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Abstract 

Background:  Wucai suffers from low temperature during the growth period, resulting in a decline in yield and poor 
quality. But the molecular mechanisms of cold tolerance in wucai are still unclear.

Results:  According to the phenotypes and physiological indexes, we screened out the cold-tolerant genotype “W18” 
(named CT) and cold-sensitive genotype “Sw-1” (named CS) in six wucai genotypes. We performed transcriptomic 
analysis using seedling leaves after 24 h of cold treatment. A total of 3536 and 3887 differentially expressed genes 
(DEGs) were identified between the low temperature (LT) and control (NT) comparative transcriptome in CT and 
CS, respectively, with 1690 DEGs specific to CT. The gene ontology (GO) analysis showed that the response to cad-
mium ion (GO:0,046,686), response to jasmonic acid (GO:0,009,753), and response to wounding (GO:0,009,611) were 
enriched in CT (LT vs NT). The DEGs were enriched in starch and sucrose metabolism and glutathione metabolism in 
both groups, and α-linolenic acid metabolism was enriched only in CT (LT vs NT). DEGs in these processes, including 
glutathione S-transferases (GSTs), 13S lipoxygenase (LOX), and jasmonate ZIM-domain (JAZ), as well as transcription fac-
tors (TFs), such as the ethylene-responsive transcription factor 53 (ERF53), basic helix-loop-helix 92 (bHLH92), WRKY53, 
and WRKY54.We hypothesize that these genes play important roles in the response to cold stress in this species.

Conclusions:  Our data for wucai is consistent with previous studies that suggest starch and sucrose metabolism 
increased the content of osmotic substances, and the glutathione metabolism pathway enhance the active oxygen 
scavenging. These two pathways may participated in response to cold stress. In addition, the activation of α-linolenic 
acid metabolism may promote the synthesis of methyl jasmonate (MeJA), which might also play a role in the cold 
tolerance of wucai.
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Background
Low temperature is one of the abiotic stresses that 
directly affect plant growth and development [1]. It also 
affects the geographical distribution of plants and limits 
their growth [2]. In response to adverse environmental 
conditions, plants have evolved a series of physiological 
and biochemical mechanisms. In plants, there are many 
receptors for different stress signals, which are involved 
in various stress responses and form a complex response 
and regulation network in response to stress [3]. When 

Open Access

*Correspondence:  houjinfeng@ahau.edu.cn
†Chenggang Wang and Mengyun Zhang contributed equally to this 
work.
1 College of Horticulture, Vegetable Genetics and Breeding Laboratory, 
Anhui Agricultural University, 130 West Changjiang Road, Hefei, 
Anhui 230036, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-022-08311-3&domain=pdf


Page 2 of 16Wang et al. BMC Genomics          (2022) 23:137 

plants are subjected to low temperature stress, a large 
number of soluble substances accumulate in their tissues 
to improve cold resistance. For example, starch will be 
hydrolyzed into simple sugars and other derived metabo-
lites to increase the osmotic pressure of cells to prevent 
freezing [4]. Plants accumulate a large amount of reactive 
oxygen species (ROS) under stress. ROS mainly include 
superoxide anions (O2·−), hydrogen peroxide (H2O2), 
hydroxyl radicals (·OH), and singlet oxygen (O2

1) [5]. 
In order to maintain the intracellular ROS balance at a 
harmless concentration, plants have evolved a series of 
enzymatic and non-enzymatic ROS-scavenging mecha-
nisms [6]. Under stress, plants can regulate the activity of 
these enzymes or antioxidants through a series of physi-
ological and biochemical mechanisms [7]. In this way, the 
excessive accumulation of ROS in plants can be reduced 
and the stress resistance of plants can be improved.

Plant hormones such as cytokinin, abscisic acid, eth-
ylene and jasmonic acid (JA) also play an important 
direct or indirect role in plant response to abiotic stress. 
Jasmonic acid and its derivatives, such as MeJA and cis-
jasmone, are collectively referred to as jasmonates (JAs). 
They are fatty acids derived from cyclopentanone. They 
belong to the oxidized lipid family and are collectively 
referred to as oxidized lipids [8]. In addition to respond-
ing to biological stress, they can also regulate the expres-
sion of many genes in response to abiotic stress, such as 
low temperature and salinity [9]. Studies have shown that 
MeJA can activate antioxidant metabolic pathways and 
defense mechanisms in various crops and enhance cold 
tolerance [10]. In addition, some members of ERF, bHLH, 
MYB, DREB, and WRKY transcription factor families, 
such as ERF53 [11], ICE1, DREB1A [12], MYB4 [13], and 
WRKY19 [14], are also involved in regulating the expres-
sion of cold-stress response genes.

High-throughput RNA-sequencing (RNA-seq) can pre-
cisely measure the transcription level and provide gene 
sequence information at the same time. It has high effi-
ciency, high cost performance with high reliability, and is 
widely used in plant transcriptome analysis, especially in 
non-model plants that lack genome sequencing data [15]. 
Over the last decade, RNA-seq has been used in many 
plant species to investigate plant responses to cold stress, 
including winter rapeseed [16], strawberry [17], and cot-
ton [18], and has been confirmed as a powerful tool for 
plant genetics research [19].

Wucai (Brassica campestris L. ssp. chinensis var. rosu-
laris Tsen) is a genotype of Chinese cabbage and is native 
to China [20]. It is one of the main vegetables culti-
vated in the Yangtze–Huaihe River basin [21]. Wucai is 
a semi-cold-tolerant vegetable, and the optimum growth 
temperature is 10  °C-20°C. It is a popular vegetable in 
autumn and winter for its nutritional value and good 

taste. However, different genotypes of the same species 
have different tolerance levels to cold stress [22]. With 
the expansion of the planting area, it is an important task 
to select cold-tolerant genotypes of wucai.

The response of different genotypes to cold varies from 
tolerant to extremely sensitive. On the basis of previ-
ous studies, we screened six genotypes of wucai for their 
cold tolerance at the seedling stage [23]. Through a study 
of the morphological, physiological, and biochemical 
properties of wucai under both control and cold stress 
conditions, cold-tolerant and sensitive genotypes were 
selected. We further conducted complete transcriptome 
sequencing on the cold-tolerant and sensitive wucai gen-
otypes, providing valuable insights into the molecular 
mechanisms of this variety. The results lay a foundation 
for identifying genes with the potential to improve the 
cold tolerance of wucai, as well for developing cold-toler-
ant wucai varieties in future breeding programs.

Results
Phenotypic and physiological differences between various 
genotypes under cold stress
The morphological characteristics of seedlings of six 
wucai genotypes were determined to select cold-tolerant 
and cold-sensitive genotypes (Fig.  1A). Based on meas-
urements of the MDA content in leaves under stress 
and normal conditions, changes in the leaf lipid hydro-
gen peroxide production rate were studied. After cold 
treatment, the MDA content in Sw-1 reached the high-
est level, whereas that in W18 was at the lowest level 
(Fig. 1B). Relative electrolyte conductivity (REC) in Sw-3 
was the highest, followed by Ta2, Sw-1, ws-2, W18 and 
ws-1 (Fig. 1C).

The performance index on an absorption basis (PIabs) 
of W18 was the highest and was significantly higher than 
that of Sw-1 (Fig. 1D). Vj increased the most in Sw-1, fol-
lowed by Ta2, Sw-3, ws-2, ws-1 and W18 (Fig. 1E). These 
indexes indicated that W18 is a cold-tolerant wucai geno-
type and Sw-1 is a cold-sensitive genotype.

Differential responses of two wucai genotypes to cold 
stress
The phenotypes and physiological changes of two geno-
types were significantly different under low temperature 
stress (Fig.  2). The REC and MDA content in W18 and 
Sw-1 were significantly increased under cold stress. How-
ever, the increase in W18 was smaller than that in Sw-1 
(Fig.  2B, C). Under cold stress, the H2O2 content and 
O2·− generation rate of the two genotypes were signifi-
cantly increased compared to those under NT. In addi-
tion, the H2O2 content and O2·− generation rate of W18 
were lower than those of Sw-1 (Fig. 2D, E). At low tem-
perature, the total antioxidant capacity (T-AOC) of both 
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genotypes increased, but the T-AOC of W18 was higher 
than that of Sw-1 (Fig.  2F). Compared with the control 
condition, the PIabs of Sw-1 declined, while the PIabs of 
W18 had no significant change (Fig.  2G). These results 
indicated that W18 was more tolerant than Sw-1.

Mapping and quantitative assessment of Illumina 
sequences
The two comparison groups were named CT (LT vs 
NT) and CS (LT vs NT). Twelve cDNA libraries (three 
per treatment group) were constructed from total RNA. 
As indicated in Table  S1, among the million raw reads 
obtained from the libraries, approximately 580.21 mil-
lion clean reads were identified, ranging from 46.63 mil-
lion to 49.78 million reads per library. More than 92% of 

the clean reads had quality scores higher than the Q30 
level (an error probability of 0.1%), and the GC content 
was approximately 48% in each sample. The qualitied 
clean reads of each library were mapped to the B. rapa 
reference genome, and the mapping rates in each library 
exceeded 89% (Table S2). All of the RNA-seq data in this 
article have been deposited in the NCBI Sequence Read 
Archive (SRA) database and are accessible under acces-
sion number PRJNA735896.

Different transcriptome profiles of CT and CS under LT 
and NT conditions
After calculating the gene expression, we found that sam-
ples of CT and CS in NT had fewer genes than the sam-
ples in LT at the expression level of FPKM (the expected 

Fig. 1  Measurement of plant physiological parameters in wucai seedlings at the 7-leaf stage subjected to 3-day cold stress. A: Phenotypic change 
under cold stress in six wucai genotypes, ws-1, ws-2, Sw-1, Sw-3, W18 and Ta2. B: MDA content under cold stress in six wucai genotypes. C: Relative 
electrical conductivity under cold stress in six wucai genotypes. D: PIabs under cold stress in six wucai genotypes. E: Vj under cold stress in six wucai 
genotypes. The data are presented as the mean ± SD of three replicates. Bars with different letters are significantly different at P < 0.05 (ANOVA 
followed by Tukey’s test)
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number of fragments per kilobase of transcripts per mil-
lion mapped fragments) > 10, and CS was less than CT in 
LT (Fig. S1A). The results of the expression density dis-
tribution were similar (Fig. S1B). The relationship among 
the samples was analyzed by principle component analy-
sis (PCA). The results showed that samples in the same 
treatment in each genotype clustered together, and there 
was significant distinction between the samples of the 
two genotypes and the different treatments (Fig. S1C).

DEG identification and analysis
There were 3536 DEGs in CT (LT vs NT) and 3887 DEGs 
in CS (LT vs NT). Although there were more DEGs in 
CS (LT vs NT) than in CT (LT vs NT), there were more 
downregulated DEGs in CS (LT vs NT) than in CT (LT vs 
NT). A total of 1846 DEGs (852 up-regulated DEGs and 
994 down-regulated DEGs) were shared between CT (LT 
vs NT) and CS (LT vs NT), and 1690 DEGs were specific 
to CT (LT vs NT) (Fig. 3A). All DEGs were hierarchically 
clustered with respect to gene expression patterns and 
were evaluated using log10RPKMs (reads per kilobase per 
million mapped reads) of the two groups (Fig. 3B and Fig 
S2).

Although different with respect to cold tolerance, 
the two groups shared common genes that regulated 
cold tolerance, including dehydration-responsive 
element-binding proteins (DREBs), cold-regulated 

protein (COR15A), GSTs, and beta-glucosidase (BGLU) 
(Table  S3). Several transcription factors, such as 
bHLH61, WRKY25, and MYB29 were also identified in 
both groups.

GO enrichment analysis of DEGs
Based on the corrected P-values, we selected the 10 
most enriched GO terms in each category (Fig.  4, 
Table  S4 and Table  S5). In the biological process 
category, response to salt stress (GO:0,009,651), 
response to cold (GO:0,009,409), and defense response 
(GO:0,006,952) were common in both groups, and 
response to cadmium ion (GO:0,046,686), response to 
jasmonic acid (GO:0,009,753), and response to wound-
ing (GO:0,009,611) were unique to CT (LT vs NT). 
In the cellular component, common DEGs were sig-
nificantly enriched in the nucleus (GO:0,005,634), the 
integral component of membrane (GO:0,016,021), and 
the plasma membrane (GO:0,005,886), whereas mito-
chondrion (GO:0,005,739) and endoplasmic reticulum 
(GO:0,005,783) were enriched only in CT (LT vs NT). 
Metal ion binding (GO:0,046,872), DNA-binding tran-
scription factor activity (GO:0,003,700), ATP binding 
(GO:0,005,524), and DNA binding (GO:0,003,677) were 
the top four in the molecular function category, and pro-
tein dimerization activity (GO:0,046,983) and iron ion 

Fig. 2  Measurement of plant physiological parameters in wucai seedlings at the 7-leaf stage subjected to 24-h cold stress. A: Phenotypic change 
in W18 and Sw-1 under cold stress. B: Relative electrical conductivity in W18 and Sw-1 under control and cold stress conditions. C: MDA content 
in W18 and Sw-1 under control and cold stress conditions. D: H2O2 content in W18 and Sw-1 under control and cold stress conditions. E: O2·− 
generation rate in W18 and Sw-1 under control and cold stress conditions. F: T-AOC content in W18 and Sw-1 under control and cold stress 
conditions. G: PIabs in W18 and Sw-1 under control and cold stress conditions. The data are presented as the mean ± SD of three replicates. Bars with 
different letters are significantly different at P < 0.05 (ANOVA followed by Tukey’s test)
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Fig. 3  Analysis of DEGs in CT and CS. A: Number of DEGs in the pairwise group. The red indicates upregulated genes, while the blue indicates 
downregulated genes. B: Hierarchical clustering DEGs in CT (LT vs NT), each column represents a comparison group, and each row represents a 
gene

Fig. 4  GO distribution of DEGs under 24-h cold stress in the two groups. The cold tolerance-related DEGs were based on GO categories that were 
grouped into three levels: biological process, cellular component, and molecular function. the left y-axis shows the number of genes, and the x-axis 
indicates specific categories of genes
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binding (GO:0,005,506) were enriched only in CT (LT vs 
NT).

KEGG pathway enrichment analysis of DEGs
To understand the function of DEGs, we mapped the 
DEGs to the reference specification path in the KEGG 
database. The core genes were aligned with the KEGG 
database and were assigned to 20 KEGG pathways. 
KEGG pathway enrichment results showed that the 
significantly enriched KEGG pathways in both groups 
were starch and sucrose metabolism (brp00500) and 
glutathione metabolism (brp00480) (Fig.  5A, B). 
Based on a comparison of the KEGG pathways of CT 
(LT vs NT) and CS (LT vs NT), we were interested 
in pathways with higher enrichment in CT but lower 
enrichment in CS. One such way was α-linolenic acid 
metabolism.

DEGs involved in common KEGG pathways in CT (LT vs NT) 
and CS (LT vs NT)
The starch and sucrose metabolism network changed sig-
nificantly in the acclimation to cold stress of both groups 
(Fig. 6A). We identified 31 DEGs in CT (LT vs NT) and 
36 DEGs in CS (LT vs NT), with 23 and 26 up-regulated 
DEGs, respectively. The expressions of beta-amylase 2 
(BAM2), sucrose-phosphate synthase1 (SPS1), BGLUs, 
and BraA01g006680.3C were the most significant in CT 
(LT vs NT) (Fig. 6B); these genes are mainly involved in 
the transformation of fructose, sucrose, and glucose and 
the hydrolysis of starch to maltose and finally to glu-
cose. The starch, fructose, sucrose, and glucose contents 
of CT and CS increased significantly under cold stress, 
and there was no significant difference between the two 
groups (Fig. 6C-F).

In glutathione metabolism, 22 DEGs in CT (LT vs NT) 
and 21 DEGs in CS (LT vs NT) were identified, with 18 
and 17 up-regulated genes, respectively (Fig.  7A, B). 
Ascorbate peroxidase 1 (APX1), phospholipid hydroper-
oxide glutathione peroxidase 6 (GPX6), and most of the 
GST gene family members were up-regulated. Compared 
with NT, the contents of reduced glutathione (GSH), 
oxidized glutathione (GSSG), and total glutathione 
(GSH + GSSG) in CT and CS were significantly increased 
under cold stress. The GSH content was increased by 
69.86% and 55.54%, respectively, and the GSSG content 
was increased by 20.66% and 24.89%, respectively. The 
(GSH + GSSG) content increased in the two groups by 
61.94% and 50.73%, respectively. The glutathione content 
and GSH/GSSG ratio under cold stress were higher than 
those of the control (Fig. 7C-F).

DEGs involved in the KEGG pathway specific to CT (LT vs 
NT)
KEGG enrichment analysis showed that the α-linolenic 
acid metabolism pathway was enriched in the CT group. 
Based on the metabolism pathway and heat map analy-
sis (Fig.  8A, C), we found that 4-coumarate–CoA ligase 
(4CLL), allene oxide cyclase (AOC), and 12-oxophytodi-
enoate reductase (OPR) were up-regulated in both groups, 
but the key gene, LOX, was up-regulated only in CT. JA 
is catabolized by JA carboxyl methyltransferase (JMT) to 
form its volatile counterpart MeJA. JMT in CS was down-
regulated. The above GO enrichment analysis showed that 
the response to jasmonic acid was enriched only in CT; 
therefore, we studied the jasmonic acid signal transduction 
pathway (Fig.  8B), and the results showed that members 
of JAZ (TIFYs), an important gene family in this pathway, 
were up-regulated in CT (LT vs NT) and down-regulated 

Fig. 5  KEGG enrichment analysis with the 20 most enriched KEGG terms in CT (LT vs NT) (A) and CS (LT vs NT) (B). High and low P-values are 
represented by blue and red, respectively
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in CS (LT vs NT) (Fig. 8C). Compared with NT, the MeJA 
content in CT under LT increased by 60.33%, while it was 
down-regulated by 9.38% in CS (Fig. 8D).

Identification of transcription factors in response to cold stress
The RNA-seq results showed that a total of 206 and 
208 DEGs were annotated as TFs in CT (LT vs NT) 
and CS (LT vs NT), and were classified into 47 and 
48 families, respectively. The top 10 TF families are 

shown in Fig. 9A. Among the recognized TF families, 
WRKY and bHLH represented the most abundant 
category, followed by MYB and ERF in CT (LT vs NT) 
and CS (LT vs NT). The trend of the fold change of 
common TFs between the two groups was similar. In 
the TFs unique to CT (LT vs NT), bHLH and WRKY 
were the top two TF families; most of the bHLHs 
were down-regulated and the WRKYs were up-regu-
lated (Fig. 9B, C).

Fig. 6  DEGs relevant to the starch and sucrose metabolism pathway and carbohydrate content of the two wucai genotypes under cold stress. 
A: pathway diagram of starch and sucrose metabolism. B: The heat map of the expression of DEGs related to the starch and sucrose metabolism 
pathway in CT (LT vs NT) and CS (LT vs NT). C: Starch content of CT and CS under control and cold stress conditions. D: Sucrose content of CT and 
CS under control and cold stress conditions. E: Fructose content of CT and CS under control and cold stress conditions. F: Glucose content of CT 
and CS under control and cold stress conditions



Page 8 of 16Wang et al. BMC Genomics          (2022) 23:137 

Validation of gene expression patterns by qRT‑PCR
To validate the data obtained from RNA-seq, qRT-PCR 
was performed. Nineteen DEGs were selected for qRT-
PCR, including two transcription factors (one bHLH 
and one WRKY), seven members (TIFYs) of the JAZ 
gene family, seven genes involved in starch and sucrose 
metabolism (BraA01g006680.3C, BAM2, SPS1, BGLUs), 
and three other genes (Fig.  10). The qRT-PCR results 
were strongly correlated with RNA-seq data for both CT 
(R2 = 0.8202) (Fig. S3A) and CS (R2 = 0.8230) (Fig. S3B), 
demonstrating the reliability of the RNA-seq expression 
profile.

Discussion
In order to resist cold, plants change their morphologi-
cal, physiological and biochemical properties, which 
involve molecular changes [24]. In this study, we used 
the RNA-seq technique to analyze the transcriptome 
of two wucai genotypes after 24  h cold treatment and 
24  h normal treatment to determine the response to 
cold stress. The DEGs common to both genotypes and 
unique to CT (LT vs NT) were identified and further 
analyzed, which could provide insights into the candi-
date genes and metabolic pathways underlying cold tol-
erance in wucai.

Fig. 7  DEGs relevant to the glutathione metabolism pathway and intermediate metabolites of the two wucai genotypes under cold stress. A: 
Pathway diagram of the glutathione metabolism. B: The heat map of the expression of DEGs related to glutathione metabolism pathway CT (LT vs 
NT) and CS (LT vs NT). C: GSH content under control and cold stress conditions. D: GSSG content under control and cold stress conditions. E: GSH/
GSSG under control and cold stress conditions. F: Sum of the GSH and GSSG contents under control and cold stress conditions
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Based on our team’s research results, six genotypes of 
wucai were screened for tolerance, and two divergent 
varieties were chosen for further study. REC was nega-
tively correlated with plasma membrane integrity and 
was related to the strength of plant stress resistance [25, 
26]. MDA is a marker to measure lipid peroxidation in 
plant cells, which is often used to evaluate plant toler-
ance to biological or abiotic stresses [27]. REC and MDA 

are commonly used to measure membrane damage and 
cell stability [28]. Plant photosynthesis is very sensitive 
to cold stress, and PIabs is a multi-parametric expression 
that combines the three main functional steps taking 
place in PSII (light energy absorption, excitation energy 
trapping, and conversion of excitation energy to elec-
tron transport). PIabs reflect the capture of light energy 
by PSII reaction center and the ability of photosynthetic 

Fig. 8  DEGs relevant to the α-linolenic acid metabolism pathway and JA signal transduction pathway in CT (LT vs NT) and CS (LT vs NT). A: Pathway 
diagram of the α-Linolenic acid metabolism. B: Pathway diagram of jasmonic acid signal transduction. C: The heat map of the expression of DEGs 
related to α-Linolenic acid metabolism pathway and jasmonic acid signal transduction pathway. D: MeJA content of CT and CS under control and 
cold stress conditions
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electron transfer between the two photosystems [29]. 
PIabs could be used to select individuals for analysis or 
to screen wucai genotypes for enhanced cold tolerance, 
and it is positively correlated with the cold tolerance of 
plants [23]. The change of relative variable fluorescence 
Vj reflects the transfer of electrons on the PSII electron 
receptor side from QA to QB. The change of Vj further 
showed that PSII receptor was affected under cold stress. 
Vj reflects the photosynthetic capacity which is negatively 
correlated with the photosynthetic capacity of plants 
[20]. The changes of these indexes in wucai were consist-
ent with the above research.

A previous study reported that ROS has a dual func-
tion in plants [6]. Under normal conditions, the intracel-
lular ROS level is low, which regulates plant growth and 
development and stress responses [30]. Under abiotic 
stress, ROS accumulates and has a toxic effect on cells 
[31]. The H2O2 content and O2·− generation rate of CS 
were higher than those of CT under cold stress (Fig. 2D, 
E). The T-AOC is one of the important indexes reflect-
ing the capacity of the non-enzymatic intracellular anti-
oxidant defense system [32]. The tolerance of species and 
genotypes to abiotic stress is related to the antioxidant 
capacity of leaves [33]. The increase in the T-AOC of CT 
was greater than that of CS under cold stress (Fig. 2F). It 
was consistent with research results on the resistance of 
Brassica napus to salt and cold stress, and T-AOC might 
be a potentially useful phenotypic marker of stress resist-
ance [34]. These results indicated that CT has a stronger 
ability to protect cells from toxicity and has a stronger 
defense against cold damage. There was no significant 
change of PIabs in CT, while a significant decrease was 
observed in CS (Fig.  2E), indicating that the photosyn-
thetic mechanism of CS was damaged. The changes in 
these parameters are consistent with W18 having greater 
cold-tolerance than Sw-1.

Gene function and expression studies are needed to 
identify the key genes for cold resistance in wucai. Based 
on a comparison of the DEGs of the two groups, the num-
ber of DEGs in CS (LT vs NT) was higher, while the num-
ber of up-regulated DEGs in CS (LT vs NT) was fewer 
than that in CT (LT vs NT) (Fig. 3A). In the DEGs specific 
to CT (LT vs NT), 959 genes were up-regulated, includ-
ing TIFY, calmodulin, LOX, and transcription factors, 
WRKY and MYB, which might be involved in greater 
cold tolerance in CT. GO enrichment specifically in CT 
included the response to cadmium ion (GO:0,046,686), 
response to jasmonic acid (GO:0,009,753), and response 
to wounding (GO:0,009,611). JA and its derivatives play 
an important role in the resistance to abiotic stress [35]. 
Up-regulated DEGs in response to cadmium ion, such as 
APX1 and GPX6, have been reported to participate in 
cold response in Brassica juncea by scavenging ROS [36]. 
The DEGs involved in these three GO might participate 
in cold tolerance in wucai.

A large number of studies have confirmed that low-
temperature stress can induce the accumulation of solu-
ble sugars to response to stress tolerance [37, 38]. Low 
temperature also promotes increased levels of enzymes, 
such as sucrose-phosphate synthase (SPS), sucrose syn-
thase (SUS), and invertase (INV), which ultimately 
increased sucrose levels [39]. The accumulation of soluble 
sugar in rice and cold-treated Arabidopsis thaliana [40] 
is associated with cold tolerance. The key genes involved 
in the conversion of fructose, sucrose, and glucose, such 
as SPS1, SUS6, beta-fructofuranosidase, insoluble isoen-
zyme 5 (CWINV5), and BGLUs, were up-regulated in CT 
and CS (Fig.  6A, B). In both comparison groups, starch 
synthesis was not inhibited (Fig. 6C, D), and a significant 
trend was observed that polysaccharides were degraded 
to disaccharides and soluble, simple sugars. Starch is 
hydrolyzed/decomposed into maltose/dextrin by alpha 

Fig. 9  Statistical analysis of TFs under cold stress. A: Numbers of top 10 TF families in CT (LT vs NT) and CS (LT vs NT). B: The heatmap of TFs 
common to the two groups. C: The heatmap of TFs unique to CT (LT vs NT)
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amylase 3 (AMY3) and BAM2 and is then hydrolyzed 
into glucose by 4-alpha-glucanotransferase (DPE2). It 
was reported that sucrose and starch metabolism was 
significantly enriched and the content of soluble sugar 
was significantly increased after cold stress in Poa prat-
ensis with different cold tolerance [41]. Poa pratensis is a 
cold tolerant species, and this result was consistent with 
ours. It might indicate that starch and sucrose metabo-
lism was involved in the response of wucai with different 
cold tolerance to cold stress.

GSH is involved in ROS clearance in the non-enzymatic 
mode, but the possibility of direct ROS clearance by GSH 
is considered low [42]. GSH participates in the ROS scav-
enging enzymatic reaction by regulating the activities of 
related enzymes in the antioxidant enzyme system (APX, 
mono dehydroascorbate reductase, dehydroascorbate 
reductase, and glutathione reductase) and by indirectly 
scavenging ROS. In this study, APX1 was significantly 
up-regulated in the glutathione metabolism pathway in 
both CT (LT vs NT) and CS (LT vs NT) (Fig. 7B). GSH 

Fig. 10  Validation of gene expression patterns in CT and CS under cold stress by qRT-PCR. qRT-PCR analysis of 19 selected DEGs. Bars with different 
letters are significantly different at P < 0.05 (ANOVA followed by Tukey’s test)
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is mainly involved in regulating the response of GPX 
(phospholipid hydroperoxide glutathione peroxidase) 
and GST. GPX is a member of the proline oxidase anti-
oxidant enzyme family, which uses GSH to remove 
H2O2 and reduce the accumulation of lipids and organic 
hydroperoxides [43]. GST can also be coupled with GPX 
to activate GPX and participate in H2O2 scavenging. 
One transcription (BraA09g026940.3C) of GPX6 was 
up-regulated in both groups, and the other transcription 
(BraA08g032660.3C) was down-regulated in CT (LT vs 
NT) but was not detected in CS (LT vs NT). Members 
of the GST family, specifically GSTU11, GSTU24, and 
GSTF12, were significantly up-regulated in both groups. 
These results suggested that the glutathione metabolism 
pathway, as an important component of the antioxidant 
process in plants, might play a role in both genotypes of 
wucai in response to cold stress. This may be a reason 
why wucai is a semi-hardy species.

LOX initiates the first step of α-linolenic acid oxida-
tion, JA, and MeJA synthesis [44]. It has been reported 
that there are 13 LOX genes in Brassica rapa, and LOX 
gene participate in the response to stress [45]. In the 
present study, LOX3 was differentially expressed and 
up-regulated in CT. LOX4 was differentially expressed 
in CS and down-regulated (Fig. 8C). MeJA alleviates low 
temperature stress in tomato [46] and cowpea (Vigna 
sinensis) [47] by increasing antioxidant synthesis and 
the activity of some defense compounds. JMT is a key 
enzyme involved in the conversion of JA to MeJA [48]. 
It was down-regulated in CS and was not detected in 
CT. The MeJA content in CT was significantly increased 
compared with CS, indicating that MeJA might have a 
stronger response to cold stress than CS (Fig.  8D). JA-
mediated signal transduction pathways play an impor-
tant role in various stress responses [49]. Previous studies 
have shown that JA acts as a key upstream signal to regu-
late the ICE-CBF/DREB1 transcription pathway to pre-
vent frost damage in Arabidopsis thaliana [50]. TIFY is 
a plant-specific transcription factor family that includes 
four subfamilies, TIFY, JAZ, PPD, and ZML. Studies have 
shown that members of the JAZ subgroup are involved 
in the response to abiotic stress by participating in the 
JA signal transduction pathway [51], and MeJA induces 
a defense response by activating JA-related genes, thus 
endowing pepper with tolerance to chilling injury [52]. 
And JAZs encode the plant-specific proteins that are 
involved in JA signaling and stress tolerance [53]. In this 
study, JAZ genes identified in CT (LT vs NT) were up-
regulated and were down-regulated in CS (LT vs NT) 
(Fig. 8C). MYC2 regulates downstream transcription fac-
tors in JA signal transduction, and its downregulation 
in CT is lower than that in CS. Therefore, we hypoth-
esize that α-linolenic acid metabolism and the signal 

transduction pathway of JA might be the main reasons 
for the difference in cold tolerance between CT and CS. 
Thus, the molecular mechanisms of these JA-related 
genes need to be further investigated.

TFs are important upstream regulators that are key to 
the regulation of gene expression in plants under abiotic 
stress [54, 55]. Previous studies have reported that over-
expression of bHLH92 can improve the cold tolerance of 
Arabidopsis thaliana [56]. The induction of AtERF53 [11] 
and expression of WRKY53 and WRKY54 [57] increased 
biotic and abiotic stress tolerance in transgenic Arabi-
dopsis. These TFs were identified only in CT, indicat-
ing that that they may play a role in the cold tolerance 
of wucai (Fig. 9B). Thus, future research could focus on 
the role of these transcription factors in metabolic path-
ways to understand the regulatory mechanism of genes 
in wucai.

Conclusions
In this study, through phenotypic observation and physi-
ological index measurements, we identified the cold-
tolerant (W18) and cold-sensitive (Sw-1) genotypes 
among the six wucai genotypes. Transcriptome analysis 
was used to screen DEGs related to different cold toler-
ance levels of wucai, which has a certain reference value 
for cold-tolerance breeding of wucai. DEGs in the two 
groups might response to cold stress by participating in 
starch and sucrose metabolism and glutathione metabo-
lism. The cold tolerance of CT was mainly related to 
α-linolenic acid metabolism and the JA signal transduc-
tion pathway and involved transcription factors, such as 
bHLH92, ERF53, WRKY53, and WRKY54. These find-
ings provide genetic resources and a theoretical basis for 
subsequent studies on the improvement of gene function 
and cold tolerance of wucai and also have a certain refer-
ence value for the analysis of the cold tolerance of wucai 
and other similar species of winter rapeseed (Brassica 
juncea and Brassica napus).

Methods
Plant material and treatment
We selected six wucai genotypes, ws-1, ws-2, Sw-1, Sw-3, 
W18, and Ta2, which were provided by the Vegetable 
Genetics and Breeding Laboratory of Anhui Agricul-
tural University. Seeds were sown in plug trays and then 
transplanted into pots containing substrate and vermicu-
lite with a volume ratio of 2:1. Seedlings were grown in 
a growth chamber at 25  °C (day) and 15  °C (night) with 
300  μmol·m−2·s−1 photon flux density and 70% relative 
humidity under a 16 /8 h (light/night) photoperiod. For 
cold treatment, seedlings at the 7-leaf stage were trans-
ferred to the following conditions: 9  °C (day) and 4  °C 
(night) with 300  μmol·m−2·s−1 photon flux density and 
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70% relative humidity under a 16 /8 h light/dark photo-
period, whereas the control plants were cultured under 
the normal environmental conditions mentioned above. 
After 3 d cold treatment, biochemical parameters, such 
as REC, the MDA content, PIabs, and Vj, were measured 
and compared with the control.

Measurement of MDA, REC, O2·−, and H2O2
The MDA content was assessed following the methods 
previously described by Mohammadi et  al. with minor 
modifications [58]. Fresh leaves (0.2  g) were homoge-
nized in 2  mL 10% trichloroacetic acid (TCA) and cen-
trifuged at 4000 rpm for 10 min. Then, 2-mL supernatant 
was mixed with 2  mL thiobarbituric acid (TBA) (0.6%), 
heated at 100 °C for 15 min, and cooled at room tempera-
ture. The absorbance of each aliquot was measured at 
450, 532, and 600 nm. The MDA content was calculated 
using the equation:

MDA (μmol·g−1 FW) = 6.45 × (A532 − A600) − 0.56 × A4

50.
Relative electrolyte leakage was determined according 

to the method reported by Bajji et al. with minor modi-
fications [59]. The leaves were perforated with a hole 
punch with a radius of 9.5 mm. Three discs were placed 
in a 20 mL tube containing 10 mL of ultrapure water and 
then placed in a thermostated water bath at 25  °C for 
30  min. After this, the conductivity (EC1) of water was 
measured using a Thermo OrionSTARA HB conductivity 
meter (Thermo Orion., Waltham, MA, USA). The tube 
was heated in boiling water for 30  min, then cooled to 
room temperature, and the conductivity (EC2) was meas-
ured again. The final REC was equal to the percentage of 
EC1/EC2.

The O2·− generation rate and the H2O2 content were 
measured using Solarbio reagent kits (Cat#BC3595 and 
Cat#BC1290, Beijing Solarbio Science & Technology Co. 
Ltd, Beijing, China).

Analysis of Chlorophyll Fluorescence Parameters
PIabs = (RC/ABS) • [φPo/(1–φPo)] [ψo/(1–ψo)] and is a per-
formance index with an absorption basis. Vj = (Fj–Fo)/
(Fm–Fo), which is the relative variable fluorescence inten-
sity at the J-step. To measure PIabs and Vj, the leaves were 
dark-adapted for 30 min by special clips before being illu-
minated with saturating light (1 s), after which they were 
measured using a continuous excitation fluorometer 
Pocket Plant Efficiency Analyzer (Pocket PEA, Hansat-
ech, UK).

RNA extraction, cDNA library construction, and sequencing
A total of four group samples [two materials (leaves 
of W18 and Sw-1) under two treatments (control and 
10 °C/4 °C 24 h)] with three biological replications were 

used for RNA-seq. The total RNA of samples mentioned 
above was extracted using a mir-Vana miRNA isolation 
kit (Ambion, TX, USA) according to the manufacturer’s 
instructions. The total RNA was quantified using an 
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 
Clara, CA, USA). Samples with an RNA Integrity Num-
ber ≥ 7.0 and 28S/18S ratio ≥ 0.7 were subjected to sub-
sequent analysis. The libraries were constructed using 
the TruSeq Stranded mRNA LT Sample Prep Kit (Illu-
mina, San Diego, CA, USA) following the manufacturer’s 
instructions. Then, these libraries were sequenced on the 
Illumina HiSeqTM 2500 platform (BiomarkerBiotech, 
Beijing, China) to generate 125  bp/150  bp paired-end 
reads.

Sequence assembly, annotation, and identification 
of the DEGs
Clean reads were obtained by removing adaptor 
sequences, more than 10% N bases, and low quality 
(Q ≤ 20) reads with more than 50% bases. The reads 
were mapped to the B. rapa reference genome [60] by 
hisat2 [61]. Read counts per gene were expressed as 
FPKM, and unigene abundance differences between the 
samples were calculated based on the ratio of the FPKM 
values and false discovery rate (FDR). DESeq software 
[62] was used to standardize the counts of each sample 
gene (use basemean value to estimate the expression), 
calculate the difference multiple, and use NB (negative 
binomial distribution test) to test the difference signifi-
cance of the reads number. Finally, screen the differ-
ential protein coding genes according to the difference 
multiple and difference significance test results. Genes 
with FDR ≤ 0.05 and |log2 (Fold Change) |≥ 2 were con-
sidered DEGs.

Enrichment analysis
Hierarchical clustering of the DEGs was analyzed by 
HemI software [63]. Statistical enrichment of the DEGs 
was carried out in KEGG pathways using KOBAS soft-
ware [64], and log2 (Fold Change) values were used in the 
gene expression heatmap.

Measurement of carbohydrate, glutathione metabolism 
products, and MeJA content
The contents of sucrose, fructose, and starch were 
determined by anthrone colorimetry [65] with minor 
modifications. Glucose, GSH, and GSSG contents were 
measured using a biochemical reagent kit (Cat#BC2500, 
Cat#BC1175, and Cat#BC1180, respectively; Beijing 
Solarbio Science & Technology Co. Ltd, Beijing, China). 
MeJA was determined by enzyme-linked immunosorbent 
assay.
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Identification of transcription factors
TFs were identified by analyzing InterProScan domain 
patterns in sequences with high coverage, and the sensi-
tivity was analyzed using PlantTFcat tools [66].

qRT‑PCR validation
A total of 15 transcripts were selected to verify the RNA-
seq analysis. The transcript-specific primers used in this 
study were designed using Primer6 and were then syn-
thesized by General Biosystems (Chuzhou, China). The 
primers used for qRT-PCR are listed in Table  S6. The 
qRT-PCR reactions were performed with the AceQ qPCR 
SYBR GREEN Master Mix (Vazyme Biotechnology Co., 
Nanjing, China). BnaActin [21] was selected as the inter-
nal standard to calculate the relative expression levels as 
follows: FC = 2−△△CT [67]. Three biological repeats for 
each sample for each gene were performed.
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