemultipotent cells in the early embryo.

Our data indicate that multipotent cells are predominantly

localized to the YS during the stages when definitive, self-

renewing HSC precursors are thought to arise (e9.5–

e10.5). As the surface marker phenotype of multipotent

CD11A� KLS (VE-CAD+ CD43+ KIT+ CD11A�) cells over-

laps with that of pre-HSCs (VE-CAD+ CD41+ CD45� or +),

CD11A� KLS and pre-HSC populations likely contain the

same precursor cells. The ability of CD11A� KLS cells to

engraft in newborn mice and give rise to multiple hemato-

poietic lineages in vivo confirms themultilineage potential

of this population and strongly implicates CD11A� KLS

cells as a critical intermediate population between the

earliest primitive YS progenitors and fully functional HSCs.

It remains unclear whether HSCs arise from both intra-

embryonic (AGM and FL) and extraembryonic (YS and

PL) tissues or if they emerge from a single site and migrate

elsewhere. Our absolute cell number data indicate that the

YS contains by far the most multipotent cells during the

critical stages during which HSCs arise. Pre-HSCs or HSCs

may also emerge de novo from hemogenic endothelium

in the AGM, but our data suggest that the AGM region by

itself does not produce enough multipotent cells to ac-

count for all the multipotent cells in the embryo and that

likely the vast majority come from the extraembryonic

YS. This is consistent with previous work estimating the

absolute number of HSCs during gestation, suggesting

that both the YS and AGM may contribute to the FL HSC

pool (Kumaravelu et al., 2002). Additionally, our previous

work showing direct orthotopic synchronic transplanta-

tion of e8 to e9 YS cells showed that YS-derived cells can

indeed contribute to complete and lifelong adult hemato-

poiesis (Weissman et al., 1978).
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CD11A� KLS cells express multiple markers of endothe-

lial cells (EPCR, VE-cadherin, and CD34), suggesting that

they are recently derived from the endothelial lineage

and raising the question of whether they retain endothelial

cell potential and contain hemogenic endothelium.

Whereas we did not observe any endothelial cell differenti-

ation from CD11A� KLS cells in our in vitro cultures, we

were also unable to drive robust hematopoietic colony for-

mation from populations that should contain hemogenic

endothelium (VE-CAD+ CD34+ SCA-1+ CD43� CD41�).
Thus, it is possible that the in vitro assay described here is

incapable of revealing hemogenic endothelium. Whereas

the CD11A� KLS population retains surface markers of

hemogenic endothelium, the defining indicator that the

CD11A� KLS population is hematopoietic is that these

cells can engraft upon intravenous transplantation into

neonatal mice and give rise to multiple hematopoietic

lineages.

Many of the surfacemarkers we used to define embryonic

hematopoietic populations have functional roles in cell

adhesion and trafficking. VE-cadherin is an endothelial

adhesion molecule involved in facilitating the adherens

junctions between endothelial cells (Harris and Nelson,

2010). CD11A is part of a leukocyte adhesion complex

(LFA-1) known to play a role in leukocyte extravasation

from the vasculature by binding to ICAMs on endothelial

cells (Hogg et al., 2011). In a related study, we show that

CD11A is upregulated as HSCs lose self-renewal potential

and may be involved in HSC mobilization out of the

bone marrow (J.W.F., M.A.I., Nathaniel B. Fernhoff, J.S.,

and I.L.W., unpublished data). In this study, we show

that CD11A upregulation is also associated with the loss

of multilineage potential and marks a subset of lineage-

committed progenitors that are downstream of embryonic

multipotent cells. These changes in adhesion molecule

expression may play an important role in the migration

of progenitors from their tissues of origin (YS, PL, and
Figure 7. In Vivo Competitive Comparison of Engraftment and Li
Newborn NSG mice were transplanted with four embryo equivalents of
e11.5 along with 100 adult BM KLS cells. Blood was analyzed at 4, 8, 12
(A) Comparison of donor chimerism between BM KLS (green), CD11A
tribution of donor cells in the blood at 4, 8, 12, and 15 weeks posttrans
the recipient). The tissue of origin for e11.5 KLS cells is indicated abo
graph. The number of CD11A� and CD11A+ KLS cells for each transpla
(B) Head-to-head comparison of e11.5 donor cells at 4 weeks. Only do
were compared.
(C) FACS analysis of donor lineages from e11.5 FL KLS cells (‘‘FL #1’’) at
is out of that donor’s total cells. For example, the percentage of NK c
derived cells.
(D) Time course of the distribution of donor lineages derived from a
(bottom row) in the blood of recipient mice at 4, 8, 12, and 15 weeks
shown for NK cells (orange), T cells (purple), B cells (red), macrophag
lineage are shown in (C). Note that the y axis scale is different with

Stem
AGM) to secondary sites of hematopoiesis (FL and BM).

For example, the downregulation of VE-cadherin may

allow cells to detach from the endothelium and enter circu-

lation, whereas the upregulation of CD11Amay allow cells

to exit circulation and seed new sites.

In this study, we created an assay to look for clonal multi-

lineage potential and used it to identify emerging multipo-

tent hematopoietic progenitors within the embryo. Other

markers we focused on were also critical for distinguishing

multipotent cells from downstream progenitors. Due to

space limitations, we include an in-depth technical discus-

sion of these markers and their use in the Supplemental

Information. Our data suggest that a multipotent, self-

renewing hematopoietic wave arises in the YS blood islands

and appears simultaneously in multiple sites at e9.5. We

confirmed the multipotency of this population in vivo.

We hypothesize that this population represents a critical

intermediate in the origins of definitive hematopoiesis,

and armed with a panel of markers that can identify these

cells with high resolution, we can now begin to dissect the

critical steps in the emergence of and maturation of the

first HSCs in embryonic development.
EXPERIMENTAL PROCEDURES

Antibodies
A detailed list of all antibodies used in this study is shown in

Table S1.
Clonal Multipotency Assay
ODT stroma was cultured as described (Vodyanik and Slukvin,

2007). Briefly, ODT was plated onto gelatin-coated dishes and

cultured in the presence of OP9media (aMEM [made frompowder,

Invitrogen catalogNo. 12000-022] in 20% serum [Omega Scientific

FB-11]). ODT was passaged around 1:10 every 5 days. OP9 cells

differentiate rapidly to adipocytes when confluent, so great care

was taken to avoid confluence. For clonal assays, ODT was plated
neage Potential of CD11A� and CD11A+ KLS
CD11A� KLS and CD11A+ KLS cells attained from different tissues at
, and 15 weeks to examine donor chimerism and lineages produced.
� KLS (red), and CD11A+ KLS (blue). Stacked graphs show the dis-
plant, listed as a percentage of total CD45+ cells (including those of
ve each graph. Note that the scale of the y axis is different in each
nt is shown on the table on the right.
nor contributions of e11.5 CD11A� KLS (red) and CD11A+ KLS (blue)

15 weeks posttransplant. The percentage displayed for each lineage
ells shown for CD11A� KLS cells is out of total donor CD11A� KLS-

dult BM KLS (top row), CD11A+ KLS (middle row), and CD11A� KLS
posttransplant. Percentages shown are out of total CD45+ cells and
es (green), and granulocytes (blue). The gates used to identify each
each graph.
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the day prior to use onto gelatin-coated 96-well plates (Falcon

3072), around 1,000–2,000 cells per well, in OP9 media. The day

of use, themedia was replaced with 100 ml of differentiationmedia

(described in Vodyanik and Slukvin, 2007), aMEM, 10% serum,

100 mM monothioglycerol (catalog No. M6145; Sigma), 50 mg/ml

ascorbic acid (catalog No. A-0278; Sigma), 100 U/ml penicillin/

100 mg/ml streptomycin (catalog No. 15140; Invitrogen), and 13

GlutaMAX (catalog No. 35050; Invitrogen) and the cytokines

SCF (rmSCF; Peprotech 250-03; 10 ng/ml), TPO (rmTPO; Peprotech

315-14; 10 ng/ml), EPO (rhEPO; Invitrogen PHC2054; 0.5 U/ml),

Flt3L (mFlt3L; Peprotech 250-31L; 10 ng/ml), IL-7 (mIL-7; Pepro-

tech 217-17; 10 ng/ml), and IL-15 (IL15/IL15R complex; Ebio-

science 14-8152; 5 ng/ml) were added. Colonies were visibly

confirmed at 3 days after plating. Around 4 to 5 days after plating,

wells with colonies were fed by adding 100 ml of differentiation

media with IL-7 (10 ng/ml), IL-15 (5 ng/ml), and DOX (1 mg/ml).

All wells with colonies at day 3 were harvested, stained, and

analyzed on a BDFortessa FACS analyzer with a high-throughput

sampler on FACS Diva software (BD Biosciences). Colonies were

scored for presence of erythrocytes (TER119+), platelets (CD41+),

granulocytes (MAC-1+, GR1+), NK cells (NK1.1+), T cells (CD25+,

LY6D+), and B cells (CD19+, LY6D+). LY6D is expressed on devel-

oping thymocytes and B cells and was useful as a second marker

to identify T/B lymphocytes (Inlay et al., 2009). Colonies were

scored as MegE if erythrocytes and/or platelets were detected,

GM if granulocytes were detected, and L if NK, T, and/or B cells

were detected. Colonies with MegE, GM, and L potential were

scored as multipotent.
Mouse Embryo Harvest and Cell Sorting
All animal procedures were approved by the International Animal

Care and Use Committee and the Stanford Administrative Panel

on Laboratory Animal Care. Matings of C57B6 mice were estab-

lished and plugs checked in the mornings. Pregnant females

were harvested in the mornings and embryos dissected immedi-

ately. Vitelline and umbilical vessels were typically harvested

with the yolk sac, except where indicated. For the AGM harvest,

the head, tails, feet, and fetal liver/heart were removed, and the

remaining tissue was listed as AGM. Tissues were dissociated in

10mg/ml Collagenase Type IV (Invitrogen 17104-019) for approx-

imately 30 min to 1 hr, pipetted up and down and filtered in 70

micron mesh. Tissues were typically stained for 15 min on ice in

staining media. See Table S1 for antibodies used. Cells were

analyzed and/or sorted on a BD FACSAria using FACS Diva soft-

ware. For clone sorting, a 100-micron nozzle was used, and cells

were single sorted on ‘‘single cell’’ mode directly onto 96-well

plates with ODT stroma. The authors highly recommend doing a

single sort (as opposed to a double sort) due to substantial loss of

rare cells upon the second sort. We also recommend avoiding

the use of ACK lysis buffer prior to Ab staining, as it dramatically

reduces the VE-cadherin signal.
In Vivo Transplantation and Analysis
CD45.1+ CFP+/� males were crossed with CD45.2+ females to pro-

duce CD45.1+CD45.2+ embryos, half of whichwere CFP+ and half

CFP�. CD11A� KLS and CD11A+ KLS cells from e11.5 tissues were

sorted and pooled such that CFP+ CD11A� KLS cells were pooled
470 Stem Cell Reports j Vol. 2 j 457–472 j April 8, 2014 j ª2014 The Author
with CFP� CD11A+ KLS cells and vice versa. One hundred adult

BM KLS cells (CD45.2+ CFP�) were also sorted from the mother

and pooled with the sorted e11.5 KLS populations and then trans-

planted via the superficial facial vein into neonatal (days 1–3) NSG

mice (CD45.1+) conditioned with 100 rads irradiation. Mice were

bled at 4, 8, 12, and 15 weeks posttransplantation for analysis.

Erythrocytes were lysed in ACK lysis buffer (150 mM NH4Cl,

10 mM KHCO3, 0.1 mM EDTA), and the remaining cells were

stained with antibodies and analyzed on a BD FACSAria flow

cytometer.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Discussion,

Supplemental Experimental Procedures, seven figures, and one

table and can be found with this article online at http://dx.doi.

org/10.1016/j.stemcr.2014.02.001.
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