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Background Frontline health care workers use World Health Organization Inte-
grated Management of Childhood Illnesses (IMCI) guidelines for child pneumo-
nia care in low-resource settings. IMCI guideline pneumonia diagnostic criterion 
performs with low specificity, resulting in antibiotic overtreatment. Digital aus-
cultation with automated lung sound analysis may improve the diagnostic perfor-
mance of IMCI pneumonia guidelines. This systematic review aims to summarize 
the evidence on detecting adventitious lung sounds by digital auscultation with 
automated analysis compared to reference physician acoustic analysis for child 
pneumonia diagnosis.

Methods In this review, articles were searched from MEDLINE, Embase, CINAHL 
Plus, Web of Science, Global Health, IEEExplore database, Scopus, and the Clin-
icalTrial.gov databases from the inception of each database to October 27, 2021, 
and reference lists of selected studies and relevant review articles were searched 
manually. Studies reporting diagnostic performance of digital auscultation and/or 
computerized lung sound analysis compared against physicians’ acoustic analysis 
for pneumonia diagnosis in children under the age of 5 were eligible for this sys-
tematic review. Retrieved citations were screened and eligible studies were includ-
ed for extraction. Risk of bias was assessed using the Quality Assessment of Diag-
nostic Accuracy Studies-2 (QUADAS-2) tool. All these steps were independently 
performed by two authors and disagreements between the reviewers were resolved 
through discussion with an arbiter. Narrative data synthesis was performed.

Results A total of 3801 citations were screened and 46 full-text articles were as-
sessed. 10 studies met the inclusion criteria. Half of the studies used a publicly 
available respiratory sound database to evaluate their proposed work. Reported 
methodologies/approaches and performance metrics for classifying adventitious 
lung sounds varied widely across the included studies. All included studies except 
one reported overall diagnostic performance of the digital auscultation/comput-
erised sound analysis to distinguish adventitious lung sounds, irrespective of the 
disease condition or age of the participants. The reported accuracies for classify-
ing adventitious lung sounds in the included studies varied from 66.3% to 100%. 
However, it remained unclear to what extent these results would be applicable for 
classifying adventitious lung sounds in children with pneumonia.

Conclusions This systematic review found very limited evidence on the diag-
nostic performance of digital auscultation to diagnose pneumonia in children. 
Well-designed studies and robust reporting are required to evaluate the accuracy 
of digital auscultation in the paediatric population.

Cite as: Ahmed S, Saima S, Khan AM, Islam MS, Habib GM, McLane IM, McCollum 
ED, Baqui AH, Cunningham S, Nair H. Digital auscultation as a diagnostic aid to 
detect childhood pneumonia: A systematic review. J Glob Health 2022;12:04033.
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Pneumonia is the leading cause of mortality among infectious diseases in children under the age of five glob-
ally [1], accounting for an estimated 800 000 deaths per year, more than half of which occur in just five low- 
and middle-income countries (LMIC) [1,2]. In 2015, the estimated annual incidence of pneumonia in children 
under five years of age in developing countries was 231 episodes per 1000 children, resulting in about 138 
million episodes of clinical pneumonia in this age group [3]. Prompt recognition of illness and care-seeking is 
critical to reducing pneumonia-related child deaths [4].

Currently, health care providers in LMICs use practical, standardized case management guidelines called the 
Integrated Management of Childhood Illnesses (IMCI) guidelines developed by the World Health Organiza-
tion (WHO) for childhood pneumonia care [5,6]. IMCI guidelines have proven to be one of the most import-
ant childhood pneumonia interventions for LMICs to date [7,8].

IMCI guidelines prioritize sensitivity over specificity to ensure antibiotic treatment for children with an acute 
respiratory illness and suspected bacterial pneumonia [6]. Where successfully implemented, this algorithm has 
shown a 30%-40% reduction in case mortality [8]. Yet, IMCI has moderate sensitivity and a specificity largely 
contingent on disease severity. Specificity may range from 16% for children with an acute respiratory illness 
characterized by wheeze [9], to 49% for IMCI-defined non-severe pneumonia (ie, disease lacking clinical dan-
ger signs), to 95% for IMCI-defined very severe pneumonia (ie, disease with clinical danger signs) [10]. Lim-
itations of IMCI specificity are thought to be related to the attribution of milder disease to viral pathogens, an 
epidemiological pattern catalysed by the expanded exposure of children in LMICs to Haemophilus influenzae 
type B and access to pneumococcal conjugate vaccines [11-13]. As a result, while the guidelines ensure few 
children with true bacterial pneumonia will be overlooked, most children, especially those with a milder ill-
ness, receive antibiotics inappropriately, resulting in antibiotic overuse.

Auscultation, the process of listening to the human body’s internal sounds by using a stethoscope [14], has been 
an effective tool for diagnosing pulmonary diseases for more than two centuries. This requires highly trained 
health professional, limiting its utility at first-level facilities in LMICs staffed by non-physician health work-
ers. IMCI guidelines do not include lung auscultation in their pneumonia definition for frontline health care 
workers [6]. The guidelines’ exclusion of auscultation likely results from its high inter-observer variability and 
subjectivity, regardless of health care providers’ training level [15-19]. Furthermore, traditional stethoscopes 
are functionally limited since they attenuate higher frequency sounds, like wheezing and crackles, yet transmit 
ambient noises and tubular resonance effects [17,20]. Digital auscultation may overcome these limitations [21]. 
Digital auscultation has the potential advantages of signal amplification and ambient noise reduction [22-24], 
reducing inter-observer reporting variation [25], and not requiring auscultation training for health care pro-
viders. Digital stethoscopes can record a patient’s respiratory sounds for automated computerised lung sound 
analysis, which has been the recent focus of a significant amount of research, with some commercial systems 
already available [26,27]. These advantages may be important in LMICs as they rely on varying cadres of 
non-physician clinicians, and as the burden of lower respiratory infections among children in LMICs is high.

To the best of our knowledge, there is currently no systematic review reporting the diagnostic accuracy of digital 
auscultation to detect adventitious lung sounds in childhood pneumonia. Therefore, we aimed to conduct a sys-
tematic review to summarize the current evidence on the diagnostic performance of digital auscultation to iden-
tify adventitious lung sounds compared to the physician’s acoustic analysis to diagnose pneumonia in children.

METHODS
This systematic review was reported according to the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses of Diagnostic Test Accuracy (PRISMA-DTA) criteria [28]. The review protocol was registered 
with the PROSPERO database (registration number CRD42020180821).

Information sources and search strategy

Search terms (“pneumonia”, “lower respiratory infection”, “auscultation”, “respiratory sound”, “lung sound”, 
“digital”, “electronic”, “automatic”, “computerized”, “crackles”, “wheeze”, “child”) were used to generate com-
prehensive search strategies for the following electronic databases: MEDLINE, Embase, Cumulative Index to 
Nursing and Allied Health Literature (CINAHL) Plus, Web of Science, Global Health, IEEExplore database, 
Scopus, and ClinicalTrials.gov (http://clinicaltrials.gov/). Search strategies for all databases are shown in Ap-
pendix S1 in the Online Supplementary Document. The initial search was conducted in February 2019 and 
was updated on October 27, 2021, with no language restrictions. To avoid missing relevant studies, reference 
lists of identified studies and relevant reviews were also screened.
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Eligibility criteria

Studies were selected based on the following inclusion criteria:
1.  Participants: Children under five years of age.
2.  Index test: Digital auscultation/computerized analysis of lung sounds.
3.  Reference standards: Physicians’ diagnosis of adventitious lung sounds (crackles and/or wheeze) by conven-

tional auscultation/acoustic analysis of recorded lung sounds.
4.  Target condition: Pneumonia.
5.  Outcome: Reported diagnostic accuracy measures of the digital/computerized analysis of adventitious lung 

sounds.
6.  Types of studies: Observational and experimental studies.

Studies were excluded if 1) digital auscultation or computerized analysis of lung sounds were not used in the 
study, 2) reference standard was not a human classification of lung sounds, 3) the reports were reviews, con-
ference proceedings, abstracts, case reports, editorials, and commentaries.

Screening and selection of studies

Search results were imported and merged into Endnote X9, and duplicates were removed. Two review authors 
(SA and MSI/SS/GMMH) independently screened the titles and abstracts of all included citations as per the 
predefined eligibility criteria, followed by a full-text review of all selected articles (SA and SS/AMK). Any dis-
crepancies were resolved through discussion, or an arbiter (HN) was consulted, where necessary. Reasons for 
exclusion of studies were documented (Appendix S2 in the Online Supplementary Document).

Data extraction and quality assessment

Data extractions were independently carried out by two review authors (SA and AMK) using a standardized 
pretested data collection template (Appendix S3 in the Online Supplementary Document). Any discrepant 
judgments were evaluated by an arbiter (HN).

Two reviewers (SA and AMK) independently assessed the risk of bias and the applicability of the included 
studies using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool [29]. Non-consensus 
between the reviewers were resolved through consultation with an arbiter (HN). This tool includes four do-
mains to judge bias in the included study: patient selection, index test, reference standard, and flow and tim-
ing. A study would have an overall judgment of “low risk of bias” if it was judged as “low” on all domains. In 
contrast, it would be judged as a “high risk of bias” if it was judged “high” in one or more domains. The “un-
clear risk of bias” was categorised only when insufficient data were reported. To judge the concerns regarding 
the applicability of the included study to the review question, three domains (ie, patient selection, index test, 
and reference standard) were used.

Data synthesis

A descriptive synthesis was performed following the predefined review objectives and outcome measures. Me-
ta-analyses could not be performed due to insufficient data and the heterogeneity in included studies in terms 
of methodology and outcome measures.

RESULTS
The review process is summarised in Figure 1 using the PRISMA flow diagram [30]. A total of 3798 citations 
were identified through the database search. After duplicates were removed, 3324 unique citations remained. 
In total, 3281 citations were excluded during the title and abstract screening, and 46 full-text articles (includ-
ing three from citation searching) were reviewed. Of these, 10 articles were eligible for inclusion [21,31-39].

Characteristics of the included studies

Table 1 summarises the characteristics of the included studies. Of the selected articles, five studies evaluated 
lung sound recordings from primary studies, among which one study was conducted across multiple centres 
in Africa (The Gambia, Kenya, South Africa, Zambia) and Asia (Bangladesh, Thailand) [21], one in Australia 
[36], one in India [37], and the remaining two were from the same study conducted in Egypt [31,35]. These 
five studies recruited children from different age groups and varied from one another in the number of study 
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Records identified from:
Databases (n = 3765) 
Registers (n = 33) 
(Medline = 606, Embase = 
834, Global Health = 102, 
CINAHL Plus = 142, Scopus 
= 1345, Web of science = 
398, IEEEXplore = 338,
clinicaltrial.gov = 33)

Records removed before 
screening: 

Duplicate records removed
(n = 474)
Records marked as ineligible 
by automation tools (n = 0) 
Records removed for other
reasons (n = 0) 

Records screened
(n = 3324) 

Records excluded
(n = 3281) 

Reports sought for retrieval
(n = 43) 

Reports not retrieved
(n = 0) 

Reports assessed for eligibility
(n = 43) 

Reports excluded: 35 
Index test not used (n = 9)
Reference test not used
(n = 6)
Target condition not matched
(n = 9) 
Other reasons (n = 11)

Records identified from:
Websites (n = 0) 
Organisations (n = 0) 
Citation searching (n = 3) 

Reports assessed for eligibility
(n = 3) 

Reports excluded: 
Reference test not used
(n = 1)

Studies included in review
(n = 10) 
Reports of included studies
(n = 10) 

Identification of studies via databases and registers Identification of studies via other methods
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Reports sought for retrieval
(n =3) 

Reports not retrieved
(n = 0) 

Figure 1. PRISMA flow diagram.

subjects. For instance, one study enrolled 1157 children aged 1-59 months [21], one study enrolled 600 chil-
dren aged 0-12 years [31,35], while another study had only 20 children aged 4.6-17.1 years [36]. However, 
one study recruited 256 children but did not report any information on the participants’ age [37]. Of these 
five studies, one study obtained lung sound recordings in outpatient and busy clinical settings [21], while an-
other study recorded the lung sounds in a quiet room in the hospital [36]. Three studies also recorded lung 
sounds in a hospital setting [31,35,37], but is unclear whether they were recorded in a controlled environ-
ment or a noisy clinical setting. The other five studies [32-34,38,39] evaluated their proposed work using the 
publicly available International Conference on Biomedical and Health Informatics (ICBHI) scientific challenge 
respiratory sound database containing 920 annotated lung sound recordings from 126 subjects (49 children 
and 77 adults) [40,41].

We found only one study that specifically recruited children with IMCI-defined severe or very severe pneumo-
nia and age-matched controls without clinical pneumonia [21], while seven studies included subjects with a 
variety of respiratory diseases, including pneumonia [32-34,36-39]. The other two studies did not report on 
the disease condition of the study subjects [31,35,37].

Stethoscopes used

For studies using the ICBHI data set, lung sounds were recorded using different devices (3M Littmann Clas-
sic II SE stethoscope, 3M Littmann 3200 electronic stethoscope, WelchAllyn Meditron Master Elite electronic 
stethoscope, and AKG C417 L Microphone) [32-34,38,39] from both clinical and home settings [41]. In the 
other four studies, a 3M Littmann 3200 electronic stethoscope was used [31,35-37], while the Clinicloud DS 
was also used in one of the studies [36]. The ThinkLabs ds32a digital stethoscope with a microphone (Sony-
ICD-UX71-81) affixed to the stethoscope to record ambient noises was used in one study [21].

Lung sounds classification used

Variations were observed in classifying the lung sounds. For instance, three studies specifically performed the 
computerized analysis of lung sounds to classify normal and adventitious/pathological sounds [21,33,37], two 
studies performed a four-class classification (normal, crackle, wheeze, both wheeze and crackle) [32,38], one 
study performed a three-class classification (normal, crackle, and wheeze) [34], one study classified wheeze 
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Table 1. Study characteristics

Author, year Country Study 
type Population

Number 
of 
subjects

Clinical 
condition of 
the subjects

Sound/ 
pathology 
analyzed

Number of 
recordings 
studied

Lung sound 
recording 
device

Feature 
extraction 
method

Sound 
classification 
method

Outcome/Result

Fasseeh et al. 
2015

Egypt
Case-
control

Infants and 
children  
(0-12 y)

Case = 500 
Control = 
100

Not reported
Wheeze, 
stridor, rattle, 
normal

592
3M Littmann 
Electronic 
Stethoscope 3200

Short-time 
Fourier 
Transform 
(STFT)

Dynamic time 
warping (DTW) 
algorithm

Reported accuracy of validation 
for all wheezes was 81.93% (<12 
mo = 82.81% & ≥ 12 months = 89.15%). 
Reported accuracy of validation for 
all normal sounds was 89% (<12 
mo = 96.15% & ≥ 12 months = 90.54%).

Khan et al. 
2017

India Children 254 Not reported
Normal and 
pathological

254
Littmann 3200 
electronic 
stethoscope

Short time 
Fourier 
transform 
(STFT)

k- Nearest 
Neighbour (k-
NN); Support 
Vector Machine 
(SVM)

k-NN obtained sensitivity, specificity, 
and accuracy of 90.9%, 92.2% and 
91.6%, respectively. SVM obtained 
sensitivity, specificity, and accuracy of 
92.2%.

Kevat et al. 
2017

Australia
Children 
(median 
age = 6.7 y)

20

Cystic 
fibrosis, lower 
respiratory 
tract infection, 
asthma, 
preschool 
wheeze

Wheeze, 
crackles, 
normal

156

Littmann 3200 
Electronic 
Stethoscope; 
Clinicloud DS

Not reported
Audio 
spectrographic 
analysis

Concordance between the Littmann 
electronic stethoscope and standard 
auscultation was found to be moderate 
for wheeze (κ = 0.44) and almost perfect 
for crackles (κ = 1.0). Concordance 
between the Clinicloud DS and 
standard auscultation was found to be 
moderate for wheeze (κ = 0.55) and 
almost perfect for crackles (κ = 1.0).

Abougabal et al. 
2018

Egypt

Analysis of 
recorder 
lung 
sounds

Infants and 
Children 
(<13 y)

600 Not reported
Stridor, rattle 
and wheeze, 
normal

592
3M Littmann 
Electronic 
Stethoscope 3200

Wavelet 
Transform 
(WT) 
coefficients

Dynamic time 
warping (DTW) 
algorithm

Reported recognition accuracy of 
88.2% for wheeze and 86% for normal 
breath sounds.

Emmanouilidou 
et al. 2018

Gambia, 
Kenya, 
South 
Africa, 
Zambia, 
Bangladesh, 
Thailand

Case-
control

Children 
(median age 
7 ± 11.4 mo)

1157
Pneumonia, 
Normal

Normal, 
abnormal 
(wheeze and/
or crackle)

1095 ThinkLabs ds32a
Rich spectro-
temporal 
feature space

Support-Vector 
Machine (SVM) 
classifier

The classification system achieved 
an accuracy of 86.7%, sensitivity of 
86.9%, and specificity of 86.6%.

Chen et al. 
2019

Analysis of 
respiratory 
sound 
database*

Not 
mentioned

Not 
mentioned

Not mentioned
Wheeze, 
crackle, 
normal

489

3M Littmann 
3200 Electronic 
Stethoscope; 
Welch Allyn Elite 
Meditron

Optimized-S- 
Transform 
(OST)

Deep Residual 
Networks 
(ResNets)

Classification accuracy of 98.79% with 
sensitivity of 96.27% and specificity of 
100% was obtained to classify wheeze, 
crackle, and normal sounds.

Perna et al. 
2019

Analysis of 
respiratory 
sound 
database*

Children, 
adults

126

Pneumonia, 
Bronchiectasis, 
Bronchiolitis, 
COPD, 
Healthy, URTI

Normal, 
wheeze, 
crackle, both

920

AKG C417 L 
Microphone; 3M 
Littmann Classic 
II SE. Stethoscope; 
3M Littmann 
3200 Electronic 
Stethoscope; 
Welch Allyn 
Meditron Master 
Elite Electronic 
Stethoscope

Mel-Frequency 
Cepstral 
Coefficients 
(MFCC)

Recurrent 
Neural 
Networks 
(RNN) models: 
Long Short-
Term Memory 
(LSTM) and 
Gated Recurrent 
Unit (GRU)

A sensitivity of 0.62 and specificity of 
0.85 were reported for LSTM based 
model on four class anomaly driven 
prediction. (ie, normal, presence of 
crackles, presence of wheezes, presence 
of both)
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Author, year Country Study 
type Population

Number 
of 
subjects

Clinical 
condition of 
the subjects

Sound/ 
pathology 
analyzed

Number of 
recordings 
studied

Lung sound 
recording 
device

Feature 
extraction 
method

Sound 
classification 
method

Outcome/Result

Acharya et al. 
2020

Analysis of 
respiratory 
sound 
database*

Children, 
adults

126

Pneumonia, 
Bronchiectasis, 
Bronchiolitis, 
COPD, 
Healthy, URTI

Normal, 
wheeze, 
crackle, both

920

AKG C417 L 
Microphone; 3M 
Littmann Classic 
II SE. Stethoscope; 
3M Littmann 
3200 Electronic 
Stethoscope; 
Welch Allyn 
Meditron Master 
Elite Electronic 
Stethoscope

Mel-
spectrograms

Hybrid CNN-
RNN model

A score of 66.31% was obtained on 
four class respiratory cycle classification 
and a score of a 71.81% was obtained 
for leave-one-out validation.

Alva Alicia et al. 
2021

Analysis of 
respiratory 
sound 
database*

Children, 
adults

126

Pneumonia, 
Bronchiectasis, 
Bronchiolitis, 
COPD, 
Healthy, URTI

Normal, 
abnormal

920

AKG C417L 
Microphone; 3M 
Littmann Classic 
II SE. Stethoscope; 
Littmann 3200 
Electronic 
Stethoscope; 
Welch Allyn 
Meditron Master 
Elite Electronic 
Stethoscope

Mel-
spectogram; 
Short time 
Fourier 
transform 
(STFT); Mel-
Frequency 
Cepstral 
Coefficients 
(MFCC)

Convolutional 
Neural (CNN) 
Network 
Models

Accuracy values of 0.998 and 1 were 
obtained for normal sounds and 
abnormal sounds respectively. Accuracy 
values of 0.9959 and 0.9885 were 
reported for classification of pneumonia 
and other diseases.

Shuvo et al. 
2021

Analysis of 
respiratory 
sound 
database*

Children, 
adults

87

Pneumonia, 
Bronchiectasis, 
Bronchiolitis, 
COPD, 
Healthy, URTI

Chronic 
classification 
(healthy, 
chronic 
diseases, 
non-chronic 
diseases) 
Pathological 
classification 
(Healthy, 
Bronchiectasis, 
Bronchiolitis, 
COPD, 
Pneumonia, 
URTI)

917

AKG C417L 
Microphone; 3M 
Littmann Classic 
II SE. Stethoscope; 
Littmann 3200 
Electronic 
Stethoscope; 
Welch Allyn 
Meditron Master 
Elite Electronic 
Stethoscope

Hybrid 
scalogram 
using empirical 
mode 
decomposition 
(EMD) & 
continuous 
wavelet 
transform 
(CWT)

Lightweight 
Convolutional 
neural network 
(CNN) model

Weighted accuracy scores of 98.92% 
for three-class chronic classification 
and 98.70% for six-class pathological 
classification were obtained.

*The study analysed International Conference on Biomedical Health Informatics (ICBHI) 2017 data set.

Table 1. continued
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Figure 2. Risk of bias and applicability concerns graph: review authors’ judge-
ments about each domain presented as percentages across included studies.

Figure 3. Risk of bias and applicability concerns 
summary: review authors’ judgements about each 
domain for each included study.

and crackles [36] and another two analysed wheeze, rattle, stridor, and normal lung sounds [31,35]. One study 
performed a three-class chronic classification (healthy, non-chronic diseases, chronic diseases) and six-class 
pathological classification (healthy, bronchiectasis, bronchiolitis, COPD, Pneumonia, URTI) based on the re-
spiratory sound signal processing and computerised analysis [39].

Algorithm used to classify lung sounds

A substantial variation was observed in feature extraction methods (ie, the process of identifying distinctive fea-
tures of respiratory sound signals) and sound classification algorithms/models used in the included studies. For 
feature extraction, three studies employed Short-time Fourier Transform (STFT) [33,35,37], two studies em-
ployed Melspectrogram [32,33], two used Mel Frequency Cepstral Coefficients (MFCC) [33,38], while the other 
four studies employed enhanced distinctive feature extraction methods –Wavelet Transform (WT) coefficients 
[31], rich spectro-temporal feature space [21], Optimized-S-Transform (OST) [34], and hybrid scalogram using 
empirical mode decomposition (EMD) and continuous wavelet transform (CWT) [39]. Wide-ranging sound 
classification models/algorithms used across the studies are: Dynamic time warping (DTW) algorithm [31,35], 
Support Vector Machine (SVM) [21,37], k-Nearest Neighbour (k-NN) based classifier [37], audio spectrograph-
ic analysis [36], Deep Residual Networks (ResNets) [34], Recurrent Neural Networks (RNN) models with Long 
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) [38], hybrid CNN-RNN model [32], Convolu-
tional Neural Network (CNN) models [33], and lightweight convolutional neural network (CNN) model [39].

Diagnostic performance of used algorithms/models

Regarding diagnostic performance, diverse methodologies and diagnostic accuracy measures were used. Fur-
thermore, in studies that included participants with different target conditions and age groups (ie, children 
and adults), the reported performance measures were only limited to overall accuracy on adventitious lung 
sounds classification [32-34,38] or by pathological conditions classification [39]. For these studies, report-

ed accuracies varied from 66.3% to 100%. Of the 
five studies that recruited children [21,31,35-37], 
only one study [21] reported on the accuracy of 
the computerized sound classification system in 
children aged 1-59 months in pneumonia. In that 
study, the accuracy of the classification system was 
86.7% (sensitivity = 86.8%; specificity = 86.6%) to 
differentiate between normal and adventitious 
lung sounds. Further, the researchers suggested 
that the system performance varied with the dif-
ferent window analyses of breath cycles ranging 

from shorter to longer duration. For example, setting the analysis window 
at 0.5s yielded an accuracy of 84.1% (sensitivity = 87.2%; specificity = 81%) 
while it was about 77% in longer time windows (>1s); thus, a short window 
size was recommended [21].

Assessment of risk of bias and applicability

The quality of the included studies according to the QUADAS-2 tool is sum-
marized and displayed graphically in Figure 2 and Figure 3. In general, very 
few of the included studies met most of the quality criteria. Most of the stud-
ies were judged to be of unclear methodological quality because of insufficient 
reporting. For patient selection, four studies were evaluated as having a high 
risk of bias, and six were evaluated as having an unclear risk of bias due to in-
appropriate or poorly described sampling methods. For the index test, all 10 
studies were judged as having low risk of bias because there was no chance of 
non-blinding, as index tests were the machine classifications. For the reference 
standard, all the studies were evaluated as having an unclear risk of bias due 
to poor reporting of target conditions and/or blinding status. In the flow and 
timing domain assessment, seven studies were deemed to have a low risk of 
bias as the recorded sounds were the second interpretation, and three were 
evaluated as an unclear risk because of underreporting. The overall concerns 
regarding applicability for this review were unclear, high, and low, for patient 
selection, index test, and reference standard, respectively.
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DISCUSSION
This systematic review included studies evaluating the diagnostic performance of digital auscultation/com-
puterized analysis of adventitious lung sounds in pneumonia in children aged under 5 years. The literature 
search identified 10 articles that met the inclusion criteria. Of these included articles, five of them evaluated 
lung sound recordings from primary studies, while the remaining five utilised a publicly available respirato-
ry sound database to evaluate their proposed lung sound classification system. Substantial variation was ob-
served in the included studies in terms of study subjects, sample size, and use of feature extraction methods 
and sound classification models. For instance, seven types of feature extraction methods and nine types of 
sound classification models/algorithms were used across the studies. Hence, we could not draw any conclusion 
from this systematic review. However, the reported accuracies for classifying adventitious lung sounds ranged 
from 66.3% to 100%. This review identified only one study [21] that involved children aged under 5 years 
with pneumonia to evaluate an integrated computerized lung sound classification framework to detect adven-
titious lung sounds at an accuracy of 86.7% (sensitivity = 86.5%; specificity = 86. 6%). Although the rest of the 
studies demonstrated excellent accuracy, sensitivity, and specificity values, their results were primarily limited 
to overall diagnostic accuracy parameters in classifying lung sounds and did not provide disaggregated results 
by age and/by target condition/s. Therefore, the findings could not be directly applied to the paediatric popu-
lation to diagnose childhood pneumonia. These shortfalls are important findings of this review and suggest a 
need for improved reporting of study findings. The authors should account for participants’ contributing factors 
(such as age, disease/target condition) while analysing and reporting their data. Evidently, the methodological 
quality of the included studies was deemed to be unclear due to insufficient reporting in participant selection, 
sampling methods, and clinical/target conditions of the participants. The concerns regarding the applicability 
of the patient selection and index test domain were unclear and high, respectively.

To the best of our knowledge, this is the first systematic review assembling evidence on the discriminatory 
power of digital auscultation for the detection of adventitious lung sound/s against conventional auscultation 
or acoustic analysis of recorded lung sounds by physicians in childhood pneumonia diagnosis. Prior reviews 
focused on summarizing existing evidence on artificial intelligence and algorithms to classify adventitious lung 
sounds [27,42]. Another systematic review and meta-analysis by Gurung et al. [20] evaluated the performance 
of computerized lung sounds analysis to detect adventitious lung sounds in respiratory diseases against chest 
radiography or clinical diagnosis.

In line with our findings, this review emphasised methodological and analytical standardization, including 
completeness and transparency in reporting by following standardized guidelines, and the need for conduct-
ing more studies on the paediatric population. To date, the Standards for Reporting of Diagnostic Accuracy 
Studies (STARD) 2015 statement remains the most used tool for reporting of studies investigating diagnos-
tic test accuracy and performance [43,44]. However, this tool has some shortcomings when reporting studies 
evaluating artificial intelligence (AI) driven interventions due to unclear methodological interpretation, lack of 
standardised nomenclature, use of unfamiliar outcome measures, and other issues, thereby limiting the com-
prehensive appraisal of these technologies [45]. Thus, our study findings further reiterate the need for devel-
oping an AI-specific STARD guideline to ensure complete and robust reporting of studies evaluating AI-driven 
technologies and interventions [45,46].

The heterogeneous nature of the included studies and insufficient data prohibited us from performing me-
ta-analyses and drawing conclusions on the diagnostic accuracy of digital auscultation and computerized anal-
ysis of lung sounds in childhood pneumonia diagnosis.

CONCLUSIONS
Given the paucity of available data in this area, there is a need for additional well-designed studies to generate 
evidence on accuracy, sensitivity, and specificity of digital auscultation and/or computerized analysis of lung 
sounds involving the paediatric population to diagnose pneumonia. Future investigations should also con-
sider conducting the studies in real-life, noisy clinical settings rather than in a controlled laboratory or clini-
cal environment to broaden the usability of the automated applications. This is a rapidly evolving field, and 
new and advanced applications with robust reporting of methods and findings within studies will enable me-
ta-analysis in future reviews.
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