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Abstract

Background: With the development of SNP chips, SNP information provides an efficient approach to further disentangle
different patterns of genomic variances and covariances across the genome for traits of interest. Due to the interaction
between genotype and environment as well as possible differences in genetic background, it is reasonable to treat the
performances of a biological trait in different populations as different but genetic correlated traits. In the present study,
we performed an investigation on the patterns of region-specific genomic variances, covariances and correlations
between Chinese and Nordic Holstein populations for three milk production traits.

Results: Variances and covariances between Chinese and Nordic Holstein populations were estimated for genomic
regions at three different levels of genome region (all SNP as one region, each chromosome as one region and every
100 SNP as one region) using a novel multi-trait random regression model which uses latent variables to model
heterogeneous variance and covariance. In the scenario of the whole genome as one region, the genomic variances,
covariances and correlations obtained from the new multi-trait Bayesian method were comparable to those obtained
from a multi-trait GBLUP for all the three milk production traits. In the scenario of each chromosome as one region,
BTA 14 and BTA 5 accounted for very large genomic variance, covariance and correlation for milk yield and fat yield,
whereas no specific chromosome showed very large genomic variance, covariance and correlation for protein yield. In
the scenario of every 100 SNP as one region, most regions explained <0.50% of genomic variance and covariance for
milk yield and fat yield, and explained <0.30% for protein yield, while some regions could present large variance and
covariance. Although overall correlations between two populations for the three traits were positive and high, a few
regions still showed weakly positive or highly negative genomic correlations for milk yield and fat yield.

Conclusions: The new multi-trait Bayesian method using latent variables to model heterogeneous variance and
covariance could work well for estimating the genomic variances and covariances for all genome regions simultaneously.
Those estimated genomic parameters could be useful to improve the genomic prediction accuracy for Chinese and
Nordic Holstein populations using a joint reference data in the future.
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Background

The Chinese Holstein has been formed in the process
that the imported Holstein bulls from Europe and North
America were crossbred with local yellow cattle, and the
crossbred cows were continuously back-crossed with
imported Holstein bulls [1, 2]. Therefore, it is assumed
that the Chinese Holstein population is genetically close
to the other Holstein populations in the world. To date,
Chinese and Nordic Holstein populations have been
jointly studied widely [3-5]. It has been reported that
around 30% of Chinese cows has a relationship coeffi-
cient above 0.20 with one or more Nordic Holstein bulls,
calculated by using genomic data [5]. Zhou et al. [4] re-
ported that the extent of linkage disequilibrium (LD)
was similar in the Chinese and Nordic Holstein popula-
tions, and the consistency of LD phase between two popu-
lations was very high with a correlation of 0.97. Thus, it
was successful in improving the prediction accuracy for
Chinese Holstein population using a joint reference popu-
lation including Nordic genotyped progeny-test bulls. In
addition, the accuracy of imputation from the 54 K to the
HD marker data for Chinese Holsteins was improved by
adding the Nordic HD-genotyped bulls into the reference
data [5].

Because of different production systems between China
and Nordic countries, some genes may show significant
different effects for the same trait between Chinese and
Nordic Holstein populations, i.e., genotype by environ-
ment interactions. The different genetic effects on the
same trait between two populations can be reflected by
the patterns of genomic variances, covariances and corre-
lations across genome, which can be detected by an ana-
lysis where a given biological trait in Chinese and Nordic
Holstein populations is considered as two traits. On one
hand, knowing these genomic parameters of different
genome regions in two populations will give a better op-
portunity to understand genetic architectures of traits of
interest, On the other hand, these genomic parameters
can be used to improve the accuracy of genomic predic-
tion for traits of interest in both populations when using a
joint reference population.

With the availability of SNP chips and genome se-
quencing, SNP information has offered a possibility to
study genetic architecture of complex traits. Using SNP
data, it is possible to disentangle the pattern of genomic
variance and covariance across the whole genome.
However, there are few literatures to report genomic
variances, covariances and correlations for different
genome regions by using SNP information. Recently,
Janss [6] has proposed a multi-trait Bayesian method
using latent variables to model heterogeneous variances
and covariances, which makes it easy to estimate the
genomic variances and covariances for all genome re-
gions simultaneously. Furthermore a modified model
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has been developed in the present study, which is more
flexible to handle heterogeneous variances and covari-
ances. So far, this new multi-trait Bayesian method has
not been applied in large-scale real data.

Therefore, the objective of the present study is to in-
vestigate region-specific genomic variances in Chinese
and Nordic Holstein populations as well as region-
specific genomic covariances and correlations between
the two populations for three milk production traits,
using the novel multi-trait Bayesian method.

Results

As shown in Table 1, the total genomic variance, total
genomic covariance and overall genomic correlation
estimated from MT-GBLUP were a little higher than
those estimated from MT-Bayesian rrBLUP with three
different scenarios, while the residual variance estimated
from MT-GBLUP was lower than those estimated from
MT-Bayesian rrBLUP. The largest differences between
variances estimated from MT-Bayesian rrBLUP and
MT-GBLUP were for MY in Chinese population, where
MT-GBLUP resulted in 2.28% larger genomic variance
and 1.83% smaller residual variance than MT-Bayesian
rrBLUP with all SNP as one region. The total genomic
variance and covariance estimated from MT-Bayesian
rrBLUP with all SNP as one region were higher than
the other two scenarios. Furthermore, the total genomic
variance and covariance estimated from MT-Bayesian
rrBLUP with each BTA as one region were higher than
those from MT-Bayesian rrBLUP with every 100 SNP
as one region. In all cases, the Chinese population had
much larger total genomic variance than the Nordic
population for all three traits due to different scale of
DRP. The overall estimated genomic correlation between
the Chinese and Nordic populations was positive and
higher for MY than FY and PY.

The proportion of additive genetic variance to pheno-
typic variance (h®) in Table 1 represented reliability of
DRP. The reliabilities in Nordic Holsteins were much
higher than those in Chinese Holsteins, because the
Nordic Holsteins in the analysis comprised bulls with
large group of daughters while the Chinese Holsteins
comprised mainly cows. In addition, based on the
Deviance Information Criterion (DIC) statistical cri-
teria, MT-Bayesian rrBLUP with every 100 SNP as one
region was better than other two scenarios for MY,
MT-Bayesian rrBLUP with all SNP as one region was
best among three scenarios for FY, and MT-Bayesian
rrBLUP with each BTA as one region was best for PY.

Figure 1 shows the distribution of 29 chromosome-
wide genomic variances in each population. For MY and
FY, BTA 14 and BTA 5 explained the highest and the
second highest proportion of genomic variance in both
populations. For example, BTA 14 explained 6.48% for
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Table 1 Total estimated genomic variance (Va), covariance (Cov), correlation (Corr) with standard error (SE) in parentheses, heritability (h?),
and DIC for Chinese (CN) and Nordic (NO) Holstein population in different scenarios

Method Group® Trait® Va_CN Va_NO Cov Corr h?_CN¢ h?_NO° DIcd
MT-GBLUP All SNP MY 3581604 (25519.1) 112.3(4.1) 4116.0(2894) 0.649(0.037) 041 0.86 NA
FY 469.8(33.0) 104.6(3.8) 134.7(10.1) 0.607(0.038) 042 0.86 NA
Py 309.0(22.3) 107.1(3.9) 98.2(8.5) 0.540(0.042) 040 0.86 NA
MT-rrBLUP All SNP MY 349985.3(27058.4) 108.2(3.8) 3825.6(271.7) 0.622(0.034) 040 0.84 1257464
FY 462.2(344) 102.2(3.8) 126.5(11.5) 0.582(0.044) 042 0.85 83081.2
PY 302.1(21.5) 104.4(3.6) 93.6(8.5) 0.527(0.043) 0.39 0.84 81589.5
BTA MY 346995.3(27762.0) 104.7(5.0) 3550.9(306.1) 0.589(0.042) 040 0.84 125726.5
FY 4182(36.6) 95.2(5.1) 112.0(12.0) 0.562(0.048) 0.39 0.83 832556
PY 289.5(20.8) 101.6(4.4) 90.8(8.1) 0.529(0.040) 0.38 0.83 81554.3
100 SNPs MY 279770.6(23729.6) 85.4(37) 2856.8(281.3) 0.585(0.044) 0.35 0.81 1256674
FY 331.4(26.9) 74.5(4.1) 82.2(7.3) 0.523(0.037) 0.34 0.80 831434
PY 272.5(18.1) 86.6(4.1) 85.9(8.0) 0.559(0.044) 0.36 0.81 81570.8
2All SNP the whole genome, BTA, each chromosome as one genome region, 100 SNPs every 100 SNP as one genome region
PMY Milk Yield, FY, Fat Yield, PY Protein Yield
“h? represented the reliability of DRP
4DIC Deviance Information Criterion
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MY and 12.73% for FY in the Chinese population,
12.69% for MY and 15.92% for FY in the Nordic popula-
tion, respectively. In the Nordic population, BTA 20 also
explained the third highest proportion of genomic vari-
ance (i.e., 5.33% for MY and 5.65% for FY). For PY, in
the Chinese population, the proportion of genomic vari-
ance from BTA 1 to BTA 29 had a strong linear relation
(ie, R?=0.97) with the length (in bp) of individual
chromosome, while in the Nordic population, BTA 1,
BTA 6, BTA 14, and BTA 20 explained larger propor-
tions of genomic variance (ie., 544, 6.76, 569 and
4.99%) than other BTAs.

As presented in Fig. 2, for PY, the proportion of
genomic covariance between the two populations ranged
from 1.93% (BTA 27) to 5.79% (BTA 5), and had a linear
relation (R? = 0.80) with the length of individual chromo-
some. However, for both MY and FY, similar to the pat-
tern of genomic variance, BTA 14, BTA 5 and BTA 20
explained much larger proportions (i.e., 13.02, 9.26 and
5.87% for MY and 23.16, 11.07 and 4.66% for FY) than
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other chromosomes. As seen in Fig. 3, genomic correla-
tions ranged from 0.320 (BTA 23) to 0.845 (BTA 14) for
MY, from 0.096 with (BTA 8) to 0.937(BTA 14) for FY,
and from 0.358 (BTA 2) to 0.690 (BTA 5) for PY. Similar
to the patterns of genomic variance and covariance, BTA
14 and BTA 5 also showed much higher genomic corre-
lations for MY and FY than other chromosomes, i.e.,
0.845 and 0.801 for MY and 0.937 and 0.851 for FY,
respectively.

Besides the scenario of each chromosome as one
genome region, we also divided the whole genome into
430 regions with every adjacent 100 SNP as one genome
region. The distribution of proportions of genomic vari-
ances explained by each region of 100 SNP for three
traits is shown in Fig. 4. In the Chinese Holstein popula-
tion, most regions explained <0.50% of the total genomic
variance for MY and FY. There were also 5 regions explain-
ing 0.53 to 1.57% for MY and 7 regions explaining 0.53 to
3.38% for FY. For PY, most regions explained <0.30% of
the total genomic variance, and there were 5 regions
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explaining larger proportions of variance, ranging from
0.30 to 0.41%. Similar to the Chinese population, in the
Nordic population, most regions explained < 0.50% of
the total genomic variance for MY and FY, and ex-
plained < 0.30% for PY. However, there were 14 regions
explaining 0.50 to 3.57% for MY, 19 regions explaining
0.51 to 5.38% for FY, and 35 regions explaining 0.30 to
1.36% for PY.

Figure 5 presents the distribution of the proportions of
genomic covariances between the two populations ex-
plained by each region of 100 SNP for all three traits.
Most regions explained < 0.50% of the total genomic co-
variance for MY and FY, and explained < 0.30% of the
total genomic covariance for PY. Meanwhile, there were
also 10 regions explaining 0.50 to 3.90% for MY, 9 re-
gions explaining 0.50 to 8.03% for FY, and 9 regions
explaining 0.30 to 1.08% for PY, respectively. As seen
in Fig. 6, the estimates of genetic correlations ranged
from -0.137 to 0.992 for MY, from -0.411 to 0.994 for
FY and from 0.111 to 0.811 for PY. Most of the genomic
correlations ranged from 0.40 to 0.70, and there were 1

region for MY and 10 regions for FY showing highly nega-
tive genomic correlations.

Discussion
The present study for the first time reported the patterns
of genomic variance, covariance and correlation between
the Chinese and Nordic Holstein populations for three
milk production traits. The patterns of those genomic
parameters were investigated at different levels of genome
regions, ie., the whole genome as one genome region,
each chromosome as one region and every 100 SNP as
one region, using the novel MT-Bayesian rrBLUP model.
The results showed that the MT-Bayesian rrBLUP worked
well for estimating genomic parameters for different
regions in the genome simultaneously. As expected, the
results showed that different regions explained different
amounts of genomic variance and covariance as well as
different degrees of genomic correlation.

Both MT-GBLUP and MT-Bayesian rrBLUP were used
to estimate genomic variance, genomic covariance and
residual variance between Chinese and Nordic Holstein
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populations for three milk production traits. The total
genomic variance and covariance as well as genomic
correlation estimated from MT-GBLUP were slightly
higher than those from MT-Bayesian rrBLUP without
dividing the genome into regions. Although MT-GBLUP
and MT-rrBLUP without dividing regions were equiva-
lent, the two models used different algorithms. The MT-
GBLUP used AI-REML algorithm while MT-rrBLUP
used MCMC algorithm. The two different algorithms
might lead to slight difference in estimates of variance
and covariances, especially when the distribution of the
estimates was deviated from a normal distribution. In
fact, the difference was very small, compared with the
size of the standard errors. MT-Bayesian rrBLUP had
the advantage to estimate region-specific variance and
covariance for all regions simultaneously. In principle,
MT-GBLUP also can estimate region-specific variance
and covariance for all regions simultaneously by taking
each region as one component in the model, but it has a
very high computational demand, and is difficult to
reach convergence due to too many components in the
model. Another approach to use MT-GBLUP to estimate

region-specific variance and covariance is to take a par-
ticular region as one component and the others as one
component in the model, and thus obtain variance and
covariance for one region in the model in one run. But
this is still a time-consuming approach. For example for
MY, although the computation time for MT-GBLUP is
much shorter than MT-rrBLUP (3 h vs 42 h), the time
for MT-GBLUP with every 100 SNP as one region is
much longer than MT-rrBLUP with every 100 SNP as
one region (10 h* region number vs 42 h). Thus it is dif-
ficult to use MT-GBLUP to estimate regional specific
variance and covariance with every 100 SNP as one re-
gion because of very time consuming. It was observed
that with the number of genome regions increased, total
genomic variance and covariance derived from each re-
gion decreased (Table 1). One possible reason could be
that total genomic variance and covariance were obtained
by simply summing the genomic variance and covariance
for each region, and ignoring covariance between regions.
In addition, the correlations of genomic estimated
breeding values (GEBV) between MT-Bayesian rrBLUP
with three different scenarios ranged from 0.87 to 0.94



Li et al. BMC Genetics (2017) 18:26

Page 7 of 12

©
o

=

8 MILK YIELD

@

Q2 N

£ o +

S o 4

& o ] . .

=

S Hol oo N S a— T T w——
5§ © T T 1 1 1 T T T T T T 11T T T T 1T T T T T T T TTTT1
tg 1 2 3 4 5 6 7 8 9 10 11 12 14 16 18 20 22 24 26 28
2

a Chromosome

©

=

5 FAT YIELD

S o

o = T

6 © 4

E o - ;

e o 4

& o .

=]

- _— -— . —
5§ © T T 1. 1 T T T T T T T T T T T T T T T T T T T ITTTT1
§ 1 2 3 4 5 6 7 8 9 10 11 12 14 16 18 20 22 24 26 28
2

a Chromosome

©

g

8 PROTEIN YIELD

g

o

o -

L2 o

§ 31

S 8 | WﬁWMMﬂMWW»WW
58 T T 11 T T T T T T T T T T T T T T T T T T T TTTT1
tg 1 2 3 4 5 6 7 8 9 10 11 12 14 16 18 20 22 24 26 28
2

= Chromosome

Fig. 5 Distribution of proportions of genomic covariances explained by chromosome regions of 100 SNP between Chinese and Nordic Holstein
populationsfor three traits

for MY, from 0.80 to 0.91 for FY, and from 0.96 to 0.98
for PY in both populations. These showed that the per-
formance of different MT-Bayesian rrBLUP with different
assumptions is greatly influenced by genetic architectures
of traits of interest.

At chromosome level, very large genomic variance, co-
variance and correlation for three traits were found on
BTA14 as the diacylg-lycerolacyitransferase 1 (DGATI)
on BTA 14 has a very large effect and segregates in the
Holstein populations [7-9]. Among the regions with
size of 100 SNP on BTA 14, the genome region (1.46 Mbp
~5.57 Mbp) showed much higher genomic variance, co-
variance and correlation (0.98 for MY and FY; 0.80 for
PY) than other regions, which confirmed that DGATI
plays an important role on these three traits (Additional
file 1: Figure S1 and Additional file 2: Figure S2) in both
Chinese and Nordic Holstein populations. On the
other hand, the proportions of genomic variance and

covariance for this first region for PY were smaller
than those for the other two traits, which indicated
that the effect of DGATI was larger on MY and FY
than on PY.

Besides BTA 14, BTA 5 and BTA 20 also showed a
relative high genomic covariance and correlation which
speculated that some QTL regions had the same effects
one those two chromosomes in both populations.
Among all 100 SNP regions on BTA 5, two consecutive
regions (84.09 Mbp ~ 98.29 Mbp, 13™ and 14™region on
BTA5) showed much higher genomic variance, covari-
ance and correlation than other regions for MY and FY
(Additional file 3: Figure S3 and Additional file 4:
Figure S4). This segment on BTA 5 has been previ-
ously reported to include the QTL affecting MY and
FY in Holstein populations [7, 10, 11]. In the present study,
we also detected that aregion (27.93 Mbp ~ 34.73 Mbp),
which included the growth hormone receptor (GHR) gene,
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Fig. 6 Distribution of genomic correlations explained by chromosome regions of 100 SNP between Chinese and Nordic Holstein populationsfor

three traits

presented much higher genomic variance, genomic covari-
ance and genomic correlation for MY in this region than
other regions on BTA 20 (Additional file 5: Figure S5). It
has been reported that the growth hormone receptor (GHR)
gene on BTA 20 has a large effect on MY in Holstein
populations [8, 12—-14].

Although overall genomic correlations between two
populations for three traits were highly positive, some
genome regions showed weakly positive correlation or
highly negative genomic correlations for MY and FY. In
the present study, we found one region (47.20 Mbp
~52.23 Mbp) on BTA 19 for MY and 10 regions on
different chromosomes for FY showing highly negative
correlations (Additional file 6: Table S1). There were two
regions (48.79 Mbp-53.49 Mbp; 58.99 Mbp—64.03 Mbp)
on BTA 8 showing lower genomic covariance and negative
genomic correlation, ie., -0.016 and -0.327 (Additional
file 7: Figure S6), and thus these two region might resulted
in the lowest genomic covariance and correlation for

BTA8 among all autosomes for FY (Figs. 2 and 3). The
negative genomic correlations between two populations
indicated that the same region has different effects on the
same trait in different populations. One possible reason
for some regions showing negative correlations could be
due to different selection histories, e.g. different weights
for traits in the selection index, between two populations
which led to difference in effects between two populations
for some genomic regions. Another possible reason could
be due to different production systems in Chinese and
Nordic Holstein populations, i.e., genotype by environ-
ment interaction. In other words, the regions with
negative or very low correlations can be considered as
candidate regions involved in genotype be environment
interaction for further studies.

How to define genome regions to inspect the patterns
of genomic variance and covariance is a key point, and it
needs to be further investigated. In this study, we di-
vided the whole genome into regions in an arbitrary way
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(i.e., each chromosome or every 100SNP as one region).
The way to partition the genomic variance into chromo-
somes has also been reported by Jensen et al. [15]. For
the way to define how many SNP as one region, we have
tried to use every 50 SNP, every 100 SNP, every 200 SNP
and every 400 SNP as one region to estimate genomic
variance and covariance for each region, respectively.
The results showed that every 100, 200,400 SNP as one
region performed well, while every 50 SNP as one region
performed worse, especially for MY, with regard to total
genomic variance and covariance (results not shown).
The reason may be that small regions, such as every 50
SNP as one region, reduce the accuracy of estimated
variance and covariances because of less accuracy of rj
for a particular region j. We chose every 100 SNP as one
genome region rather than every 200 or 400 SNP to
analyze the region patterns of genomic variance, covari-
ance and correlation because the large region dilutes dif-
ferences in variance and covariance between regions.
Using a weighted G matrix in a single-trait GBLUP
model to improve the accuracy of genomic prediction
has already been reported, in which the estimated SNP
variances are used as a weighting factor for building a
trait-specific G matrix [16, 17]. Likewise, the information
of genomic variance, covariance and correlation in our
study can also be further used as weighting factors for
building a weighted G matrix for MT-GBLUP so that a
MT-GBLUP can account for heterogeneous variances
and covariances across the genome. In the Chinese cattle
population, reference data mainly comprises females.
Ding et al. [18] have reported prediction accuracy using
such a reference data are greatly increased, compared
with using pedigree information. The genomic predic-
tion accuracy for Chinese Holsteins has been improved
by using Chinese and Nordic Holsteins as reference ani-
mals and MT-GBLUP [4, 5]. Similar to the single trait
model, MT-Bayesian methods with different SNP/re-
gions having different variances may produce higher reli-
ability of genomic prediction than MT-GBLUP assuming
that all SNP have equal variances across genome. There-
fore, we will consider MT-Bayesian methods with different
SNP/regions and MT-GBLUP with such a weighted G
matrix to further improve the prediction accuracy for the
Chinese Holstein population using a joint reference popu-
lation including reference animals from other countries.

Conclusions

This study revealed the patterns of genomic variance,
covariance and correlation for genomic regions across
the whole genome between Chinese and Nordic Holstein
populations for three milk production traits. BTA14 and
BTA 5 showed very large genomic variance, covariance
and correlation for MY and FY than other chromosomes,
whereas no specific chromosomes showed very large
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genomic variance, covariance and correlation for PY.
In scenario of every 100 SNP as one genome region,
most regions explained <0.50% of genomic variance
and covariance for MY and FY, and most regions ex-
plained <0.30% for PY. A few regions showed highly
negative genomic correlations, e.g., one important region
on BTAS for FY. These regions can be considered as can-
didate regions accounting for interaction between geno-
type and production environment for MY and FY. The
pattern of genomic variance, covariance and correlation
across genomic regions could be useful for improving
multi-population (or multi-breed) genomic prediction.

Methods

Data

In this study, both Chinese and Nordic Holstein cattle
were genotyped with the Illumina BovineSNP50 Bead-
Chip (Illumina, San Diego, CA). For each population, we
firstly removed SNP with unknown positions and SNP
on Bostaurus (BTA) X, and then imputed missing geno-
types using the software Beagle [19]. After the imput-
ation, SNP with minor allele frequencies less than 0.01
were removed. Finally, the marker set included 43,008
SNP on 29 autosomes in both populations. In order to
investigate the patterns of genomic variance, covariance
and correlation across the whole genome, we divided the
whole genome into genome regions in two ways, which
has been done by Jensen et al. [15] and Hayes et al. [20].
The first way was that each chromosome was considered
as one genome region. The second way was that every
adjacent 100 SNP were considered as one region. If the
last region of one BTA had less than 50 SNP, this region
was merged with the previous region; otherwise, this re-
gion was considered as one independent region.

The Chinese Holstein population consisted of 237 ge-
notyped progeny-test bulls and 6076 genotyped cows,
and the Nordic population included 5244 genotyped
progeny-test bulls. Three milk production traits, ie.,
milk yield (MY), fat yield (FY) and protein yield (PY),
were analyzed. In the analysis, deregressed proofs (DRP)
were used as phenotypes for all three traits. The DRP of
Chinese Holstein bulls and cows were derived from the
estimated breeding values (EBV) in original scale ob-
tained from Dairy Association of China, and the DRP of
Nordic Holstein bulls were derived from the EBV in
standardized scale (http://www.landbrugsinfo.dk/Kvaeg/
Avl/Sider/principles.pdf) obtained from Nordic Genetic
Evaluation. Thus, the DRP had different scales in two
populations.

Statistical Model

In this study, each given biological trait was regarded as
two different but genetic correlated traits in the Chinese
and Nordic Holstein populations. A new multi-trait
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Bayesian method according to Janss [6] and the modified
form of this method were used to calculate overall vari-
ance and covariance as well as genomic variances, co-
variances and correlations for genome regions for each
milk production trait in both populations, respectively.
The overall variance and covariance were also estimated
using a multi-trait genomic BLUP (MT-GBLUP).

Multi-trait Bayesian rrBLUP model for homogeneous
variance and covariance

Similar to the single trait ridge regression BLUP (rrBLUP)
model which assumes constant variance for all SNP, the lo-
gical assumption in the multi-trait rrBLUP (MT-rrBLUP)
is to assume constant variance and covariance for all SNP.
The MT-Bayesian rrBLUP model (it was referred to
the new multi-trait Bayesian method above because it
performed using the Bayesian Markov chain Monte
Carlo(MCMCQ)) was described as follows [6]:

yi=ui+Wa; +e, (1)

where y; was a vector of phenotypic values (DRP) for the
population i (i = 1,2); u; was the overall mean; e; was the
random residual and was uncorrelated between two
populations. It was assumed that ei~Ng0,D,-agi> in
which D; was a diagonal matrix with weights of the re-
sidual variance [21]; W was a matrix with SNP genotype
covariates. The elements in W were (0, 1, 2)-2p, for
genotype AjA;, AjA, and AjA,, where py is the fre-
quency of minor allele A, at SNP k; a; was a vector of
SNP effects for the population i. SNP effects across
populations were correlated by using the following
hierarchical models for SNP effects:

a,=r;xs+a;”, (2)

The prior distributions were assumed as r;~uni,s~N
(0,1),a;*~N(0,10,2), 04+ 2~uni, where the part r; * s
contributed to the covariance between SNP effects
across populations; the “residual SNP effect” a; was
taken as uncorrelated across populations. The modeled
variance and covariance for each SNP were worked out as
var(a;) = var(r; * s + a;*) = r* 4+ 042, and cov(ay, a,) =

cov(ri*s+a,",ra*s+ay)=ry*r,, Thus, the total
genomic variance for the population i was
SNP .
Vg, = Z:l 2py * (1-py) * var(a;) , the total covari-
. nSNP
ance between two populations was V, = oy 2%
VP (1-py) # Py (1-py) * cov(aray) , and  the
. . v
overall genomic correlation was R, ,, = —=—, where

VVea*Ve
nSNP was the total number of SNP across the genome;
pi was the frequency of minor allele at marker locus k
in the population i.
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MT-Bayesian rrBLUP model for heterogeneous variances
and covariances

In order to calculate genomic variances, covariances and
correlations for different genome regions, multi-trait
Bayesian model proposed by Janss [6] was extended. The
assumption for the new MT-Bayesian rrBLUP model
was that effects of all SNP in each genome region have
the same genomic variance and covariance, but effects of
SNP in different regions have different genomic variances
and covariances. The model was described as follows:

g
Y =u; + Z;ﬂ:r;oup W/ﬂij + e, (3)

where y;, u;, and e; were the same as model 1; ngroup was
the total number of genome regions; W; was a matrix with
SNP genotype covariates for the region j; a; was a vector of
SNP effects for the region j in the population i. For the re-
gion j, SNP effects across populations were correlated and
were formulated by the following hierarchical models:

*
aijzri*so—&—ri,-*sl—i-a,j, (4)
The prior distributions were assumed as

ri~uni, so~N(0, 1),
ri~N(0,0,,2), 0,2 ~uni, s;~N(0, 1),
a;"~N(0,10,-2), 0,2 ~uni.

Thus, the genomic variance for each SNP in region j in
population i (i = 1, 2) was worked out as var(a;) = r? + rizj
+0,+%, and the genomic covariance between the two popu-
lations was cov(ayj, @) =11 * o+ 1y;* rp.  Therefore, the

total genomic variance for the region j in the population i

nSNP

was Vo = » — 2py  (1-py) * var(ay), the total gen-

omic covariance for the region j between two populations

nSNP
g 2* \/Plk # (1=pyi) * P * (1-poy )

cov(ayj ay;), and the overall genomic correlation for the re-

YUY where nSNP was the total

gion j was Rgyjo = NI
number of SNP for region j; p; was the frequency of minor
allele at marker locus k in the population i. The proportion
of genomic variance and covariance explained by

each region were calculated as Vgu_/z;qi""p v, and

was Vglj,2j =

V1,2l Z78 7" Va0, respectively.

The analysis of MT-Bayesian rrBLUP model was car-
ried out using the BAYZ software (www.bayz.biz). The
Markov chains were run for 50,000 cycles of Gibbs
sampling, and the first 20,000 cycles were discarded as
burning in. After this, every 20th sample of the
remaining 30,000 cycles was saved for the posterior
analysis, and then median value was considered as the
estimate of each unknown parameter. The posterior
standard deviations of estimated genetic parameters
across 30,000 cycles were denoted as standard error.


http://www.bayz.biz/

Li et al. BMC Genetics (2017) 18:26

Multi-trait GBLUP model

A multi-trait linear model (MT-GBLUP) was used to com-
pare with the MT-Bayesian rrBLUP model with regard to
overall variance and covariance. The MT-GBLUP analysis
was carried out using average information restricted maxi-
mum likelihood (AI-REML) algorithm implemented in the
DMU package [22]. The model was described as follows:

] =[] + B o) [2] + [2] (5)
where y; and y, were DRP of Chinese and Nordic popu-
lations, respectively; #; and u, were overall mean of

DRP of Chinese and Nordic populations; {“1} was a vec-

as
tor of additive genetic effects; Z; and Z, were incidence
matrices linking a; to y; and a, to y,, respectively; and
e; and e, were vectors of residuals for y; and y, res-

pectively. It was assumed that [ﬂ~N(O, Go®G) where

a
a2 o
G, was a covariance matrix, i.e, Go= | @ %
Oaya, 0a2

and the G matrix was constructed according to the
method 1 described by VanRaden [23]; e; and e, were

assumed to be uncorrelated, thus e;~N (O,Dlaé) and
eyN(O,Dzagz) in which D; and D, were diagonal

matrices with weights for the residual variance [21].
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