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Abstract

Ethanol consumption is negatively associated with antiretroviral therapy (ART) adherence

and general health in HIV positive individuals. Previously, we demonstrated ethanol-medi-

ated alterations to metabolism of elvitegravir (EVG) in human liver microsomes. In the

current study, we investigated ethanol influence on the pharmacokinetic and pharmacody-

namic interactions of EVG in HIV infected monocytic (U1) cells. U1 cells were treated with

5 μM EVG, 2 μM Cobicistat (COBI), a booster drug, and 20 mM ethanol for up to 24 hours.

EVG, HIV p24 levels, alterations in cytochrome P450 (CYP) 3A4, MRP1, and MDR1 protein

expressions were measured. Presence of ethanol demonstrated a significant effect on the

total exposures of both EVG and EVG in combination with COBI. Ethanol also increased the

HIV replication despite the presence of drugs and this elevated HIV replication was reduced

in the presence of MRP1 and MDR1 inhibitors. Consequently, a slight increase in EVG con-

centration was observed in the presence of MRP1 inhibitor but not with MDR1 inhibitor. Fur-

thermore, CYP3A4, MRP1 and MDR1 protein levels were significantly induced in treatment

groups which included ethanol compared to those with no treatment. In summary, these find-

ings suggest that Ethanol reduces intra cellular EVG exposure by modifying drug metabolism

and transporter protein expression. This study provides valuable evidence for further investi-

gation of ethanol effects on the intracellular concentration of EVG in ex vivo or in vivo studies.

Introduction

Highly active antiretroviral therapy (HAART) regimen consisting of integrase strand transfer

inhibitors (INSTI), nucleoside (or nucleotide) reverse transcriptase inhibitors (NRTI), nonnu-

cleoside reverse transcriptase inhibitors (NNRTI), and protease inhibitors (PI) dramatically

transformed HIV infection from fatal to a chronic but manageable disease. Among different

classes of drugs, INSTIs such as elvitegravir (EVG), dolutegravir or raltegravir have become

‘standard’ drugs in the recommended regimens owing their superior efficacy and safety in

clinical trials and retrospective evaluations[1, 2]. While highly effective, a major limitation of
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HAART therapy is its failure to eradicate the virus from cells even after years of therapy. Intra-

cellular presence of EVG is a requisite for its action on its pharmacological target[3], while HIV

therapeutics are optimized based on plasma pharmacokinetics[4]. Owing to most HAART ther-

apeutic intracellular targets, it is of utmost importance to understand the intracellular pharma-

cokinetics of these essential drugs. This was further substantiated by several clinical studies

which demonstrated a weak or no correlation of plasma INSTI, NRTIs or PIs concentration

with antiviral efficacy in the treatment of HIV infected patients[5–8].

Intracellular EVG concentration is influenced by several factors including physicochemical

properties of the drug, pharmacokinetic properties such as protein binding, hepatic metabo-

lism, drug transporters and drug-drug interactions. Since EVG is predominantly metabolized

by cytochrome P450 (CYP) 3A4[9] a strong CYP3A4 inhibitor such as cobicistat (COBI) is co-

administered as a booster to increase EVG bioavailability. It was reported that EVG is a weak

inducer of CYP3A4 and this effect can be countered by the presence of COBI in the liver[10].

But how EVG-drug interactions change the CYP3A4 induction at the cellular level has not

been established. The intracellular antiretroviral drug concentrations are also dictated by the

activity of efflux transporters[11, 12]. Several recent studies revealed that antiretroviral drugs

can act as substrates and inducers for membrane transporters especially for efflux transporters

[13, 14], which explain, at least in part, the reported high intracellular drug variability in HIV

positive patients[15, 16]. Most of the recommended HAART therapy consists of multiple

drugs and many of these drugs are known to modulate transporters. Moreover, concurrent use

of other prescribed medication or drugs of abuse increases the complexity of the problem.

Ethanol, the most commonly consumed legal drugs in the world, is at low levels primarily

metabolized by alcohol dehydrogenase (ADH), but at higher alcohol concentration both ADH

and CYP2E1 are requires for metabolism[17]. Previously, we reported that exposure of ethanol

increases the expression of both multidrug resistance protein 1 (MRP1) and CYP enzymes in

U937 macrophages[18, 19]. Additionally, we reported altered CYP2E1 and CYP3A4 mRNA

expression levels in chronic treatment of both ethanol and HIV protease inhibitors darunavir

and ritonavir in macrophages[20]. At the systemic level, ethanol consumption (0.7 g/kg) with

600 mg of abacavir, an NRTI used in the treatment of HIV, increases abacavir total exposure

by 41%, maximum concentration by 15% and half-life by 26% in 25 male HIV-infected indi-

viduals[21]. However, the effect of ethanol on the intracellular HIV drug concentration or effi-

cacy in the clinical setting is not documented to date.

Since the intracellular concentrations of an active drug moiety determines the virologic

suppression achieved in the body, understanding the drug interactions that lead to fluctuations

in the intracellular drug concentrations are critical to improve treatment outcomes. However,

there is a substantial knowledge gap on the impact of ethanol and HIV drug interactions at the

cellular level, especially in monocytic cells. Monocytes are important targets of HIV-1 infec-

tion, and ART concentrations, especially PIs, is suboptimal in monocytes[22]. Further, HIV-

infected monocytes infiltrate into the brain and spread the virus in perivascular macrophages

and microglia that eventually form sanctuary sites for HIV-1 in the brain[23, 24]. In this study

we examined the effect of acute exposure of ethanol and potential mechanism on the intracel-

lular pharmacokinetics of EVG and its effectiveness on the viral suppression in HIV infected

monocytic (U1) cells.

Materials and methods

Cell culture and treatments

HIV-infected U937 cell line—the U1 cells were obtained through the NIH AIDS Reagent Pro-

gram (Germantown, MD). U1 cells were cultured in Roswell Park Memorial Institute (RPMI)

Alcohol effects on concentration of elvitegravir and HIV-1 replication in monocytes

PLOS ONE | DOI:10.1371/journal.pone.0172628 February 23, 2017 2 / 14



1640 media (Corning Inc, Tewksbury, MA) supplemented with 10% fetal bovine serum

(Atlanta biologicals, Atlanta, GA), 1% L-glutamine, nonessential amino acid solution, sodium

bicarbonate, and penicillin-streptomycin solution. Cells were plated at 0.9x106 cells/well of

6-well plates and were differentiated into macrophages with 100 nM Phorbol 12-myristate

13-acetate (PMA) for 72 hours prior to treatment. On the day of experiment, medium was

removed and cells were washed twice with PBS and treated with media containing clinically

relevant concentrations of (a) EVG (5 μM), (b) EVG+COBI (2 μM), (c) EVG+ethanol (20

mM), (d) EVG+COBI+ethanol. Ethanol-treated plates were placed in an incubator that

humidified with 20 mM ethanol to prevent any loss of ethanol due to evaporation.

At predetermined time points (0.5, 1, 3, 6, 12, and 24 hours), cells were collected for con-

centration-time profile experiments and medium was collected for HIV p24 measurement. At

each time point, cells were washed twice with PBS and incubated with 400 μL of cold Radioim-

munoprecipitation assay (RIPA) buffer for 10 minutes and the cell lysates were collected. For

evaluation of the influence of efflux transporters, cells were incubated with either EVG+COBI

+ethanol and MK-571 (MRP1 inhibitor) at 50 μM or PSC-833 (multidrug resistance1

(MDR1)) inhibitor at 5 μM for 24 hours before collecting cell lysate and media samples.

LC-MS/MS analysis of elvitegravir

A previously reported LC-MS/MS method was used to quantitate EVG in cell lysates, culture

medium, and plasma samples used in this study[25]. Calibrants (0.003, 0.006, 0.013, 0.025,

0.05, 0.1, 0.15, 0.25, 0.5, and 1 μM) were prepared by serial dilution approach with the corre-

sponding working solutions. EVG extraction from the calibrants and study samples was per-

formed by adding 3-volumes of cold acetonitrile which contained a 138 nM ritonavir (RTV) as

internal standard (IS). All samples were centrifuged at 8000 rpm for 10 minutes at 4˚C and

clear supernatants were transferred into vails with low-volume inserts for LC-MS/MS analysis.

Samples (5 μL) were injected onto a Waters Xterra1 MS C18 Column (125Å, 3.5 μ, 4.6 X 50

mm) (Waters Corporation, Milford, MA) attached to a Shimadzu Nexera HPLC system cou-

pled with a tandem mass spectrometer (Triple Quad 5500 from AB SCIEX, Framingham, MA)

with electron spray ionization in positive mode. Data was acquired and analyzed with the Ana-

lyst software package (ver.1.6.2, AB SCIEX, Framingham, MA). Concentrations were quanti-

fied by the Quantitative Analysis module (Analyst ver 1.6.2, AB SCIEX, Framingham, MA)

from a standard curve fitted with a linear-regression model with a weighting factor of 1/x2.

HIV p24 ELISA

Influence of the combination of drugs on HIV replication was determined by measurement of

HIV p24 levels in the cell culture medium. After initial screening of p24 levels at different time

points, we decided to use the 24 hour samples from all the experiments for p24 quantitation

which provided consistent optical density (OD) values. p24 antigen production was detected

per manufacturer’s protocol (ZeptoMetrix Corp, Buffalo, NY). The concentration of p24 in the

samples was quantitated by comparing with standards’ absorbance values and reported in per-

centage of control. The vehicle-treated samples were used as control and set as 100%.

In-Cell Western analysis

Detecting low levels of protein expression in native cells using traditional Western blotting

can be difficult and therefore some studies successfully used In-Cell Western blotting (ICW)

to quantify minor alterations in protein expression[26, 27]. We used manufacturer recom-

mended (LI-COR Biosciences, NE) protocol in this study to perform ICW. U1 cells (0.03x106)

were plated in sterile 96-well plates and differentiated with 100 nM PMA for 72 hours at 37˚C
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in a humidified incubator while maintaining 5% CO2 air flow. On the day of treatment, each

well was flushed with sterile PBS (250 μl) followed by addition of a 250 μl RPMI media con-

taining various combinations of drugs previously mentioned. These plates were incubated for

24 hours prior to fixation. Medium from each well was removed by careful aspiration and cells

were immediately fixed by addition of cold (-20˚C) methanol (200 μl) followed by incubation

of the plate at ambient temperature for 10 minutes with gentle shaking. Following incubation,

methanol was carefully removed and wells were gently rinsed thrice with PBS (200 μl). After

the last rinse, blocking was done by adding a 150 μl of Li-Cor blocking buffer and incubating

the plate at room temperature with gentle shaking for 1.5 hours. Meanwhile, the primary anti-

bodies were diluted in Li-Cor Odyssey blocking buffer using following dilutions: 3A4 (Rabbit

Pab, Abcam # ab3572) 1: 200; MRP1 (mouse mab, Millipore # MAB4100) 1:50; MDR1(mouse

mab, Millipore # MAB4334) 1:50; β-Actin (Mouse mAb Cell Signaling # 3700) 1:2000; β-Actin

(Rabbit mAb Cell Signaling # 4970) 1:200. After blocking, 50 μl of desired antibody added to

test wells and incubated overnight at 4˚C with gentle shaking. On the following day, wells were

washed five times with 200 μl PBS containing Tween-20 (0.1%) for 5 minutes at room temper-

ature with gentle shaking. Secondary antibodies, goat anti-Mouse Mab (Li-Cor # 926–68170)

and goat anti-Rabbit Mab (Li-Cor # 827–08365) were diluted in 1:1000 ratio in blocking buffer

(0.2% -Tween-20, 0.01% SDS). After the final wash, wells were incubated with 50 μl of second-

ary antibody mixture for 1 hour in the dark at room temperature. After five washes, plates

were scanned using Li-Cor Odyssey1 SA and analyzed by using Image Studio V4.0 software

(LI-COR Biosciences, NE). Background was subtracted from control wells and target protein

signal intensities from triplicate wells were normalized to their respective β-actin intensities.

Signal intensities were expressed as percent of relative responses (mean ± standard errors of

mean) compared to vehicle controls.

Pharmacokinetic and statistical analysis

The concentration-time profiles were analyzed by non-compartmental modeling using Phoe-

nix WinNonlin 6.4 (Certara L.P., Princeton, NJ). Area under the curve (AUCtot) was calculated

by the log trapezoidal rule by log-linear regression. The maximum concentration achieved

(Cmax) and the time to maximum concentration (Tmax) were determined from the concentra-

tion-time profiles. Effect of ethanol on EVG AUCtot and Cmax were compared using unpaired t

test with Welch’s correction. Tmax values were compared using Wilcoxon rank-sum test. All

other data involving more than two groups were compared by one way ANOVA and multiple

comparisons were performed by Tukey’s post hoc test. ANOVA data was presented along with

multiplicity adjusted p values for each comparison. All the statistical analyses were done by

Prism 6 (GraphPad Software, La Jolla, CA). A p-value� 0.05 among treatment groups was

considered significant.

Results

Intracellular ethanol-drug interaction

The mean intracellular concentration-time curve for EVG, EVG co-exposed with COBI or etha-

nol, and EVG co-exposed with both COBI and ethanol are shown in Fig 1 and Table 1. The mean

exposure of (AUCtot, μM�h/mg) of EVG alone (1733 ± 122) and EVG+COBI (40207 ± 3031)

were decreased to 1733 ± 122 and 40207 ± 3031, respectively, when exposed along with ethanol.

The difference is statistically significant (Table 1) and shows 39% (EVG vs EVG+EtOH t(4) =

2.794, p = 0.0491, student t test) and 26% (EVG+COBI vs EVG+COBI+EtOH t(7) = 3.413,

p = 0.0112) decrease due to ethanol exposure. The maximal concentrations (Cmax) after treatment

with EVG alone and EVG+COBI were 82 ± 4 μM and 1896 ± 162 μM, respectively. When cells

Alcohol effects on concentration of elvitegravir and HIV-1 replication in monocytes
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were co-treated with EVG and EVG+COBI combinations along with ethanol, Cmax was found to

be 61 ± 5 μM and 1756 ± 53 μM, respectively. While ethanol decreased the maximal EVG concen-

trations (Cmax) by 26% (EVG vs EVG+EtOH t(5) = 3.587, p = 0.0158) after treatment with EVG

alone, it had a lesser impact (7%) on EVG Cmax when co-administered with COBI. The median

Tmax (hours; h) values for EVG and EVG along with COBI were found to be 12 h, and ethanol

exposure demonstrated 6 h for EVG and 18 h for EVG+COBI exhibiting no significant influence

of ethanol co-treatment on Tmax of EVG.

Ethanol and elvitegravir interaction on HIV-1 replication

To understand the pharmacodynamic influence of ethanol and drug interaction, HIV-1 repli-

cation was indirectly assessed by measuring HIV p24 protein levels after treatment (24 hours).

Fig 1. Concentration-time profiles for the accumulation of elvitegravir in U1 cells with or without

cobicistat and ethanol. Results expressed as means ± SEM of the cellular concentrations measured (μM/mg of

protein). EVG, Elvitegravir; COBI, Cobicistat; EtOH, ethanol.

doi:10.1371/journal.pone.0172628.g001

Table 1. Pharmacokinetic parameters of elvitegravir in U1 cells. AUCtot, area under the plasma concentration-time curve from time 0 to 24 hours; Cmax,

measured maximum plasma concentration; Tmax, time to reach peak concentration. *p< 0.05 compared to EVG, #p<0.05 compared to EVG+COBI. Data

expressed as mean ± SEM from 4–5 independent experiments for AUCtot and Cmax, and as median (range) for Tmax. EVG, Elvitegravir; COBI, Cobicistat;

EtOH, ethanol.

Pharmacokinetic parameters EVG EVG+COBI EVG+EtOH EVG+COBI+EtOH

AUCtot (μMXh/mg) 1733 ± 122 40207 ± 1031 1055 ± 210* 34734 ± 1229#

Cmax (μM) 82 ± 4 1896 ± 162 61 ± 5* 1756 ± 53

Tmax (h) 12 (11.5) 12 (18) 18 (18) 6 (6)

doi:10.1371/journal.pone.0172628.t001
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Data are presented in Fig 2. Ethanol exposure alone had a 35% increase compared to vehicle-

treatment (F(5,16) = 30.20, p = 0.0005, one-way ANOVA). Both EVG and EVG+COBI reduced

the p24 levels by 30% and 40%, respectively, which is statistically significant compared to both

vehicle (p = 0.0054 and p = 0.0003 respectively) and ethanol treatment groups (p<0.0001 and

p<0.0001 respectively). Similarly, co-exposing cells to EVG and EVG+COBI along with etha-

nol enhanced p24 levels by 31% and 19%, respectively. This increase is statistically significant

when compared to EVG (p< 0.0001) and EVG+COBI (p = 0.0055) groups but not with the

vehicle treatment.

Ethanol and EVG effects on CYP3A4, MRP1, and MDR1 protein

expression

In-Cell Western blot analysis was performed to understand the mechanism for alterations in

intracellular PK parameters of EVG in response to ethanol exposure. CYP3A4, MRP1, and

MDR1 proteins expression were detected, and the analyzed results are depicted in Fig 3,

respectively. EVG alone or EVG treatment along with COBI showed no change in expression

of CYP3A4; however, ethanol alone or in combination with EVG and EVG+COBI exhibited a

significant induction of CYP3A4 compared to control (F(5,51) = 26.73, p<0.0001, one-way

ANOVA, Fig 3A). No significant difference was seen in ethanol exposed EVG or EVG+COBI

combination from ethanol alone treatment.

Fig 2. Alterations in HIV replication of U1 cells after drug exposure. PMA-differentiated U1 cells

were treated with indicated drugs for 24 hours and HIV replication was determined using an ELISA for p24

levels in culture media. *p< 0.05 compared to control, #p<0.05 compared to EtOH. ^p<0.05 compared to

EVG, and $p<0.05 compared to EVG+COBI. Values were mean ± SEM from 3 individual experiments. EVG,

Elvitegravir; COBI, Cobicistat; EtOH, ethanol.

doi:10.1371/journal.pone.0172628.g002
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Similarly, EVG or EVG+COBI treatments showed no effect on MRP1 expression. Ethanol

upregulated MRP1 protein levels when treated alone or in combination with EVG or EVG+

COBI compared to control (F(5,50) = 28.85, p<0.001, one-way ANOVA, Fig 3B). EVG when

exposed along with ethanol demonstrated an attenuation of ethanol-induced increase of MRP1

levels (p = 0.0043). Moreover, EVG exposure along with COBI and ethanol showed a decreasing

trend in of ethanol-induced MRP1 expression but this was not statistically significant.

While drugs alone (EVG or EVG+COBI) showed no influence on the expression of MDR1,

ethanol treatment both in the absence and presence of EVG exhibited a significant induction

of MDR1 compared to control (F(5,30) = 9.411, p<0.028, one-way ANOVA, Fig 3C). The

impact of ethanol co-exposure with EVG and COBI was not statistically significant from con-

trol. No significant change was observed in EVG and EVG+COBI combinations that are co-

treated with ethanol compared to ethanol alone exposure.

Effect of MRP1 and MDR1 inhibition on intracellular EVG concentration

Since the induction of CYP3A4, MRP1, and MDR1 induction in response to ethanol treatment

(Fig 3), we tested the possibility of MRP1 and MDR1 transporter effects on EVG availability.

For this experiment, ethanol co-treatment with EVG and COBI as control was chosen, which

represents the influence of both ethanol and COBI. The cells that are exposed to the MRP1

inhibitor, MK-571 demonstrated a 12% increase in the EVG concentration compared to con-

trol and is statistically significant (F(2,26) = 5.461, p = 0.031, one-way ANOVA, Fig 4). In con-

trary, the MDR1 inhibitor, PSC-833 showed no significant effect on intracellular EVG

concentration.

Effect of MRP1 and MDR1 inhibition in HIV replication

We determined HIV p24 levels in the presence of MK-571 or PSC-833 while keeping ethanol

co-exposure with EVG and COBI as constant to observe the influence of these inhibitors on

the HIV replication. As shown in Fig 5, ethanol increased the p24 levels by 36% compared to

control (F(6,20) = 18.89, p<0.0001, one-way ANOVA) but MK-571 or PSC-833 did not show

Fig 3. Induction of CYP3A4, MRP1, and MDR1 protein expression was analyzed by In-Cell Western (ICW) assay. Top section in each panel is a

respective representative immunoblot of CYP3A4, MRP-1 or MDR1. Bottom plot in each panel demonstrates respective mean CYP3A4, MRP-1 or MDR1

fluorescence signal intensities of triplicates and error bars represent SEM values. *p< 0.05 compared to control, #p<0.05 compared to EVG, and ^p<0.05

compared to EVG+COBI, $p<0.05 compared to EtOH. Values were mean ± SEM from 3 individual experiments. EVG, Elvitegravir; COBI, Cobicistat; EtOH,

ethanol.

doi:10.1371/journal.pone.0172628.g003
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any effect on the p24 levels. PSC-833 in combination with EVG, COBI, and ethanol showed a

decrease in p24 levels compared to vehicle or PSC-833 alone control (p<0.05). However, both

MK-571 and PSC-833 in the presence of EVG, COBI, and ethanol failed to show significant

change when compared to EVG, COBI, and ethanol combination.

Discussion

Optimum intracellular concentration is critical to the success of ART in HIV treatment and is

affected by several external or internal dynamics. However, only a few clinical studies investi-

gated the effects of ethanol on ART by measuring the plasma pharmacokinetics[21, 28, 29]. In

general, it is conceived that small molecules that interact with ethanol dehydrogenase or

CYP2E1 and are likely to be influenced by ethanol exposure. This interaction could lead to

clinically significant changes in the pharmacokinetic properties of those drugs[30]. However,

the influence of ethanol drinking on the intracellular concentration of ART or its effects on the

pharmacodynamics is relatively unclear. Therefore, the current study investigated the intracel-

lular drug-drug interactions between EVG and ethanol in combination with or without COBI

in HIV-infected monocytic (U1) cells. Herein, we report a decreased EVG AUC and Cmax val-

ues and increased HIV replication in the presence of ethanol. In addition, mechanistic studies

revealed that ethanol induced alterations in EVG cellular pharmacokinetics and associated

effect on HIV replication is, at least partially, due to induction of CYP3A4, MRP1, and MDR1

proteins.

EVG is required to penetrate the HIV-infected cell to exert its antiviral activity. Usually,

ART plasma concentration is used to assess the intracellular drug level and to understand

Fig 4. Intracellular elvitegravir concentration in the presence of MRP1 or MDR1 inhibitors and

cobicistat + ethanol. EVG quantified from cell lysates using LC MS/MS after 24 hours treatment with

indicated drugs. Data are expressed as mean ± SEM from 3 independent experiments. *p< 0.05 compared to

EVG+COBI+EtOH (Control). EVG, Elvitegravir; COBI, Cobicistat; EtOH, ethanol.

doi:10.1371/journal.pone.0172628.g004
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overall intracellular drug disposition[31] Currently, there is no information on EVG uptake

into cells and the relationship between its plasma and cellular concentrations. Nonetheless,

evaluation of therapeutic levels in the cells based on plasma concentrations may not be accu-

rate especially for integrase inhibitors. Like nucleoside/nucleotide reverse transcriptase inhibi-

tors, intracellular half-life of integrase inhibitors is critical to achieve antiviral effect[32]. For

instance, an initial Phase III study of Isentress1 (raltegravir), an integrase inhibitor show that

400 mg twice-daily is more effective than 800 mg once daily[8]. Moreover, considering high

protein binding and poor cell penetration capability (~5% of plasma concentration) of inte-

grase inhibitors[33, 34], small changes as a result of co-exposure of ethanol may greatly influ-

ence the intracellular concentration of EVG. Therefore, it is worth noting that the observed

considerable influence of ethanol on the extent of EVG overall exposure irrespective of COBI

presence may have impact on clinical outcomes in HIV treatment.

Our findings that ethanol causes an increase in HIV replication is in agreement with previ-

ously reported observations[35–37]. EVG or COBI-boosted EVG displayed a significant virici-

dal activity. However, this activity is not as pronounced as EVG effects in HIV-infected

patients or on freshly infected cells[38, 39]. The inherent constitutive expression of HIV in the

U1 cells could be the likely reason for this reduced effect of EVG in these experiments[40].

However, ethanol exposure increases HIV p24 levels despite the presence of EVG or EVG and

COBI. This increase is attributable to either reduced intracellular drug exposure as described

Fig 5. Changes in HIV replication of U1 cells after drug exposure. PMA-differentiated U1 cells were

treated with indicated drugs for 24 hours and HIV replication was determined using an ELISA for p24 levels in

culture media. *p< 0.05 compared to control, #p<0.05 compared to PSC-833. Values were means ± SEM

from 3 individual experiments. EVG, Elvitegravir; COBI, Cobicistat; EtOH, ethanol.

doi:10.1371/journal.pone.0172628.g005
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above or by stimulating HIV replication through other mechanisms. For example, a recent

study showed that ethanol enhances HIV infection in cord blood monocyte-derived macro-

phages by inhibiting anti-HIV microRNA and interferon alpha expression[35]. This important

finding will require further investigation using HIV-infected primary macrophages or clinical

samples under both acute and chronic alcohol consumption conditions.

The intracellular concentration of drugs is majorly controlled by passive transport, active

uptake, and efflux from the cells[31]. EVG is a substrate for CYP3A4, and this drug metaboliz-

ing enzyme is present in the monocytic cells[18, 41]. Ethanol alone or when co-administered

with EVG and COBI upregulated CYP3A4 protein levels. This observation is consistent with

the reported induction of CYP3A4 mRNA and protein in monocytes[18]. Similarly, recently

we reported decreased microsomal CYP3A efficiency by ethanol in metabolizing EVG[25].

Of interest, other ART drugs such as PIs are also metabolized by CYP3A4. When purified

CYP3A4 enzyme exposed to 20 mM ethanol and PIs at different concentrations, ethanol alters

spectral binding as well as inhibitory properties of PIs with the enzyme[42]. In addition to

modifying above properties ethanol also decreases the catalytic efficiency of the CYP3A4 to

metabolize nelfinavir[43]. These effects of ethanol are in corroboration with other studies that

used animal models and in vitro cell lines to demonstrate that in addition to CYP2E1 ethanol

markedly influences CYP3A4 [44–46]. Taken together, these results suggest that ethanol can

alter CYP3A4 mediated EVG metabolism by modulating CYP3A4 at different points including

mRNA, protein or functional level.

Reported evidence indicates that ART intracellular levels are also dependent on MRP1 and

MDR1 or other efflux transporters expressed in monocytes[47, 48]. Therefore, we tested the

hypothesis that ethanol co-administration with EVG modulates these molecular targets, which

in turn, influences intracellular level of EVG. Similarly, we have previously reported upregula-

tion of MRP1 mRNA as a result of ethanol exposure to U937 monocytic cells[18]. Our current

observations of induction of MRP1 by ethanol are in agreement with our earlier studies. Be-

sides, a published study has demonstrated induction of CYP3A4 and MDR1 mRNA in human

adenocarcinoma LS180 cells by EVG[49]. In contrary, we observed induction of these proteins

by EVG only with the combination of ethanol but not by EVG alone. This discrepancy may

arise due to comparison of mRNA expression with protein or use of different cell model sys-

tems in these studies. For instance, phenotypically different subsets of macrophages M1 and

M2 exhibited significant variations in intracellular concentrations of lopinavir with elevated

levels of MDR1 expression in M2 type[50]. Regardless, when cells were exposed to MRP1 and

MDR1 inhibitors along with EVG, COBI, and ethanol combination, EVG intracellular con-

centration was slightly increased but no noticeable impact was observed on HIV replication.

These results suggest that these efflux transporters may not be solely responsible for ethanol-

mediated effects on intracellular EVG concentration.

In conclusion, our findings clearly suggest modulation of intracellular concentration

of EVG and HIV-1 replication in HIV-infected U1 monocytic cells, perhaps through drug

efflux transporter MRP1 and metabolic enzyme CYP3A4. The findings of this study could be

strengthened by providing further evidence of the role of MRP1 and CYP3A4 using functional

assays in HIV-infected primary macrophage. Antiretroviral drug-drug interactions can also be

led by other CYPs and transporters and ethanol can induce other molecular targets[14] that

may indirectly influence EVG concentration in the cells. Overall, the findings from this study

suggest that ethanol-drug interactions may have clinically relevant effects on EVG containing

ART regimens for HIV treatment. These important in vitro findings should guide the future in

vivo or ex vivo drug-drug interaction studies to understand the effects of ethanol on intracellu-

lar concentration of this integrase inhibitor.
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