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Abstract: Fine art photography, paper documents, and other parts of printing that aim to keep value
are searching for credible techniques and mediums suitable for long-term archiving purposes. In
general, long-lasting pigment-based inks are used for archival print creation. However, they are very
often replaced or forged by dye-based inks, with lower fade resistance and, therefore, lower archiving
potential. Frequently, the difference between the dye- and pigment-based prints is hard to uncover.
Finding a simple tool for countrified identification is, therefore, necessary. This paper assesses the
spectral characteristics of dye- and pigment-based ink prints using visible near-infrared (VNIR)
hyperspectral imaging. The main aim is to show the spectral differences between these ink prints
using a hyperspectral camera and subsequent hyperspectral image processing. Two diverse printers
were exploited for comparison, a hobby dye-based EPSON L1800 and a professional pigment-based
EPSON SC-P9500. The identical prints created via these printers on three different types of photo
paper were recaptured by the hyperspectral camera. The acquired pixel values were studied in terms
of spectral characteristics and principal component analysis (PCA). In addition, the obtained spectral
differences were quantified by the selected spectral metrics. The possible usage for print forgery
detection via VNIR hyperspectral imaging is discussed in the results.

Keywords: hyperspectral imaging; VNIR; inkjet printing; dyes; pigments; photo paper; archiving

1. Introduction

Currently, there is a vast range of scientific and industrial fields where hyperspec-
tral imaging (HSI) finds its usage. Among those fields, plant [1] and soil [2] monitor-
ing, agriculture [3], medicine [4,5], food analysis [6], remote sensing [7], forensics [8–10],
or cultural heritage [11] can be counted. In general, HSI can be applied in a variety of
spectral bands. There are HSI applications in the short-wave infrared (SWIR) 1–3 µm [12],
mid-wave infrared (MWIR) 3–5 µm [13], and long-wave infrared (LWIR) 8–14 µm [14]
bands. Nevertheless, the applications of HSI in visible near-infrared (VNIR) 0.3–1 µm
spectral band are most frequent [15,16]. Concerning specifically cultural heritage, HSI has
found its utilization in historical painting analysis [17–19], art forgery detection [20], and
painting restoration [21].

Recently, there has also been a high demand for fine art photography, but also for
document printing, which requires a perfect color representation and archiving parameters.
This segment of art and document printing is filled by a variety of photo printers fitting the
mentioned requirements. Two dominant types of printing techniques are dye and inkjet
printing [22]. In general, for art printing and archiving, inkjet printing plays a major role.
There are inkjet printers based on two dominant ink approaches, dye-based and pigment-
based. However, each type is suitable for different applications. Less expensive dye-based
printers find their place among the common customers for hobby printing purposes.
On the contrary, pigment-based printers provide a professional printing solution included
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in specialized printing labs, and they are suitable particularly for documents, photographs,
and fine art printing purposes with the emphasis on archiving [23,24]. Frequently, due
to a reduction in costs, pigment-based prints are replaced or forged by dye-based prints
that are less suitable for archiving. Despite the significant improvements in the dye-based
printing technology, current dye-based prints still reach only a quarter lightfastness and
fade resistance compared to pigment-based prints. Moreover, due to the cutting-edge
dye-based printing technology and its broader color gamut, a dye-based forged print can
be easily mistaken for pigment-based prints and remain unrecognized.

Although both types of ink are used for highly dissimilar purposes, they may be easily
interchanged and unidentified by the naked eye, even by professionals. Nevertheless,
it is well known that dye- and pigment-based inks are water-based inks, but consist of
different technologies of color creation. Therefore, the spectral characteristics may also
behave differently, even if the dye- and pigment-based prints appear similar. To assess the
spectral characteristics of the dye- and pigment-based inks across the whole print and to
identify the origin printer, HSI may become a useful and straightforward tool. There have
also been some approaches focused on the color measurement [25] and spectral analysis
of dyes [26], pigments [27,28], and ink-printed documents [29]. However, direct spectral
comparisons that aim at dye- and pigment-based inkjet print differences have not been
performed. There are also other techniques for art analysis and forgery identification such
as simple microscopy, mass spectrometry, colorimetry, standard reflectance spectroscopy,
chemical analysis, and X-ray methods [30]. However, some of these techniques may not be
suitable for inkjet print evaluation. Compared to the mentioned approaches, HSI provides
a fast, simple, and non-invasive method for thorough spectral analysis across the whole
print, which favors its usage.

This paper focuses on the VNIR HSI assessment of dye- and pigment-based prints,
their spectral comparison, and the quantification of their spectral differences. To eliminate
the spectral effects of the photo paper, the prints were assessed on three different types of
paper. For the assessment, various spectral similarity metrics were used, as well as principal
component analysis (PCA) of the hyperspectral (HS) image data. Therefore, the main goal
was the verification that VNIR HSI may be used for validation and identification of whether
the print is made by a professional and long-lasting pigment-based printer with archive
potential or by a hobby dye-based printer.

The paper is structured into five main sections. The Introduction is followed by the
section on the color dye- and pigment-based printing and hyperspectral reflectance repre-
sentation. The following section describes the exploited methods, algorithms, and the HS
data acquisition process. The fourth section is focused on the obtained results’ presentation
and subsequent discussion. The last section provides the overall conclusion.

2. Print Color Management and Hyperspectral Representation

As was mentioned in the Introduction, among the inkjet printers, dye- and pigment-
based inks are the two main types of inks used for photograph printing purposes. In general,
both ink types fall under the set of water-based or aqueous inks. Dye-based inks are
homogeneous color fluids with fully dissoluble dyes. They are usually used in hobby inkjet
printers due to their lower manufacturing costs. Dye-based inks also do not provide such
lightfastness and fade resistance as pigment-based inks. On the contrary, dye-based inks
usually offer a broader color gamut than pigment-based ones, especially on glossy papers.
Usually, the dye-based inkjet printers contain six separate inks. Except for the standard
cyan, magenta, yellow, black (CMYK) configuration, these printers have two additional
colors, light cyan and light magenta.

On the contrary, pigment-based inks consist of microscopic color grains inserted in the
sheer liquid. These inks are exploited in professional inkjet printers and labs due to their
superb lightfastness. Therefore, pigment-based inks are often used for fine art printing
purposes, photo archiving, and large format photography. Typically, the pigment-based
printers include nine different inks, but very often, there are several more inks included.
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High-level pigment-based printers standardly contain a 12-ink set. Two types of black inks
(selected according to the print purpose) are appended by cyan, light cyan, yellow, vivid
magenta, vivid light magenta, violet, orange, green, grey, and light grey.

Not only the different characteristics of the presented inks and printers, but also the
type of photo paper may play a significant role in the printed photograph’s lightfastness
and appearance. There are several types of photo paper suitable for various applications
with matte, semiglossy, or glossy surfaces. They may also be created from a variety of
materials, such as standard resin-coated (RC) paper, cotton paper, baryte paper, and others.

All the influences mentioned above affect the final parameters of photograph prints.
Although the dye- and pigment-based colors in the printed photograph may appear sim-
ilar, their spectral characteristics may significantly vary. Measuring the simple spectral
signature of a single spatial point of the print, standard spectroscopy techniques can be
used. However, aiming for a more complex ink spectral analysis across the whole printed
image, the hyperspectral imaging tool can be exploited. Assume a printed photograph,
either dye- or pigment-based, subjected to a source of radiation. Such radiation then may
be absorbed, transmitted, or reflected from the photograph. For the spectral measurement,
the amount of reflected light captured by the HS camera is the most critical parameter. Let
an illumination with defined spectral characteristics φi(λ) be described as incident flux on
the object, where λ represents the spectral wavelength. Similarly, assume a flux reflected
from the object defined as φr(λ). The reflectance then may be expressed as:

R(λ) =
φr(λ)

φi(λ)
. (1)

This process is represented by Figure 1. For simplicity, the specular reflection with
particular angle θ is assumed. In the case of the the HS measurement of the photo-printed
inks, the overall photo reflectance R(λ) consists of the characteristics of the underlay paper
Rpaper(λ), as well as single or mixed printer color inks Rink(λ, c), where c represents the
color mixture index. In a simplified way, the reflected light flux φr(λ) consists of two parts.
The first one:

φ′r(λ) = φi(λ) · Rink(λ, c) (2)

is the directly reflected light flux from the ink layer. The second one:

φ′′r (λ) = φi(λ) · Rpaper(λ) · T2
ink(λ, c) (3)

is the part of the flux reflected from the surface of the photo paper after propagation through
the ink layer, where T2

ink(λ, c) is the transmission of the ink mixture layer. The overall
reflected flux is:

φr(λ) = φi(λ) ·
[

Rpaper(λ) · T2
ink(λ, c) + Rink(λ, c)

]
. (4)

Therefore, the reflectance of the printed image should be represented as:

R(λ) = Rpaper(λ) · T2
ink(λ, c) + Rink(λ, c). (5)

With the exploitation of the HS camera, the additional two spatial xs, ys dimensions
may be also added to the above-described spectral measurement. The reflected light
from the object φr(λ) with the spatial coordinates xs, ys may be acquired and transformed
into the HS 3D image (hypercube) IHS(xs, ys, λ) considering the HS camera sensitivity
ψ(xs, ys, λ) as:

φr(xs, ys, λ) −→ IHS(xs, ys, λ), (6)

where:
IHS(xs, ys, λ) = φi(xs, ys, λ)R(xs, ys, λ)ψ(xs, ys, λ). (7)
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Thus, the obtained hypercube can be processed and analyzed in terms of the particular
spectral reflectance for each obtained pixel of the captured photograph print.

фi(λ) фr(λ)

R(λ)
Figure 1. Illustration of spectral reflectance depending on the illumination.

3. Methods and Algorithms

The key decision for the dye- and pigment-based ink print comparison was the selec-
tion of the inkjet printer representatives. In the first place, the hobby inkjet printer EPSON
L1800 with 6 color inks was selected as a dye-based representative. Complementarily,
the professional inkjet printer EPSON SC-P9500 equipped with 12 diverse pigment inks
was chosen. To cover the different possibilities of ink and paper chemical interactions,
and therefore variations in measured reflectance, 3 types of distinct photo papers with size
A4 were selected. Each photo paper was selected on purpose as the most common represen-
tative from a different application photo paper class. The most commonly exploited photo
papers from diverse application classes were selected as representatives. The first photo
paper was semigloss FOMEI Archival Velvet with a weight of 265 g/m2, which contains a
small amount of optical brighteners and is designed for hobby and professional archiving
purposes. The second selected photo paper was also semigloss FOMEI PRO Pearl with the
same weight of 265 g/m2. This paper contains a significant amount of optical brighteners
and is most frequently used among amateur, but also professional photographers. The last
selected paper was a matte-textured paper FOMEI Cotton Textured that weighs 240 g/m2

and is made from 100% cotton. This art inkjet photo paper does not contain any optical
brighteners, is acid free, and is primarily used for fine art applications.

Furthermore, as an example image, the standardized test image from [31] was selected.
This test image allows a comprehensive evaluation of diverse colors and scenes with
changing patterns. Therefore, the prints of this image are suitable for ink reflectance
analysis. The test image with highlighted areas used for a detailed reflectance analysis can
be seen in Figure 2.

Thus, all dye- and pigment-based images printed on all the above-mentioned photo
papers were recaptured by the hyperspectral camera and further analyzed. The acquisition
and overall hyperspectral image data processing are described in the following sections.

3.1. Acquisition

The dye- and pigment-based prints were scanned by the hyperspectral camera SPECIM
PFD4K-65-V10E. This camera type is based on the pushbroom line scanning principle.
The scanned object was placed on the movable table under the fore camera optics. The table
was then illuminated by the halogen lamp connected to the whole table setup. After ad-
justing the suitable movement speed of the table, the moving object was scanned line by
line until the full scan was finished. During the scanning process, each scanned line or,
more precisely, each pixel was decomposed into the whole spectral range of the camera.
For this purpose, some dispersion components such as prisms, diffraction grating, or their
combination were used among the camera internal parts. The full hyperspectral scan
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was then digitally processed, and the hypercube with all merged hyperspectral lines was
constructed. The whole scanning principle is outlined in Figure 3.

Average re�ectance extraction area 

Color target re�ectance extraction area 

Figure 2. The selected test image (created by Bill Atkinson, Jack Flesher, and Uwe Steinmueller) for
dye- and pigment-based prints [31]. This image contains a series of varying scenes, as well as printed
color targets that may be easily used for the reflectance analysis. The red rectangle highlights the
image area that was used for the overall average reflectance analysis. The blue rectangle highlights
the image area used for the reflectance extraction of specific color samples.

The overall spectral range of the SPECIM hyperspectral camera covers the VNIR
spectral band 400–1000 nm. The camera provides decomposition into 768 separate spectral
channels. The FWHM spectral resolution corresponds to 3 nm. The camera is equipped
with a fore optics OLE 23, with focal length 23 mm, f-number f/2.4, and transparency in the
whole VNIR spectral band. The remaining parameters of the camera are outlined in Table 1.
All captured HS images of the prints were taken with the following settings: a frame rate
equal to 25 Hz and exposition equal to 39 ms.

x

y z

Line Scanning
FEO

Entrence Slit

Imspector 
optics

PGP

CMOS
detector Scanned Lines Post-processing

Hypercube
construction

Analysis

Figure 3. Hyperspectral image capturing and hypercube construction.



Sensors 2022, 22, 603 6 of 19

Table 1. Parameters of the SPECIM PFD4K-65-V10E hyperspectral camera.

Spectral range 400–1000 nm

Spectral resolution FWHM 3.0 nm

Spectral sampling 0.78–6.27 nm/pixel

Spatial resolution RMS spot size <9 µm

Focal length 23 mm

F-number F/2.4

Slit width 30 µm

Effective slit length 14.2 mm

Total efficiency (typical) >50 % (polar. ind.)

Detector CMOS

Spatial pixels 1775

Spectral bands 768

Pixel size 8.0 × 8.0 µm

3.2. Image Data Pre-Processing

Let a hyperspectral image captured directly from the above-described HS system be
represented as a hypercube. To minimize the noise influence of the camera components and
illumination effects, radiometric calibration is necessary. According to Equation (7), assume
the hypercube consisting of matrix slices IHS(x, y, z), where indices x = 1, . . . , H and
y = 1, . . . , W represent the spatial dimension of the image (see Figure 3). The last symbol
z = 1, . . . , S is the wavelength index of each matrix slice depending on the operational
spectral range of the HS system. During the hypercube capturing process, several dark and
white reference images were recorded. The dark image was usually taken with a closed
camera shutter as a sequence of images. The dark frame is represented by the pushbroom
system as IDARK(i, y, z), where i = 1, . . . , N, and N is the number of dark frames taken.
The white reference spectrum image was taken by capturing an image sequence of the
calibration target with known reflectance (typically 99 %). Usually, for pushbroom systems,
several spectral images of one spatial line are acquired. The white reference image is then
represented as IWHITE(i, y, z), where i = 1, . . . , M and M also corresponds to the number
of frames taken, similar as for the dark image. Due to the matrix mismatch between the
captured hypercube, dark image, and white image, the resulting calibrated hypercube
with normalized reflectance must be evaluated for each row of the hypercube Ir(y, z)
separately as:

ID(y, z) =
1
N

N

∑
i=1

IDARK(i, y, z), (8)

IW(y, z) =
1
M

M

∑
i=1

IWHITE(i, y, z), (9)

Ir(y, z) =
IHS(y, z)− ID(y, z)
IW(y, z)− ID(y, z)

. (10)

The whole normalized hypercube Inorm(x, y, z) was obtained by stacking the calibrated
rows Ir(y, z) in the original hypercube shape. Even though radiometric calibration was per-
formed, the calibrated hyperspectral image usually still contained spectral noise. Therefore,
a standard Savitzky–Golay [32] filtering was performed. For this purpose, the third-order
polynomial with a 15-point window was selected [33]. The Savitzky–Golay method was
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separately applied to each hyperspectral pixel, filtering only the spectral dimension. The fil-
tering process [34] can be expressed as:

I∗(z) =
∑k=m

k=−m ck I(z + k)
2m + 1

, (11)

where I∗(z) corresponds to one spectral data point of the selected pixel, m is half of the
filter window, and ck is the filter convolution coefficient for the k-th filtering. Then, the key
step of the filtering is fitting the original spectral data points by the n-th order polynomial
in a defined sliding window via the least-squares estimation.

3.3. Spectral Similarity Measures

With a spectral response (reflectance) for all pixels from the captured dye- and pigment-
based prints, it is possible to quantify the spectral differences by various spectral similarity
measures. Assume a pre-processed HS image of either a dye- or pigment-based test image
print. Furthermore, suppose that the average reflectance R(z) of the selected HS image
pixel area Isub(x′, y′, z) is expressed as:

R(z) =
1

H′W ′
H′

∑
x′=1

W ′

∑
y′=1

Isub
(
x′, y′, z

)
, (12)

where indices x′ = 1, . . . , H′ and y′ = 1, . . . , W ′ correspond to the height and width of the
selected subimage pixel area.

One of the fundamental metrics for the comparison of two reflectance R1, R2 is the
spectral angle mapper (SAM) [35]. It can be written as:

SAMR1,R2
= cos−1

 ∑S
z=1 R1(z)R2(z)√

∑S
z=1 R1(z)

2
√

∑S
z=1 R2(z)

2

. (13)

The other metric that may be used for reflectance comparison is the spectral informa-
tion divergence (SID) [36]. This metric returns the divergence between two probability
distributions extracted from two spectral signatures defined as:

D1(z) = R1(z)/
S

∑
z=1

R1(z), (14)

D2(z) = R2(z)/
S

∑
z=1

R2(z). (15)

The SID is then represented as:

SIDR1,R2
=

S

∑
z=1

D2(z) log
(

D2(z)
D1(z)

)
+

S

∑
z=1

D1(z) log
(

D1(z)
D2(z)

)
. (16)

Having defined the fundamental spectral similarity metrics, the combined hybrid
methods may be introduced. From the definition above, the hybrid method the spectral
information divergence spectral angle mapper (SIDSAM) [37] can be expressed as:

SIDSAMR1,R2
= SIDR1,R2

× tan
(

SAMR1,R2

)
. (17)
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Another and more advanced hybrid spectral similarity metric for reflectance compari-
son is Jeffries–Matusita spectral angle mapper (JMSAM) [38]. Similar to the SIDSAM, the
JMSAM involves the fusion of two metrics, the JM distance and the SAM. The JM distance:

JMdist = 2(1− exp(−BD1,2)) (18)

involves a computation of the Bhattacharyya distance BDR1,R2
of two compared spectral

reflectances as:

BDR1,R2
=

1
8
(µ1 − µ2)

ᵀ
(

σ1 + σ2

2

)−1

(µ1 − µ2)
1
2

ln

 det
(

σ1+σ2
2

)
√

det σ1 det σ2

, (19)

where µ1, µ2 are the mean values of the compared reflected spectra σ1, σ2 and their variance.
The JMSAM then can be computed as:

JMSAMR1,R2
= JMdist × tan

(
SAMR1,R2

)
. (20)

Each of the presented measures gives a particular score assessing the similarity be-
tween the reflectance spectra. In general, a lower score of these metrics indicates a strong
match between the compared spectral signatures. For the purpose of this work, the hybrid
JMSAM and SIDSAM metrics were selected as representatives of the comparison of the
dye- and pigment-based ink prints.

3.4. Principle Component Analysis

In general, the captured HS image often includes redundancy in the neighbor spectral
bands and, therefore, a high correlation between them. Techniques such as PCA allow
decorrelating the whole HS image into a set of new orthogonal bases, also known as
principal components (PCs). The first few principal components usually contain the most
captured variance of the original HS image, and therefore, this HS image can be described
by only a few PCs.

Assume the original HS image I(x, y, z) reshaped into a 2D matrix X(i, z), where
indices i = 1, . . . , HW and z = 1, . . . , S. This matrix is then mean-centered as:

X′(i, z) = X(i, z)− 1
HW

HW

∑
i=1

X(i, z). (21)

Subsequently, the matrix X′(i, z) may be decomposed by the singular-value decompo-
sition (SVD) method [39] as:

X′(i, z) = U(i, i)S(i, z)Vᵀ(z, z), (22)

where U(i, i) and Vᵀ(z, z) are unitary matrices carrying the principal components and
eigenvectors, respectively. Diagonal matrix S(i, z) holds the singular values. For the
following operations, the reduction of the matrix U(i, i) to U(i, z) is eligible. After the
extraction of diagonal values from S(i, z) into a vector s(z), the eigenvalues can be obtained
from the expression:

Λ(z) =
s2(z)

HW − 1
, (23)

where Λ(z) is a vector of all eigenvalues. The transformation of the original matrix X′(i, z)
into the new orthogonal coordinate system based on the I(x, y, z) values may be calculated
according to the following expression:

Xt(i, z) = U(i, z)sᵀ(z). (24)
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Nevertheless, the index z does not now correspond to the wavelength index, but to
the PC index in the new coordinate system.

The explained variance for each generated PC can be computed by the expression:

σ2(z) =
100 ·Λ(z)

∑S
z=1 Λ(z)

, (25)

where every element of vector σ2(z) corresponds to the explained variance of the particular
PC. Due to the nature of the PCA, the transformed image may be usually expressed with a
reduced dimension of only some PCs that cover more than 95% or 99% of the cumulative
variance of the original image. The index z = 1, . . . , S may be from the maximal number of
PCs S reduced to the specified number S′.

It is apparent that the the PCA method is data dependent. However, it is possible to
express a different hyperspectral image using a set of PC components, or more precisely
eigenvectors, derived from the PCA method applied to another HS image. Let a new
HS image Inew(x′′, y′′, z) be reshaped into matrix N(i′′, z) for indices i′′ = 1, . . . , H′′W ′′

and z = 1, . . . , S depending on the spatial dimension of the new HS image. Then, suppose
the previously generated diagonal eigenvector matrix V(z, z) of the original HS image
I(x, y, z) from Expression (22). The matrix N(i′′, z) then can be transferred to the coordinate
system dependent on the original HS image I(x, y, z) data values as:

N′
(
i′′, z

)
= N

(
i′′, z

)
− 1

HW

HW

∑
i=1

X(i, z), (26)

Nt
(
i′′, z

)
= N′

(
i′′, z

)
V(z, z). (27)

Thus, the pixel values of the original Xt(i, z) and new test HS image Nt(i′′, z) may
be compared in one coordinate system created from the original HS image. To quantify
the differences between the pixel values in this coordinate system, the standard Euclidean
distance can be exploited. Suppose a subset of pixel values extracted from Xt(i, z) labeled as
P(is, z), where is = 1, . . . , K is the pixel subset index. Similarly, assume a subset of pixels of
the transformed image Nt(i′′, z) represented as Q(is, z) with pixel indexation is = 1, . . . , L.
Then, the mean value vector across the selected PC dimensions for both defined subsets is
given as:

p(z) =
1
K

K

∑
is=1

P(is, z), (28)

q(z) =
1
L

L

∑
is=1

Q(is, z). (29)

Analogically, the standard deviation vectors of these pixel subsets are:

σp(z) =

√√√√ 1
K

K

∑
is=1

(P(is, z)− p(z))2, (30)

σq(z) =

√√√√ 1
K

L

∑
is=1

(Q(is, z)− q(z))2. (31)

The Euclidean distance d in the PCA space between p(z) and q(z) with selected
number of PCs S′ then can be described as:

d =

√√√√ S′

∑
z=1

(p(z)− q(z))2. (32)
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Considering also the obtained standard deviations and subsequent error propagation,
the standard deviation σd of d can be expressed as:

σd =
1
d

√√√√ S′

∑
z=1

(p(z)− q(z))2
(

σp(z)
2 + σq(z)

2
)

. (33)

4. Results and Discussion

As was previously mentioned, the reflectance analysis of the dye- and pigment-based
ink photographs was performed on three different types of photo paper. However, only the
blank photo papers were captured by the VNIR HS camera as a first step. Then, the average
reflectance was extracted and analyzed across the whole HS image directly according to
Equation (12). The results for all papers are shown in the whole VNIR spectral range in
Figure 4. One can observe that the reflected spectra from the PRO Pearl and Archival
Velvet paper are considerably similar. This can be due to their semigloss character and
the content of optical brighteners in the paper layer. The presence of optical brighteners
within the selected papers creates a notable spectral reflectance peak around 440 nm. This is
inflicted by the illumination of the paper, which initiates a fluorescence process. The overall
photograph then seems whiter and brighter. Due to the fluorescence, the reflectance values
may even exceed the level of one near the wavelength of 440 nm. However, the spectral
response of the optical brighteners is affected by the spectral distribution of the light source,
especially in the ultraviolet (UV) spectral band. The higher amount of UV light incident on
the photo paper with optical brighteners, a richer spectral response can be observed.

The influence of the optical brighteners is mainly seen by the reflectance curve of the
PRO Pearl paper, which contains significantly more optical brighteners than the Archival
Velvet photo paper. On the contrary, the Cotton Textured paper is perfectly matte and
does not contain any optical brighteners. Thus, the reflected spectra of the cotton paper
moves around the value 0.8 for the whole VNIR spectral range. The presented results also
confirmed and quantified the spectral similarity metrics SIDSAM and JMSAM, which are
summarized in Tables 2 and 3.
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Table 2. The SIDSAM score of the spectral comparison between the VNIR reflectance of blank photo
papers FOMEI Archival Velvet, FOMEI PRO Pearl, and FOMEI Cotton Textured.

Archival Velvet PRO Pearl Cotton Textured

Archival Velvet 0.0 2.9 7.9

PRO Pearl 2.9 0.0 26.9

Cotton Textured 7.9 26.9 0.0

Table 3. The JMSAM score of the spectral comparison between the VNIR reflectance of blank photo
papers FOMEI Archival Velvet, FOMEI PRO Pearl, and FOMEI Cotton Textured.

Archival Velvet PRO Pearl Cotton Textured

Archival Velvet 0.0 6.6 × 10−4 6.3 × 10−4

PRO Pearl 6.6 × 10−4 0.0 16 × 10−4

Cotton Textured 6.3 × 10−4 16 × 10−4 0.0

Regarding the SIDSAM metric, the reflectance comparison of the Archival Velvet
photo paper against the PRO Pearl and Cotton Textured photo papers gave scores of 2.9
and 7.9, respectively. The SIDSAM score for the reflectance comparison between the blank
Cotton Textured paper and PRO Pearl paper equaled 26.9. On the contrary, the JMSAM
metric gave almost similar results for the reflectance comparison between Archival Velvet
and the remaining papers PRO Pearl and Cotton Textured with scores of 6.6 × 10−4 and
6.3 × 10−4, respectively. However, the JMSAM metric still evaluated with a higher score
(16 × 10−4) the difference between the Cotton Texture and PRO Pearl paper. It was
apparent that the most significant difference between the blank paper reflectance was
between wavelengths of 400 nm and 550 nm due to the mentioned fluorescence process of
the embedded optical brighteners within the layers of the photo paper. With further analysis
and more HS image data, it may be even possible to evaluate the amount of brighteners
within the paper or photograph and automatically assess the photographic quality.

The next phase proceeded with fully printed dye- or pigment-based test images on
all selected photo papers. These photograph prints were recaptured by the HS camera,
with the earlier-mentioned settings. Having all printed testing images, the overall average
reflectance (Equation (12)) was extracted from the defined sections of the HS images (see
Figure 2). The extracted average reflectance is shown for all photo papers in Figure 5. There
was an apparent difference between the dye- and pigment-based ink reflectance values, sim-
ilar for all selected photo papers. Concerning the dye-based prints, the reflectance increased
almost up to a value of 0.8, especially in the spectral band from 800–1000 nm. However,
the reflectance of pigment-based inks in the same spectral band did not exceed the level
of 0.6. The rise of the dye-based print reflectance started around red colors (around 650 nm).
In the band from 400–650 nm, the reflectance of dye- and pigment-based prints was more
similar for all papers. The dissimilarity of the average reflectance for dye- and pigment-
based prints also supported the spectral metrics. The results of these metrics between the
average dye- and pigment-based print reflectance for all photo papers can be seen in Table 4.
The SIDSAM metric implied that the difference between the average dye- and pigment-
based print reflectance was significant, especially on the PRO Pearl photo paper, with a
score of 8.2. For the case of the Archival Velvet photo paper and Cotton Textured photo pa-
per, the scores were 3.2 and 3.1, respectively. According to the SIDSAM metric, the dye- and
pigment-based print reflectances were most similar for the prints on the Cotton Textured
photo paper, but the spectral difference was still significant. Some influences may also have
optical brighteners omitted in the Cotton Textured paper, and therefore, the subsequent fluo-
rescence did not affect the measured reflectance of the inkjet prints. On the contrary, the JM-
SAM score gave approximately similar results for dye- and pigment-based print reflectance
on all selected photo papers. The JMSAM scores were equal to 9.5 × 10−4, 11.0 × 10−4, and
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10.0 × 10−4 for the Archival Velvet, PRO Pearl, and Cotton Textured paper, respectively.
Therefore, the differences between the dye- and pigment-based prints were also confirmed
by the spectral metrics.
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Figure 5. Average VNIR band reflectance of dye- (orange) and pigment-based (blue) test image prints
regarding the Archival Velvet (A), PRO Pearl (B), and Cotton Textured (C) photo papers.

Table 4. The spectral metrics values of the extracted average reflectance of dye- vs. pigment-
based prints.

SIDSAM JMSAM

Archival Velvet 3.1 9.5 × 10−4

PRO Pearl 8.2 11.0 × 10−4

Cotton Textured 3.2 10.0 × 10−4

Subsequently, the selected color targets or samples (red, green, blue, and black) from
the test image (Figure (2)) were marked for a similar reflectance assessment and compari-
son between dye- and pigment-based inks. From each color target area of the HS images,
the average reflectance pertaining to the selected colors was extracted and plotted. For sim-
plification, only two distinct photo papers, FOMEI PRO Pearl and FOMEI Cotton Textured,
were selected.

The extracted reflectances of specific colors (red, green, blue, and black) for the PRO
Pearl photo paper are shown in Figure 6. The significant differences between dye- and
pigment-based printed targets were apparent for all selected colors, but mainly for green
and black. The red color target reflected the radiation almost similarly for both types of
inks across the VNIR spectrum. The same may be observed for the blue ink color target,
where the difference between the dye- and pigment-based targets was apparent in the band
from 600–800 nm. The reflectance difference in this spectral band was even more visible for
the green color ink targets, where the dye-based green target reflected significantly more
radiation than the pigment-based one. The NIR spectral band appeared to be the most
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important for the black printed color target. The reflectance of the pigment-based black
target was low (near the zero level) across the whole VNIR spectrum. Contrary to that,
the reflectance of the dye-based black target increased almost up to the level of 0.8 in the
NIR spectral band. This increase was apparent approximately from 800 nm. Therefore,
the pigment-based black ink almost ideally reflected the radiation in the VNIR spectrum
compared to the dye-based ink.
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Figure 6. Average color VNIR band reflectance of dye- (orange) and pigment-based (blue) prints
on the PRO Pearl inkjet photo paper. The letters (A–D) represent colors red, green, blue, and
black, respectively.

Almost similar results were given by the reflectance analysis of the dye- and pigment-
based print color targets for the Cotton Textured inkjet art paper. The results can be seen
in Figure 7. The reflectance results differed between the selected photo papers, especially
for the blue color target, where the blue reflectance peak was at 450 nm, broader than the
blue target reflectance peak for the PRO Pearl paper. Again, this can be caused by the
optical brighteners in the PRO Pearl photo paper and subsequent fluorescence. However,
the difference between the reflectances of the dye- and pigment-based print color targets
did not appear to differ from the results for the PRO Pearl paper significantly. The notable
spectral difference among the green, black, and blue color targets remained.

The presented graph results of the dye- and pigment-based color targets also supported
the selected spectral metrics, the SIDSAM and JMSAM (see Table 5). The VNIR spectral
similarity between the red color targets, either dye- or pigment-based, was evaluated by
the SIDSAM metric with scores of 0.4 and 1.6 for the PRO Pearl and Cotton Textured
photo papers, respectively. The JMSAM gave for the red color target scores of 3.6 × 10−6

and 6.2 × 10−7 for these types of photo papers. These results suggested the mentioned
similarity between the dye- and pigment-based red color print targets. The results of
the SIDSAM spectral metric for green and blue target prints corresponded to 134 and
10.9 for the PRO Pearl photo paper and 85 and 6.1 for the Cotton Textured photo paper.
Similarly, the results of the JMSAM metric for green dye or pigment-based VNIR reflectance
comparison were 4.7 × 10−4 and 2.7 × 10−4 for the photo papers, in the same order.
The obtained JMSAM score for the dye- and pigment-based print blue target comparison
was 2.7 × 10−5 and 1.9 × 10−5 for targets printed on the PRO Pearl and Cotton Textured
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paper. The spectral metrics also supported the significant difference between the black print
targets. The SIDSAM and JMSAM difference score for the targets printed on PRO Pearl
photo paper was 547 and 2.2 × 10−2. For the targets printed on the Cotton Textured photo
paper, the SIDSAM and JMSAM score was 870 and 2.2 × 10−2, respectively. Especially the
score values between the black dye- and pigment-based inks were essential and at least
for the JMSAM score, two orders greater than for the remaining color targets. This result
indicated a significant dissimilarity between the dye- and pigment-based black ink. This
dissimilarity then may serve, for example, a task such as hyperspectral-based automatic
ink classification and specific printer identification.
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Figure 7. Average color VNIR band reflectance of dye- (orange) and pigment-based (blue) prints
on the Cotton Textured inkjet art paper. The letters (A–D) represent colors red, green, blue, and
black, respectively.

Table 5. Dye- vs. pigment-based reflectance comparison for the specific color selection.

Red Green Blue Black

SIDSAM JMSAM SIDSAM JMSAM SIDSAM JMSAM SIDSAM JMSAM

Archival Velvet 0.4 2.9 × 10−6 119 5.0 × 10−4 11.1 2.3 × 10−5 612 2.1 × 10−2

PRO Pearl 0.5 3.6 × 10−6 134 4.7 × 10−4 10.9 2.7 × 10−5 547 2.2 × 10−2

Cotton Textured 1.6 6.2 × 10−7 85 2.9 × 10−4 6.1 1.9 × 10−5 870 2.2 × 10−2

PCA Analysis

In addition, the PCA method was selected for advanced dye- and pigment-based
print color target difference analysis. Similarly, as in the previous reflectance analysis,
the test image, dye- and pigment-based, was printed on all mentioned photo papers and
subsequently captured via the HS camera. The pixel area within the HS image that served
for the average dye- and pigment-based reflectance analysis (see Figure 2) was selected as
an input for the hyperspectral PCA. The input data were decorrelated and transformed
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into a set of new orthogonal bases. The HS image then may be expressed by fewer PCs
(channels) than the original HS image. Moreover, the variance of the data concerning such
PCs can also be easily described. The result of the explained variance from 0–100 % that
was covered by the first 10 PCs is introduced in Figures 8 and 9, for the images printed on
the PRO Pearl and Cotton Textured paper, respectively. For both of these figures, Subfigure
A represents the explained variance pertaining to the specific principal component of the
HS image data taken from the pigment-based prints. Complementarily, the subfigures with
label B present the explained variance for the PCs obtained from the HS image data of the
dye-based prints. From both figures, it is apparent that the first PC generated from the
image data of the pigment-based prints covered about 5 % more variance than the first PC
of the dye-based print image data. Thus, the variance of the dye-based print images was
scattered into more PCs, especially in the second PC. As also shown by the cumulative
variance curve within the figures, the images printed by the professional pigment-based
printer may be described with fewer PCs, covering 99 % of the total data variance, than the
images printed by the hobby dye-based printer. This result seemed to be independent of
the photo paper.
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Figure 8. Explained and cumulative variance for the first 10 principal components of PCA-
transformed pigment-based (A) and dye-based (B) inkjet-printed HS image. The result correspond to
the dye- and pigment-based test prints on the PRO Pearl inkjet photo paper.
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Figure 9. Explained and cumulative variance for the first 10 principal components of PCA-
transformed pigment-based (A) and dye-based (B) inkjet-printed HS image. The result correspond to
the dye- and pigment-based test prints on the Cotton Textured inkjet art paper.

During the PCA analysis process, unique eigenvectors were generated from the input
image data. These generated eigenvectors may be subsequently used for the new input
image data transformation process. This process then transforms the new image input
data into a coordinate system based on the previously generated eigenvectors. The trans-
formation may be described according to Equations (26) and (27). Thus, the dye- and
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pigment-based print images, or more precisely the pixels with spectral values, can be
compared within one coordinate system.

Assume a pigment-based test photo print taken by the HS camera. Then, suppose
the PCA procedure that exploits the spectral pixels from the created HS image as an input.
The eigenvectors generated by this PCA procedure then can be used for the projection of the
new input image data of a dye-based photo print into the original pigment-based PCA space.
Selecting a specific set of pixels from a specific image location for both transformed images,
for example from a particular color target pixel area (see Figure 2), the values of these
pixels can be easily compared within this space. For the comparison of the color targets
within the pigment-based transformed space, Figure 10 was selected. For this purpose,
the same color targets as in the previous analysis, red, green, blue, and black, were selected.
The transformed pixel values of these color targets were averaged (see Equation (28)) and
plotted. The standard deviations of each averaged point were also computed, but due
to the low values and for visual clearness, they were omitted from the presented graphs.
The figures were generated separately for the PRO Pearl and Cotton Textured photo papers.
For simplicity, only the first two principal components (PC1, PC2) that covered most of the
variance were selected. One can see that the color target values for dye- (triangle points)
and pigment-based (circle points) inks confirmed the previous reflectance analysis for both
types of photo papers. The most significant distances were observable for the pair of black
color targets, followed by the green color targets. The red and blue color target pair points,
as their reflectances, were positioned considerably closer together, which indicated a high
similarity. These results were similar for all photo papers used.

The presented results were also supported by the calculated Euclidean distance d
(see Equation (32)) between the color target pairs (dye and pigment) across the first 20 PC
pigment-based PCA-transformed space. The results can be seen in Table 6. The distances
between the red, green, blue, and black targets for the PRO Pearl photo paper were 1.2, 6.25,
2.42, and 9.88, respectively. The distances between the red, green, blue, and black targets for
the Cotton Textured paper were equal to 1.45, 5.7, 2.03, and 9.55, respectively. The significant
difference between the dye- and pigment-based print color targets was also supported
by the standard deviation σd of the obtained distances. For all distances, d >> 3 · σd
applied. The results for the Archival Velvet paper confirmed the presented conclusions.
Therefore, the calculated distance confirmed the significant differences between the dye-
and pigment-based print color targets in one common coordinate system.
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Figure 10. The results of averaged pixel values of the print color targets transformed by the PCA
method into the pigment-based coordinate system for dye (triangles) and pigment-based (circles)
prints. The results are shown for the first two principal components PC1 and PC2. The point color
represents the particular color target. Subfigure (A) represents the results for the test images printed
on the PRO Pearl photo paper. Subfigure (B) presents the results for the test images printed on the
Cotton Textured art paper.



Sensors 2022, 22, 603 17 of 19

Table 6. Euclidean distance d and its standard deviation σd between the averaged pixel values of
the dye- and pigment-based print color targets. The pixel values of both type print targets were
transformed into the pigment-based PCA coordinate system. The distances were calculated across
the first 20 PCs.

Red Green Blue Black

d σd d σd d σd d σd

Archival Velvet 1.13 0.11 6.19 0.08 2.42 0.08 10.71 0.08

PRO Pearl 1.2 0.12 6.25 0.08 2.42 0.12 9.88 0.12

Cotton Textured 1.45 0.18 5.7 0.19 2.03 0.1397 9.55 0.11

In general, both the reflectance and PCA analysis confirmed that dye- and pigment-
based prints might be recognized using the hyperspectral camera in the VNIR spectral
band. Thus, identifying original pigment-based and forged dye-based documents, art
works, or unprofessionally made photographs printed for archiving purposes is possible.
In addition, according to the presented results, having a broader database of ink reflectance
pertaining to a particular printer, the automatic classification down to the specific printer
seems promising. In the future, a broader spectral band, such as UV or SWIR, should be
tested for hyperspectral imaging and ink identification and analysis. Especially, the dif-
ferences between the dye- and pigment-based inks in the SWIR band may become even
more eminent. The future focus should also be on the ink and printer spectral database
creation and the design of an automatic ink identification algorithm based on spectral sig-
natures. This classification task then may be exploited for counterfeit and forgery exposure.
However, in summary, the most significant result is the confirmation that VNIR HSI can be
exploited for dye- and pigment-based ink identification with high fidelity and can validate
a similar spectral signature of unknown art works and documents.

5. Conclusions

This paper presented the assessment of the spectral characteristics of dye- and pigment-
based inkjet prints via VNIR HSI. For the evaluation, the specific test images were printed
by the hobby dye-based printer EPSON L1800 and the professional pigment-based printer
EPSON SC-P9500. For both selected printers, the test images were printed on three different
types of photo paper to cover the variation in the spectral response of the prints. The spectral
differences between the dye- and pigment-based prints were assessed via the plotted
reflectance and quantified via the selected spectral similarity metrics SIDSAM and JMSAM.
The spectral difference measurement was performed separately for the whole printed image
and the specific printed color targets. The spectral differences between the printed color
targets were also assessed via PCA. It was shown that the overall average reflectance of the
pigment-based print in the NIR spectral band was significantly lower than the dye-based
one, regardless of the exploited photo paper. The most significant spectral difference was
observed for the black printed color target. This was also confirmed by the subsequent
PCA procedure applied to the acquired HS image data. With a broader HS database of
either dye- or pigment-based prints, an advanced classification algorithm based on the
captured spectral data may be developed. Therefore, the presented analysis could be an
important step toward the automatic hyperspectral-based classification of inks, whole
prints, and even specific printers, and it may lead to a reliable print forgery identification.
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