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Abstract

Functional magnetic resonance imaging (fMRI) is a powerful tool for the in vivo study of the pathophysiology of brain
disorders and disease. In this manuscript, we propose an analysis stream for fMRI functional connectivity data and apply it to
a novel study of Alzheimer’s disease. In the first stage, spatial independent component analysis is applied to group fMRI
data to obtain common brain networks (spatial maps) and subject-specific mixing matrices (time courses). In the second
stage, functional principal component analysis is utilized to decompose the mixing matrices into population-level
eigenvectors and subject-specific loadings. Inference is performed using permutation-based exact logistic regression for
matched pairs data. The method is applied to a novel fMRI study of Alzheimer’s disease risk under a verbal paired associates
task. We found empirical evidence of alternative ICA-based metrics of connectivity when comparing subjects evidencing
mild cognitive impairment relative to carefully matched controls.
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Introduction

Functional magnetic resonance imaging (fMRI) is a driving

force in the field of brain mapping and cognitive neuroscience. It

has been used as a noninvasive tool for describing and quantifying

normal and abnormal brain function through the theory of neuro-

vascular coupling. Functional connectivity is the study of

correlations in measured neural signals [1]. Our study is motivated

by the fact that differences in functional connectivity have been

proposed to be associated with Alzheimer’s disease [2–4]. In this

manuscript, our objective is to examine whether independent

component analysis (ICA)-based analysis of task-related fMRI

presents evidence of differences in connectivity between subjects

with mildly cognitive impairment and carefully matched controls.

We approach our study of fMRI by simultaneously analyzing all

voxels. This is in contrast to regional or seed-based approaches

[3,5,6] that restrict attention to carefully chosen locations. Such

approaches require strong assumptions on the choice of seeds or

parcellation used to define regions. Hence voxel-wise approaches

are important complementary procedures. However, given the

volume of voxels under study, flexible yet parsimonious models are

required.

Independent component analysis is a factor-analytic approach

that has been frequently utilized for the analysis of functional

neuroimaging data [7–10]. We focus entirely on noise-free group

spatial independent component analysis. To summarize, the

model is noise free by not assuming a residual error term. It is

spatial, by assuming that spatial independent components (ICs)

drawn from statistically independent distributions mix over time

via fixed effects to be estimated. And it is standard group ICA,

achieving parsimony by assuming common spatial ICs across

subjects yet different temporal mixing matrices. These assumptions

are the de facto starting point for group factor analysis

investigations of fMRI data.

Functional principal component analysis (FPCA) is a common

method to capture the main directions of variation and dimension

reduction in a collection of functions [11–13]. We use FPCA to

identify the population-level eigenvectors that characterize the

geometric directions of variation of the time courses acquired from

ICA. FPCA summarizes the subject-specific loadings, called

principal component scores, by projecting subject curves on the

basis of principal components [13]. PC scores can be used in

functional regression, so-called Functional principal component

regression (FPCR), to assess the effect of fMRI temporal patterns

on diagnostic classification.

We propose and implement a use of FPCA on temporal mixing

matrices within the context of exact permutation-based condition-

al logistic regression to analyze risk status for mild cognitive

impairment (MCI) in a matched-pairs study. That is, this

manuscript considers investigating population variation in brain

networks by summarizing temporal mixing matrices using FPCA

in conditional logistic regression.
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Materials and Methods

Sample
The data derived from an ongoing study of Alzheimer’s disease

progression. This study followed roughly two hundred subjects,

such that 100 were at high familial risk for AD while 100 were at

low risk. At-risk participants were drawn from families enrolled in

an ongoing genetic linkage study, developed at the Johns Hopkins

University as part of the NIMH Alzheimer’s Disease Genetics

Initiative [14,15]. The at-risk participants all have a parent with

Alzheimer’s disease, confirmed via autopsy, and at least one

additional first degree relative with a clinical diagnosis of probable

Alzheimer’s disease. All subjects were at least 50 years of age, free

of memory complaints scored in the normal range on the

Telephone Interview for Cognitive Status (TICS) [16]. None

were on treatment for cognitive impairments. Control participants,

who were primarily spouses (65%), had no affected parents or first

degree relatives and were free of cognitive complaints or

treatments. The study was approved by the Johns Hopkins

Institutional Review Board and all participants provided written

informed consent. Further details on the study can be found in

[15].

The study was comprised of three visits, each roughly five years

apart. The data for this manuscript come from the second visit.

Until the recent completion of the third wave, 13 subjects of the

total (at-risk or control) had been declared as mildly cognitive

impaired (MCI). These 13 control subjects were matched to cases

via age, gender and education. Therefore, our analysis considers

26 subjects, of which 13 showed no evidence of cognitive decline

and 13 were declared as MCI. MCI was declared based on the

change in their performance on cognitive testing between visits 1

and 2. For each component of each cognitive test, we calculated

the mean change in score and standard deviation in the entire

sample. Those whose scores declined by at least 2 standard

deviations from the group mean change on any of these

components were classified as MCI decliners. Three individuals

declined on the Wechsler Memory Scale (third edition) Logical

Memory Test, five on the Wechsler Memory Scale Verbal Paired

Associates Test, two on the Wechsler Memory Scale Visual

Reproduction, three on the Bushke Selective Reminding Test, four

on the Benton Visual Retention Test, and one on the Clock

Drawing task. This group was made up of seven males and six

females, had a mean age of 68.9 years (SD = 5.2) and a mean

education of 14.7 years (SD = 4.3). Eighty-five percent of this

group had no ApoE4 allele, while 15% had one ApoE4 allele.

Table 1 summaries the demographic information for both MCI

and controls.

fMRI Scanning Protocol
Three waves of neuroimaging data collection have been

completed. The fMRI data used in the analysis are from the

second wave, which is concurrent with the measurements used to

declare subjects as having MCI. All fMRI data used were part of a

protocol that involved a verbal memory paradigm (see below).

Functional neuroimaging was obtained via a 1.5 T Philips

Intera-NT scanner (Philips Medical Systems, Best, The Nether-

lands) at the F.M. Kirby Functional Imaging Research Center

(Kennedy Krieger Institute, Baltimore, MD). Two functional scans

were acquired with repetition time (TR) = 1000 ms, echo time

(TE) = 39 ms, flip angle (n) = 90u, field of view (FOV) = 230 mm in

the xy plane and matrix size = 64|64 reconstructed to 128|128.

Eighteen slices were acquired with a 4.5 mm thickness and an

interslice gap of 0.5 mm, focused on the medial temporal lobe.

Hence, for example, much of the anterior portion of the frontal

and posterior portion of the occipital lobe were not studied. Every

scan was investigated by radiologists and no structural abnormal-

ities were seen in the MRI scans.

Task procedure
The paradigm was an auditory word-pair association task. It

consisted of two 6 minute and 10 second sessions with each session

having six sets of three blocks. Three types of blocks were

considered: encoding, rest and recall. The encoding phase and the

recall phase were 19.5 s long, and the rest phase in between the

encoding and recall phases was 17 s long. When in the encoding

block, subjects were presented with seven unrelated word pairs.

When in the recall block, subjects were presented with the first

word of each pair and instructed to silently recall the second.

Subjects were asked to keep their eyes open during each block. In

the baseline block, which was a rest phase, subjects were presented

with an asterisk.

Data preprocessing
Data pre-processing was conducted using the Statistical

Parametric Mapping software (SPM99 Wellcome Department of

Imaging Neuroscience, University College, London, UK) running

under the MATLAB 6.1 (The Mathworks, Sherborn, MA, USA)

programming and run-time environment. SPM99 was used for

legacy reasons and to achieve consistency with visit 1 processing. A

rigid body motion correction was performed by realigning all the

scans from both sessions to the mean image of all the functionals in

both sessions. This was followed by re-slicing using a windowed-

sinc interpolation. Realigned images were hand checked for

motion artifacts. Twelve-parameter nonlinear transformations via

SPM99 were used to warp images into standard space (MNI). The

template was manually cut to fit each individual scan in order to

improve the quality of normalization. Normalized scans were re-

sliced to isotropic voxels (2 mm3), using trilinear interpolation and

spatially smoothed with a full-width at half-maximum (FWHM)

Gaussian kernel of 5 mm.

Independent Component Analysis of fMRI
Independent component analysis is a commonly used method

for recovering underlying independent sources from their

mixtures, so-called blind source separation. ICA has been

frequently utilized on the analysis of functional neuroimaging

data since 1998 [7–10]. Two key benefits of ICA are its empirical

nature and its often considered reasonable underlying generative

model. Specifically, it models collected signals as linear weighted

combinations of independent sources. Notationally, a noise-free

ICA model specifies

X~AS, ð1Þ

Table 1. Decliner and control characteristics.

Decliner (n = 13) Control (n = 13) Significant Level

Gender 7 Male, 6 Female 7 Male, 6 Female

Age 68.9 (5.2) 66.2 (5.5) P = 0.331

Education 14.7 (4.3) 15.1 (3.4) P = 0.802

ApoE-4
carriers (%)

15% 25% P = 0.548

doi:10.1371/journal.pone.0049340.t001

Group ICA-Based Connectivity
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where X is a T|V data matrix. Note that, in our application, T

indicates scan while V indicates voxels. Rows of S contain the

independent components and A is the linear mixing matrix. Let S

be Q|V where QƒT and hence A is T|Q. We use parentheses

to index matrices so that X (t,v) is element (t,v) of X and define

X (t,:) as row t of X and X (:,v) as column v. Then, model (1) could

be rewritten as X (t,v)~
PQ

q~1 A(t,q)S(q,v) and

X~
PQ

q~1 A(:,q)S(q,:):

ICA gets its name by assuming that S(q,:) S(q’,:) when

q=q’ where implies statistical independence. However,

standard variations of ICA also assumes that fS(q,v)gV
v~1 is an

iid collection, which we also adopt. As a consequence of these

assumptions, X (:,v)X (:,v’) when v=v’; yet note that X (t,:) is not

necessarily independent of X (t’,:).
FastICA is a fixed-point scheme frequently used for indepen-

dent component estimation (see http://www.cis.hut.fi/projects/

ica/fastica/) by iteratively maximizing negative entropy. We use

fastICA as our optimization criteria in this manuscript, as it is a

popular ICA fitting algorithm, though note that the proposed

analysis stream is largely agnostic to this choice. Note further that

we use a so-called ‘noise-free’ ICA model. Of course, such

assumptions are not realistic for fMRI and hence measurement

error and other sources of variation will be absorbed in the

estimated time courses and spatial maps. Our simulations,

however, show that this does not impact our regression approach.

Regardless, we reiterate that one could use a probabilistic ICA

method [17] for estimation instead.

Group independent component analysis
We now consider ICA on groups of subjects and its inferential

consequences. There are a wide variety of group ICA approaches

for multi-subject fMRI data [18]. We follow standard practice and

consider a temporal concatenation approach, so called spatial

group ICA [9]. Spatial independent component analysis decom-

poses fMRI data into spatial maps multiplied by their respective

time courses, where the maps are drawn from spatial distributions

that are statistically independent [9].

Notationally, let Xi be a T|V (scan by voxel) matrix for subject

i~1, . . . ,I . We consider the ICA model Xi~AiS, where Ai is a

T|Q matrix of temporal weightings and S is a Q|V matrix of

ICs. Let X be the TI|V matrix obtained by stacking the Xi and

A be the TI|Q matrix obtained by stacking the Ai; that is,

X~½X1
’X2

’ . . . XI
’�’ and A~½A1

’ . . . AI
’�’. Then, spatial group

ICA simply specifies the standard model X~AS, with the only

notational difference with the previous section being that X and A

each now have TI rows rather than T . The biological

interpretation of group ICA is that fMRI intensities represent

BOLD signals across brain networks that are common across

subjects. However, how each subject temporally loads these

networks can vary. An SVD decomposition (or some other

dimension reduction) is still required to force the ICA model to be

identified. Hence, the concatenated data matrix is projected onto

the left singular vectors, an ICA is performed on the dimension

reduced spatial maps, the resulting weight matrices are then

projected back into the original data space. If

X~AS~UDW&UQDQWQ where Wq is the submatrix con-

taining the first Q rows of W , UQ contains the first Q columns of

U and DQ is the upper Q|Q matrix of D. Treating the

approximation as if it were an equal sign we obtain that

WQ~D{1
Q UQ

’AS~~AAS. After ICA estimation of ~AA, say resulting

in ~̂AA~AA, we set ÂA as UQDQ
~̂AA~AA~½ÂA’1 . . . ÂAI �’.

Population functional analysis of group ICA
The temporal weight matrices, ÂAi, estimate how the common

spatial ICs are modulated over scan. The relationship

Xi~
PQ

q~1 Ai(:,q)S(q,:) demonstrates how the temporal weight

vector q, Ai(:,q), influences the spatial IC, S(q,:). The variable

S(q,:) is often interpreted as a brain network. Since network q is

common across subjects, one can analyze the ÂAi(:,q) across

subjects to investigate inter-group differences in network behavior.

We propose generalized functional regression as a tool for such

explorations.

Generalized functional regression is a powerful tool to explore

the association between functional variables and scalar outcomes,

such as binary disease outcomes [11,19,20]. Here, we propose the

functional variables to be the temporal mixing vectors, ÂAi(q,:). We

start with univariate functional analysis. That is, by fixing q a

specific index for the independent component, we only consider

one functional regressor at a time, though acknowledge that

multivariate regression models are a relatively straightforward

extension. Let ÂAiq(t) be a function representing the vector ÂAi(q,:).
The particulars of how to take densely sampled discrete data and

represent it as a continuous function can vary. We use a PCA

decomposition and variance matrix smoothing as our method,

with details given below.

Assume for each subject i, Yi is the scalar outcome, ÂAiq(t) are

random functions for fixed q. Let Zi be a vector of nonfunctional

covariates, including the intercept. Without loss of generality, we

assume that the ÂAiq(t) are mean zero stochastic processes (which

can be achieved in practice by subtracting the population average

function). The functional regression model can be expressed as:

logitfP(Yi~1)g~
ðT

0

Aiq(t)bq(t)dtzZi
’cq: ð2Þ

In model (2), the functional parameter bq is the main target of

inference. It is interpreted as a weighting scheme, which tends to

emphasize or de-emphasize components parts of Aiq. In our

context, it relates the temporal mixing matrices to the disease

status outcomes. However, a functional expansion of bq(t) needs to

be performed to obtain a finite dimensional parameter for fitting.

Dimension reduction by functional principal component
analysis

We use Functional Principal Component Analysis (FPCA) to

calculate the eigenfunctions of Aiq that capture most of the

population variability of network-specific temporal mixing. This

has the benefit that PCA of group ICA temporal mixing matrices

is already a common technique in the neuroimaging literature.

Moreover, eigenfunction decompositions simultaneously yield a

convenient, data-driven basis for which to decompose model (2)

into easily estimated parts, as well as recasts the problem in the

terms of the greatest direction of inter-subject variation in the

temporal mixing of ICA-based brain networks.

FPCA considers a complex functional regression space by

decomposing the covariance operator Kq(t,s)~CovfAiq(t),Aiq(s)g.
Let the spectral decomposition of this covariance matrix be given by

Kq(t,s)~
P?

j~1 ljqyjq(t)yjq(s) (as noted in [13,21], via Mercer’s

theorem). Here l1q§l2q§::: are the ordered eigenvalues and yjq are

the associated orthonormal eigenfunctions. The spectral decompo-

sition yields a parsimonious expansion of the subject level functions

Aiq(t)~
P?

j~1 jijqyjq(t), referred to as the Karhunen/Lo0eve (KL)

decomposition [22,23]. Here, jijq~
Ð T

0
Aiq(t)yjq(t)dt are referred to

Group ICA-Based Connectivity
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as the principal component scores. Necessarily, we truncate the

decomposition at L terms (though see [20]) so that Aiq(t) has a finite

decomposition expression, Aiq(t)~
PL

j~1 jijqyjq(t). Details about

how to select L are given in Appendix S1.

The true mixing matrix functions, Aiq(t), are not observed.

Instead we obtain the model-based estimates from the ICA

algorithm, ÂAiq(t). Assume a measurement error model so that

ÂAiq(t)~Aiq(t)zeiq(t), where ei(t) is a white noise process with

variance s2
q. Thus a smoothing step is desirable [24] with details

given in Appendix S1.

Once the eigenfunctions, yjq, and truncation lag, Lq, are fixed,

the model for the noisy signals can be written as:

ÂAiq(t)~
XLq

j~1

jijqyjq(t)zeiq(t); jijq*N(0,ljq); eiq(t)*N(0,s2
q):ð3Þ

As stated in [19], this is a linear mixed model with random effects

jijq used to model the outcome. A benefit of this model is the

ability to use BLUP estimation to estimate jijq.

Since fyjq(t)g is an orthonormal basis in L2½0,T �, both Aiq(t)
and bq(t) have unique representations as linear combinations of

this basis. Thus, equation (2) can be rewritten as:

logitfP(Yi~1)g~
XL

j~1

jijqbjqzZt
i cq, ð4Þ

where bjq~
Ð

bq(t)yjq(t)dt. This is nothing other than a standard

(non-functional) logistic regression model.

Following the definitions of [19], model (3) is the exposure

model and model (4) is the outcome model. In our context, the

exposure model considers the temporal mixing matrices from

group ICA; the outcome model relates the principal components

from the exposure model to a disease status outcome model. In our

application, the outcome status is fixed by design and hence we

employ the logic of traditional case-control logistic regression

[25,26].

Functional connectivity
We argue that interaction models are of key interest.

Specifically, functional connectivity is biologically meaningful

because it is assumed that ‘‘memory and other cognitive abilities

are the result of the integrated activity in networks of regions,

rather than activity in any one region in isolation’’ [2]. Joel et al

[27] argue for the important interpretation of inter- and intra-

network connectivity ostensibly measured by the correlation and

variance of the temporal mixing matrices respectively. As these

matrices have zero mean, we consider their products and squares.

Mathematically, ICA-based inter-network functional connectivity

is defined as
Ð

Aiq(t)Aiq’(t)dt and intra-network functional

connectivity is defined as
Ð

Aiq(t)2dt [27].

Joel et al [27] suggested the estimated counterparts of the inter-

and intra-network connectivity as predictors of disease. We can

easily incorporate these summaries into our framework with the

models

logitfP(Yi~1)g~
ðT

0

Aiq(t)Aiq’(t)bqq’(t)dtzZi
’cqq’,

and

logitfP(Yi~1)g~
ðT

0

Aiq(t)2bqq(t)dtzZi
’cqq:

These models are simple realizations of our existing functional

model with functional regressors Aiq(t)Aiq’(t) and Aiq(t)2, respec-

tively. The only slight complication is that an additive functional

measurement error model would likely not hold for ÂAiq(t)2. Notice

that if the coefficient functions are estimated to be constants, these

models simply regress the outcome on the measures of inter and

intra-network connectivity suggested by [27].

Hypothesis testing
Finally, we mention small number of subjects is the norm in this

area. Therefore, for testing effects, such as the hypothesis

H0 : bq(t)~0, we suggest exact logistic regression. Specifically,

under the null hypothesis of no functional effect, Z’y are minimal

sufficient statistics for c, where Z~½Z1 . . . ZI �’ and y is the

observed version of Y . Therefore, the conditional distribution

P(Y~yDZ’Y~Z’y) is parameter free. In our cases, if Z contains

only an intercept, then the null distribution is the permutation

distribution of outcomes. If Z contains pair-specific indicators for

matched pairs data, then the null conditional distribution is the

distribution obtained by permuting the outcomes among discor-

dant pairs. It should also be noted that if Z contains non-

categorical covariates, or too many categorical covariates,

especially interaction terms, the conditional distribution can be

uninformative and the resulting P-values can be excessively

conservative. Agresti [28] has more details about variations on

conditional logistic regression.

Related work
Beckmann and Smith [29] proposed a tensor PICA model,

which factors the group data as a trilinear combination of three

outer products, representing group spatial maps and time courses

but subject-specific loadings. The tensor PICA is a simplified

version of our model in the sense that, by assuming common time

courses, they only retain one eigenvector in the PCA stage. We can

check the validity of their model by calculating the ratio of the

largest eigenvalue and the sum of all the eigenvalues. Their

approach may not work well if the temporal dynamics are different

across subjects, such as in a resting state study [18]. Our method

allows heterogeneity in time courses and hence may be more

robust.

An alternative two-stage decomposition for the analysis of fMRI

data was proposed by Caffo et al [30]. Their approach first used

singular value decomposition (SVD) to obtain subject-specific

eigenimages (spatial maps) and eigenvariates (time series). Then

the collections of eigenimages and eigenvariates were decomposed

Table 2. AD study: univariate regression analysis results.

Estimate SE LRT Permutation Test

IC 11, PC 2 9.19 5.59 p = 0.028 p = 0.039

IC 13, PC 1 25.44 3.40 p = 0.050 p = 0.071

IC 19, PC 3 225.00 14.60 p = 0.016 p = 0.023

IC 22, PC 4 20.40 9.98 p = 0.009 p = 0.011

IC 26, PC 1 23.70 2.13 p = 0.030 p = 0.039

IC 28, PC 1 7.82 4.90 p = 0.024 p = 0.043

doi:10.1371/journal.pone.0049340.t002

Group ICA-Based Connectivity
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to form population-level brain networks and time series. Subject-

level data were projected onto these population eigenvectors to

obtain subject-specific loadings and those loadings can be used in

generalized functional regression. One potential weakness of their

approach is the ignorance of variance ordering of subject-specific

eigenvectors in the population analysis. Comparatively, the

components in ICA are not ordered, so the problem is avoided.

In addition, the SVD forces orthogonal eigenimages and

eigenvariates, which may or may not reflect actual biology. In

principle, the relevant information content of ICA-based regres-

sors is equivalent to SVD-based regressors for FPCA. However,

the ICA-based regressors tend to be more interpretable by not

requiring orthogonality of the time courses.

In addition, Zhu et al. [31] proposed a functional analysis

pipeline, called Functional Analysis of Diffusion Tensor Tract

Statistics (FADTTS), for delineating the association between

multiple diffusion properties along major white matter fiber

bundles with a set of covariates of interest. Though FADTTS was

proposed in the context of diffusion tensor imaging (DTI), it can be

applied to the second stage of our analyses as an alternative way.

Specifically, one can apply FADTTS to the time courses Ai as

response and include the diagnostic status as covariates. Hypoth-

esis testing can be done to identify the time points where the two

groups differ from each other.

Results

Independent component analysis of fMRI data in the AD
study

We apply our methods to the Alzheimer’s disease risk study.

The fMRI data contain 147,512 non-background voxels measured

at 370 time points, with a TR of 1000 ms, for each subject. A

group data matrix is generated by concatenating 26 subjects’

fMRI data in the temporal domain. The aggregated matrix has

dimension TI|V , where T~370, I~26, and V~147512.

In the practical application of ICA, identifying the number of

independent components is an important step. For fMRI, the

number of informative components is often assumed to be less

than the spatial or temporal dimension; further the mathematics

mandate that the number of ICs be less than the smaller of TI and

V (typically TI ). This manuscript adopts a simple approach to

estimate the number of components based on the eigenvalues of

the covariance matrix.

Note that Cov(X )~Cov(AS)~AA’. Making the small allow-

ance of adding a nugget variance adds a diagonal constant to this

matrix. There are Q non-zero eigenvalues to this matrix, with the

rest being equal to the nugget variance. The scree plot shows that

eigenvalues decay to a constant roughly at 30. So we apply ICA on

the group data matrix specifying there are 30 independent

components. The retention of all 30 components in subsequent

modeling could potentially have issues of variance inflation.

Moreover, we stipulate that the choice is admittedly ad hoc. We do

not address this further in this manuscript, though emphasize the

importance of performing sensitivity analysis to the number of

retained eigenvalues. In addition, we do note success in using

penalties terms in functional regression that are insensitive to the

choice of the number of components [20].

Functional regression on mixing matrix
In the second stage, PCA is performed on the time courses for

each independent component acquired from ICA. We then apply

functional logistic regression on the scores derived from PCA,

accounting for case-control matching. There are 30 spatial maps

specified from ICA, so we conduct 30 regressions, with each

regression on PC scores summarized from time courses associated

with one specific spatial map. In each regression, there are up to

six PC scores (i.e. the predictors), where the number of PC scores

are estimated using criterion stated in Appendix S1.

In our application, there are 26 subjects, with 13 MCI subjects

and 13 matched controls. As discussed earlier, the null conditional

logistic regression distribution permutes outcomes among discor-

dant pairs. We then obtain the likelihood ratio test (LRT) statistic

under each permutation, and calculate the Monte Carlo estimated

probability that the LRT statistic exceeds the actual observed LRT

statistic. The null permutation distribution in this case (matched

binary pairs) is equivalent to randomly permuting case status

among matched pairs. No adjustment for multiplicity is made, as

our results are exploratory in nature.

Table 2 summarizes the regression results. Of the 30 regression,

6 of them show significant results. Significant predictors are shown

in table 2. Figure 1 exhibits the time courses that are associated

with odds of MCI for all 13 matched pairs of subjects. To avoid

overlap of the trajectories among subjects, heatmaps of the time

courses are provided instead of spaghetti plots [32]. The heatmaps

better visualize trends and patterns in the network-specific

temporal mixing matrices. Figure 2 exhibits the eigenfunctions

of time courses in Figure 1. Three predictors are negatively

associated with odds of MCI, including the first PC score of time

courses modulating spatial map 13, the third PC score of time

courses modulating spatial map 19 and the first PC score of time

courses modulating spatial map 26. For example, a subject with

one unit higher in the first PC of time courses modulating spatial

map 13 has an estimated e{5:44~0:004 times the odds of MCI.

After standardization, one standard deviation increase in the first

PC score of time courses modulating spatial map 13 is associated

with an estimated odds ratio of e{1:60~0:202. Three predictors

are positively associated with MCI, including the second PC score

of time courses modulating spatial map 11, the fourth PC score of

time courses modulating spatial map 22 and the first PC score of

time courses modulating spatial map 28.

The spatial maps 11,13,19,22,26,28 are regions of interest, that

is, their corresponding PC scores are significant predictors in the

functional regression model. Figure 3 exhibits three-D rendering of

these spatial maps. Figure 4 displays brain regions that have over

20% overlap with the identified spatial maps, based on the

anatomical parcellation given in [33]. Because of the narrow

imaging area, the spatial independent components overlap heavily

on temporal regions. The most significant predictor is IC number

22. This map is primarily located in the temporal poles, olfactory

areas and Heschl regions. This mirrors results found in [30], who

studied at-risk subjects versus controls rather than subjects with

evidence of MCI and further focused on the singular value

decomposition rather than ICA. In addition, a less significant

region, 13, overlaps with the hippocampus, the primary brain

region of interest in the study of AD. Note specifically that most of

these spatial maps intersect with the olfactory areas, which have

been hypothesized to be associated with neurodegenerative

disorders and Alzheimer’s disease in particular [34]. Looking

Figure 1. Plots (A),(F) are heatmaps for time courses modulating spatial maps 11, 13, 19, 22, 26, 28 respectively. The subjects are
grouped by matched pairs.
doi:10.1371/journal.pone.0049340.g001
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Figure 2. Plots of eigenfunctions associated with the significant predictors.
doi:10.1371/journal.pone.0049340.g002

Figure 3. Three-D rendering of thresholded spatial maps associated with the significant predictors. Red areas load positively while blue
areas load negatively. The figures from the upper left to the upper right are spatial maps of IC 11, 13 and 19 respectively. The figures from the lower
left to the lower right are spatial maps of IC 22, 26 and 28 respectively.
doi:10.1371/journal.pone.0049340.g003
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across regions, the temporal poles, Heschl regions, cerebellum,

amygdala and limbic olfactory areas are widely implicated across

ICs. However, the results are non-specific.

To study the association between inter-network functional

connectivity and MCI, we apply conditional logistic regression on

the product of time courses associated with two different spatial

maps. The results are listed in Table 3. After standardization, one

standard deviation increase in the second PC score of the

integrated activity of network 19 and 28 is associated with an

odds ratio e{1:6~0:214; one standard deviation increase in the

second PC score of the integrated activity of network 22 and 28 is

associated with an odds ratio e{1:30~0:273; one standard

deviation increase in the third PC score of the integrated activity

within network 26 is associated with an odds ratio e{1:74~0:176.

Based on anatomical parcellation, specific AD-related network

interactions include connectivity between cerebellum and vermis,

frontal temporal lobe and cerebellum, frontal temporal lobe and

vermis, cerebellum and Heschl gyrus.

Limitation
The style of analysis is exploratory and empirical. Our prior

hypothesis involves associations with paradigm-related limbic

structures. Evidence of such effects is seen to this end. However,

the results are non-specific. These results must be viewed with

caution given the small number of MCI cases available for study.

In addition, in the process of considering multiple components,

multiplicity concerns are an issue. Coupled with the fact that the

motivation for this study is from a study of the same data, the

results must be interpreted with care. External validation on new

data sets is a goal for future research.

Discussion

In our application, we found that our approach discovered

potentially interesting relationships between estimated brain

networks and disease states. In the AD study, our results are

similar to [30], though considering only 26 carefully matched

subjects to nearly 200 in that study. Moreover, our investigation

Table 3. AD study: regression results using the functional
connectivity as the predictors.

Estimate SE LRT Permutation Test

IC 19 and
28a, PC 2

211.60 7.51 p = 0.007 p = 0.015

IC 22 and
28b, PC 2

236.80 28.40 p = 0.037 p = 0.050

IC 26 and
26c, PC 3

275.9 43.7 p = 0.026 p = 0.031

aThe between network connectivity of spatial maps 19 and 28.
bThe between network connectivity of spatial maps 22 and 28.
cThe within network connectivity of spatial map 26.
doi:10.1371/journal.pone.0049340.t003

Figure 4. Regions with over 20% overlap with the specified spatial maps. Red areas load positively, blue negatively, yellow have partial
volumes loading positively and negatively. Abbreviations: Amyg. = Amygdala, Cer. = Cerebellum, Fr. = Frontal, Hippo = hippocampus, Inf. = Inferior,
Ins. = Insula, L. = Left, Olf. = Olfactory, Op. = Opercular part, Pal. = pallium, PHG = Para-Hippocampal Gyrus, Put. = putamen, R. = Right, Sup. = Superior,
Temp. = Temporal, Tri. = triangularis.
doi:10.1371/journal.pone.0049340.g004
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considered subjects with MCI, not subjects at-risk of disease. Being

post-hoc analyses, these results must be viewed with some

skepticism. It would be of use to validate findings with another

study employing a similar paradigm.

We comment particularly on the use of functional regression in

the resting state studies, a mainstay of modern fMRI research. In

principle, resting state scans are not temporally aligned across

subjects. Therefore, one must be careful in any technique that

assumes temporal alignment, as our functional regression models

do. Note, however, a constant bq function results in the use of

standard resting state ICA metrics as predictors in the logistic

regression model.

Besides, one difficulty in analyzing fMRI group data is its high

dimensionality. Our approach includes two steps. In the first stage,

we attempt to decompose a group matrix with dimension TI|V .

In the second stage, we perform functional PCA regression on the

time courses matrix with dimension I|T . Hence, the computa-

tional time is mostly spent on the first stage group ICA. Thus our

approach allows for thorough investigation of second stage models

and covariates with only modest computing times. For studies with

large number of subjects, the TI|V matrix may be too large in

both dimensions to admit group ICA without dimensionality

reduction. By conducting data reduction in the temporal domain,

we could reduce one dimension of the large matrix to make it

computationally practicable [9,29]. However, given the increasing

scope of fMRI data, novel implementations of group ICA for large

numbers of subjects remains needed.

Finally, we comment that this manuscript addresses decompo-

sition methods to evaluate cross-sectional variation in brain

networks. However, the structure can be extended to hierarchical

models. Longitudinal functional imaging studies are becoming

increasingly common. For example, subjects may have fMRI

records at multiple visits. Our two-stage method can be

generalized for multi-level data very easily, provided longitudinal

functional regression models, an active area of research [13,35].
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