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Abstract: Atomically thin two-dimensional (2D) transition metal dichalcogenides have
also attracted immense interest because they exhibit appealing electronic, optical and
mechanical properties. In this work, we prepared gold nanoparticle-decorated molybdenum
sulfide (AuNP@MoS2) through a simple spontaneous redox reaction. Transmission electron
microscopy, UV-Vis spectroscopy, and Raman spectroscopy were used to characterize the
properties of the AuNP@MoS2 nanomaterials. Then we employed such nanocomposites as
the cathode buffer layers of organic photovoltaic devices (OPVs) to trigger surface plasmonic
resonance, leading to noticeable enhancements in overall device efficiencies. We attribute the
primary origin of the improvement in device performance to local field enhancement induced
by the effects of localized surface plasmonic resonance. Our results suggest that the metal
nanoparticle-decorated two-dimensional materials appear to have great potential for use in
high-performance OPVs.
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1. Introduction

Organic photovoltaic devices (OPVs) have received a great deal of attention because they feature
many advantageous properties, including light weight, low cost, mechanical flexibility and short energy
payback time [1–3]. To date, the power conversion efficiencies (PCEs) of the single-junction devices
have broken through 10% [4]. Moreover, the internal quantum efficiency (IQE) of state-of-art OPVs
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can approach 100%, meaning that nearly every absorbed photon can be converted to charge carriers
and that all the carriers are collected at the electrodes [5]. Because the overall quantum efficiency
is governed by the IQE and absorption efficiency, efficient light absorption in OPVs is still critical
for further improving the PCEs. One approach for increasing the absorption efficiency is to develop
light trapping techniques [6–12]. For example, using optical spacers [7,8] and photonic crystals [9]
have been recently proposed. Among the light-trapping schemes, incorporation of metal nanostructures,
which can trigger surface plasmons (SPs), have been proved to be a promising way for increasing the
light harvesting ability of OPVs [10–23]. As metal nanoparticles (NPs) can be readily synthesized and
incorporated into the devices via simple solution processes, they have become the most widely used
plasmonic nanostructures for enhancing the PCEs of OPVs [11–13].

Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) have also attracted
immense interest because they exhibit appealing electronic, optical and mechanical properties [24–29].
In particular, the TMDs that having direct band gaps, such as MoS2 and WS2, have been employed
in many applications [24,25], including field effect transistors [26], photodetectors [27], light-emitting
devices [28] and sensors [29]. Further, these TMDs have been incorporated into OPVs as interfacial
buffer layers for improving their device stability and/or efficiencies [30–34]. More interestingly, the
work-function of the TMD interfacial layers can be modulated by p- or n-doping treatments [30].
Therefore, 2D TMDs can be considered as promising building blocks for preparing materials exhibiting
various functionalities. Recently, Yang et al. prepared a hole transport layer composed of ultrathin 2D
MoS2 nanosheets decorated with Au NPs for triggering the plasmonic effects in OPVs [35]. From
both simulation and experimental results, they have shown that the nanocomposites can utilize the
plasmonic near-field more efficiently, particularly along the horizontal direction, thereby leading to
apparent efficiency improvement.

In this work, we have prepared MoS2 nanosheets using a very simple, greener liquid phase exfoliation
method [36]. A surfactant was added into the suspension of bulk MoS2, and, thereby, a stable aqueous
dispersion of exfoliated MoS2 sheets could be obtained after sonication. The resulting nanosheets were
further decorated with Au NPs through a spontaneous redox reaction with hexachloroauric acid, resulting
in a novel nanostructure of Au NP-decorated MoS2 (AuNP@MoS2) nanocomposites [37]. Note that no
additional reducing agent was required to reduce the Au ions. The as–synthesized AuNP@MoS2 could
be readily incorporated into the OPVs as an interfacial buffer layer between the active layer and the
electrodes. We have found that the Au NPs anchored on the MoS2 nanosheets induced the SR effects,
which could effectively improve the device performance.

2. Results and Discussion

2.1. Synthesis and Characteristics of Au NP-Decorated MoS2 Nanocomposites

To prepare the AuNP@MoS2 nanocomposites, bulk MoS2 was exfoliated through a
liquid phase method [36]. A triblock copolymer, poly(ethylene glycol)-block-poly(propylene
glycol)-block- poly(ethylene glycol) (Pluronic P123) was added into an aqueous suspension of bulk
MoS2. It behaved as a surfactant to reduce and maintain the surface tension of the aqueous phase for
efficient exfoliation [36]. As a result, a stable dispersion of MoS2 nanosheets could be obtained after
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sonication. Then, a solution of HAuCl4 that was dissolved in de-ionized (DI) water was mixed with
the resulting MoS2 solution. We found that Au ions were spontaneously reduced and anchored on
the surface of exfoliated nanosheets. No additional reducing agent was required in this spontaneous
reaction [37].

Figure 1 displays the absorption spectra of the MoS2 nanosheets suspended in water; several features
of the spectrum are similar to those reported previously [38]. First, two excitonic peaks at 690 and
645 nm, which are termed A and B excitons, respectively, could be observed. They are related to the
interband excitonic transitions at the K point of the Brillouin zone for the nanosheets with large lateral
dimensions. The energy difference between the two excitonic peaks is due to the effect of spin–orbital
coupling of the valence band [36,39]. Second, we also clearly observed one more peak at 745 nm,
which was primarily due to scattering [38]. Such scattering effects could be resulted from the highly
anisotropic structure, poor dispersion of the nanosheets, and damaged surfaces [39]. Note that the much
larger scattering cross section of the scattering peak significantly distorted the intensities and locations
of the previous excitonic peaks [38]. Further, we also observed a broad absorption band centered ca.
540 nm. It has been previously assigned as the blue-shifted excitonic peak due to the quantum size
effect, indicating that the presence of nanosheets with lateral dimensions less than 50 nm [38].
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Figure 1. Absorption spectra of the nanocomposites dispersed in aqueous solutions,
including Au NP-decorated MoS2 (AuNP@MoS2), Au nanoparticles (Au NPs), the MoS2

nanosheets (MoS2) and the mixture of the Au NPs and MoS2 nanosheets (Au NPs + MoS2).

Meanwhile, Figure 2a shows the transmission electron microscopy (TEM) image of the MoS2

nanosheets; the plane size was primarily around 100 nm. In addition, we can also see the coexistence of
mono-layer to few-layer of MoS2. After MoS2 was exfoliated, we further anchored the Au NPs on the
MoS2 nanosheets through a spontaneous reduction method [37]. An aqueous HAuCl4 solution was added
to the as-prepared MoS2 suspension. Because the Fermi level of MoS2 is situated above the reduction
potential of AuCl4

´, spontaneous electron transfer from MoS2 to Au ions occurred, resulting in the
formation of Au NPs on the MoS2 surfaces. Figure 2b,c displays the TEM images of the AuNP@MoS2

nanocomposites prepared with different concentrations of Au ions. While the concentration of HAuCl4

was 0.1 mg¨mL´1, we clearly found the Au NPs decorated on the MoS2 basal planes. The particle size
mainly ranged from 2 to 12 nm and the average size was ca. 6 nm. The image also shows the preferential
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edge decoration of the Au NPs, suggesting the reaction preferentially occurred at the highly energetic
defect sites [37]. After the concentration of Au ions was increased to 0.2 mg¨mL´1, more Au NPs
were present on the nanosheets. The size of the NPs was slightly increased and the NPs also started to
aggregate (Figure 2c). Figure 2d displays the TEM images with a higher magnification. We can see that
the Au NP was bonded closely on the MoS2 surface. This image suggests that the Au ions were reduced
by the nanosheets and the Au NP was directly grown on the MoS2 surface rather than in the volume of
the solution [40].
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Figure 2. The TEM images of (a) MoS2 nanosheets; (b, c) AuNP@MoS2. The concentration
of the Au ions were (b) 0.1 mg¨mL´1; (c) 0.2 mg¨mL´1; (d) High-resolution image of a
typical Au NP attached on the MoS2 surface.

The AuNP@MoS2 nanocomposites were also characterized using UV–Vis absorption spectroscopy.
As shown in Figure 1, after the Au NPs were decorated on the MoS2 nanosheets, we observed an intense
peak at 535 nm, which is corresponding to the localized surface plasmonic resonance (LSPR) of the Au
NPs [17]. As revealed by the previous high-resolution TEM image (Figure 2d), the close contact between
the Au NPs and MoS2 nanosheets might lead to coupling of their plasmonic resonance. To investigate
such possible coupling effect, we reduced AuCl4

´ firstly using sodium citrate and the resulting solution
of Au NPs was mixed with the suspension of MoS2 nanosheets. From the absorption spectra as displayed
in Figure 1, we could clearly observe that the absorption peak of the Au NPs in the “physical” mixing
solution was similar to the one of AuNP@MoS2 nanocomposite. However, the shapes and intensities of
the A and B excitonic peaks were different. Clearly, the two excitonic peaks (as well as the last scattering
peak) of the AuNP@MoS2 nanocomposite were stronger than those of the physical-mixing solution of
Au NPs and MoS2 nanosheets. Therefore, we suspect that the plasma electrons in these two components
were probably coupled due to their close contact [40].
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Because the van der Waals forces between the atomic layers influence the force constant of the
vibrational states, Raman spectroscopy has been proven to be highly useful in probing the structural
information of two-dimensional materials [41]. Therefore, we performed Raman spectroscopic
measurements and the results were displayed in Figure 3. The MoS2 nanosheet featured two main
peaks at 382.8 and 407.8 cm´1, which are assigned as the E1

2g and A1g peaks, respectively. They are
associated with the in-plane bending (E1

2g) and out-of-plane (A1g) vibration modes, respectively. It has
been previously shown that the energy difference between these two peaks (∆ω) is sensitive to the
number of the layers [41]. From Figure 3, we could see that the value of ∆ω is ca. 25 cm´1, indicating
that the exfoliated MoS2 was around 4–5 layers [31,41]. More importantly, the differences between
the two peaks were almost unchanged after the MoS2 were decorated with Au NPs. Therefore, the
Raman spectra suggest that the chemical structure of the nanosheets was not significantly affected by the
reduction processes.
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2.2. Photovoltaic Performance of the Devices Prepared with MoS2 Nanocomposites

The as-synthesized MoS2 nanocomposites were used as electrode buffer layers in OPVs. Figure 4a
displays the device structure incorporating the MoS2 nanocomposites. Previous reports have inserted
MoS2 nanosheets at the anodes [34,35]. Our results, however, indicated that the device using the 2D
MoS2 as the cathode buffer layers exhibited better device performance, which is consistence with the data
reported by Ibrahem et al. [31]. The different properties of the 2D MoS2 might be due to the different
doping levels during the synthesis and device fabrication processes [30,42]. Therefore, we adopted
inverted structures to fabricate OPVs with the MoS2 nanocomposites. Figure 4b displays the current
density–voltage (J-V) characteristics of the inverted OPVs obtained under illumination with simulated
solar light (AM 1.5G); the active layer were P3HT:PCBM blends. Table 1 provides a summary of the
electrical properties of the devices in this study. The device prepared with neat MoS2 nanosheets as the
cathode buffer exhibited a value of Voc of 0.55 V, a short-circuit current density (Jsc) of 9.87 mA¨cm´2,
and a fill factor (FF) of 0.56, resulting in a PCE of 3.07%. To investigate the plasmonic effects of these
nanocomposites on the performance of OPVs, AuNP@MoS2 nanomaterials were also incorporated at
the cathode interface. As revealed in Figure 4b, the direct use of the as-synthesized AuNP@MoS2
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composites led to a decrease value of Voc (0.51 V). Although the photocurrent was indeed improved,
presumably due to the plasmonic effects, the overall PCE was only slightly improved to 3.19%. We
suspected that the density of the Au NPs might be too high, thereby affecting the interfaces between
the photoactive polymer blends and the ITO electrodes [18]. Therefore, we further blended neat MoS2

nanosheets into the buffer-layer solution to reduce the amount of Au NPs in the devices. As we can see
from Figure 4b, the value of Voc remained unchanged at 0.55 V and both Jsc and FF were improved to
11.1 mA¨cm´2 and 0.59, respectively. The calculated PCE was improved to 3.60%. Moreover, if we
used the AuNP@MoS2 nanocomposite prepared with higher concentration of Au ions (0.2 mg¨mL´1),
the device performance started to degraded; both Voc and Jsc were reduced, yielding a lower PCE of
2.97%. From the TEM image (Figure 2c), we infer that the aggregated Au NPs probably degraded
the cathode interface and the excess Au NPs might also cause strong back scattering. Figure 4b also
displays the J-V curve of the device prepared with the physical mixing buffer solution as we described in
the absorption spectra (Figure 1). The device exhibited a value of Voc of 0.53 V, a Jsc of 11.1 mA¨cm´2,
and a FF of 0.53, resulting in a PCE of 3.21%. The higher photocurrent of the device suggested the
present of the plasmonic effects as well [35]. However, the lower value of Voc, which is probably
due to the non-optimized density of the Au NPs, led to the inferior performance. We should note
that the best concentration of such device might be different from the condition for the devices using
AuNP@MoS2 nanocomposite. Further improvement should be still possible after careful optimization
of the experimental conditions.

Table 1. Electrical characteristics of devices fabricated with MoS2 and AuNP@MoS2

nanocomposites under various conditions.

Device (concn. of Au ions, mg/mL) Voc (V) Jsc (mA¨cm´2) FF PCE (%)

MoS2
a 0.55 ˘ 0.01 9.87 ˘ 0.07 0.56 ˘ 0.01 3.07 ˘ 0.04

AuNP@MoS2(0.10) a 0.51 ˘ 0.01 11.2 ˘ 0.16 0.56 ˘ 0.01 3.19 ˘ 0.08

AuNP@MoS2(0.10) + MoS2
a 0.55 ˘ 0.01 11.1 ˘ 0.11 0.59 ˘ 0.01 3.60 ˘ 0.07

AuNP@MoS2(0.20) + MoS2
a 0.53 ˘ 0.01 9.85 ˘ 0.06 0.57 ˘ 0.01 2.97 ˘ 0.05

MoS2
b 0.69 ˘ 0.01 12.1 ˘ 0.10 0.52 ˘ 0.01 4.41 ˘ 0.06

AuNP@MoS2(0.10) + MoS2
b 0.69 ˘ 0.01 13.4 ˘ 0.12 0.53 ˘ 0.01 4.91 ˘ 0.07

Notes: a: Photoactive materials: P3HT and PC61BM; b: Photoactive materials: PBDTTT-CT and PC71BM.

To further investigate the origin of the device enhancement, we measured the external quantum
efficiency (EQE) spectra (Figure 4c). The EQE values improved for the device prepared with
the AuNP@MoS2 nanocomposite, consistent with the previous J-V characteristics. Especially, the
efficiencies increased in the wavelength region from 450 to 600 nm, which is consistent with the
plasmonic resonance of the Au NPs as shown in Figure 1. The enhancement factor of the plasmonic
device compared to the reference MoS2 device was further plotted in Figure 4d. The change in
the absorption after the AuNP@MoS2 nanocomposite was incorporated was also presented for easy
comparison. We could also observe both enhancements in EQE values and absorption in the spectral the
region ranging from 350 to 450 nm. The results were consistent with previous reports [35]. Although no
direct plasmonic resonance of the Au NPs located in this spectral region, the absorption of the devices
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was still increased possibly due to the scattering effects. Similarly, an enhancement peak could be
also observed in the 650–750 nm regions. These spectral features indicated that the scattering scheme
also contributed to the device enhancements. Therefore, the EQE spectra indicate that the LSPR of the
AuNP@MoS2 nanocomposites was responsible for the improved device performance.
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Figure 4. (a) The schematic representation of the device structure in this work;
(b) J-V curves of the organic photovoltaic devices (OPVs) prepared with various
MoS2 nanocomposites; (c) Corresponding external quantum efficiency (EQE) curves of
these devices; (d) The calculated EQE enhancement of the device prepared with the
AuNP@MoS2 nanocomposites. The change in the absorption spectra after the AuNP@MoS2

nanocomposite was also presented for easy comparison.

To evaluate the potential LSPR effects of the AuNP@MoS2 nanocomposites for
various OPV applications, we also applied a low-band-gap polymer to fabricate OPVs.
For example, a polymer blend consisting of poly{[4,8-bis-(2-ethyl-hexyl-thiophene-5-yl)-
benzo[1,2-b:4,5-b1]dithiophene-2,6-diyl]-alt-[2-(21-ethyl-hexanoyl)-thieno[3,4-b]thiophen-4,6-diyl]}
(PBDTTT-CT) and (6,6)-phenyl C71-butyric acid methyl ester (PC71BM) was used to form the
photoactive films; Figure 5 displays the electrical properties of the devices. The reference device
prepared with neat MoS2 nanosheets exhibited a value of Voc of 0.69 V, a value of Jsc of 12.1 mA¨cm´2,
and a FF of 0.52, yielding a calculated PCE of 4.41%. The PCE value was lower than those reported
in the literature [43]. Further improvement might be obtained after some solvent additives, such as
1,8-Diiodooctane, are added in the processing solvent. After the surface of MoS2 nanosheets were
decorated with Au NPs, the value of Jsc was improved significantly to 13.4 mA¨cm´2, while the value of
Voc remained unchanged, causing the PCE to increase to 4.91%. Figure 5b displays the corresponding
EQE spectra. The EQE values also revealed a similar trend with the photocurrent, suggesting that
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the AuNP@MoS2 nanocomposites could indeed improve the light harvesting ability. Notably, the
EQE values in the spectral range from 600 to 700 nm were also improved. The origin of the EQE
enhancement in this wavelength range is still not clear yet and further investigation is required. However,
we suspect that it might be due to the coupling between the plasmonic field of the Au NPs and the MoS2

nanosheets as we described previously [36]. Such interesting properties might assist in harvesting the
broadband absorption of the solar irradiation.
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Figure 5. (a) J-V curves of the OPVs prepared with various MoS2 nanocomposites;
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3. Experimental Section

For the synthesis of the MoS2 nanocomposites, a 10 mL 1% w/w suspension of bulk MoS2

(Sigma-Aldrich, St. Louis, MO, USA) in DI water was prepared in the first place. Then an aqueous
solution of Pluronic P123 (10 wt %; 1.0 mL) (Sigma-Aldrich, St. Louis, MO, USA) was dropped into
the MoS2 suspension. The feed ratio of Pluronic P123 was 20:70:20 (EO:PO:EO) and its average Mn

was ca. 5.8 kDa. Subsequently, the MoS2 blend was sonicated at room temperature for 17 h [36]. After
sonication, the as-prepared MoS2 solution was washed by toluene to remove P123. Then the MoS2

nanosheets were dried through lyophilization. For the preparation of AuNP@MoS2 nanocomposites, the
dried MoS2 nanosheets were dispersed in DI water; the concentration was 0.275 mg¨mL´1. An aqueous
HAuCl4 solution (0.1 or 0.2 mg¨mL´1) (Sigma-Aldrich, St. Louis, MO, USA) was added to the MoS2

suspension with a volume ratio of 3:1, respectively. After the spontaneous redox reaction, the resulting
suspension was centrifuged, and the residue was washed with toluene and water, respectively. Finally,
the nanomaterials were dried through lyophilization.

The devices were prepared on patterned ITO-coated glass substrates. Aqueous solutions of MoS2

or AuNP@MoS2 (0.07 mg¨mL´1) were spin-coated onto the ITO substrates and then the sample was
baked at 150 ˝C for 20 min. The photoactive layer, prepared from either a blend of P3HT and PCBM
(1:1, w/w) or a blend of PBDTTT-CT and PC70BM (1:1.5, w/w) in 1,2-dichlorobenzene, was spin-coated
onto the MoS2 or AuNP@MoS2 layers. The photoactive film underwent solvent annealing in a glass
Petri dish [44]. Then, the sample was thermally annealed at 110 ˝C for 15 min. Finally, the device was
completed through thermal evaporation of MoO3 (3 nm) and Al (100 nm) as the anode. The electrical
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characteristics of the devices were measured using a Keithley 2400 source-measure unit (Keithley
Instruments, Cleveland, OH, USA). A 150-W Thermal Oriel solar simulator (AM 1.5G) was used as the
light source druing the meansuremnts. The intensity of the light source was calibrated using a standard Si
photodiode equipped with a KG5 filter. The EQE spectra were obtained using a QE measurement system
(Enli Technology, Kaohsiung, Taiwan). The absorption spectra were recorded using a UV-Vis-NIR
spectrometer (PerkinElmer Lambda 950, Waltham, UK). Raman spectra were acquired using a Horoba
high-resolution confocal Raman microscope (HORIBA Scientific, Kyoto, Japan) equipped with a green
laser (532 nm) as the light source.

4. Conclusions

We have synthesized AuNP@MoS2 nanocomposites that could improve the efficiency of OPVs. The
AuNP@MoS2 nanocomposites were prepared through a simple spontaneous redox reaction between Au
ions and MoS2 nanosheets. The nanocomposite functioned as the cathode buffer layers and introduced
LSPR effects in the devices, thereby resulting in noticeable enhancements in the photocurrent and
the PCEs of the OPVs. Moreover, our results reveal the existence of possible coupling of plasmonic
resonance between the Au NPs and the MoS2 nanosheets, which might be helpful for extending the
spectral range of enhanced photon absorption. We anticipate that these results will open up new
avenues for improving the performance of OPVs through the exploitation of plasmonic effects in
2D nanomaterials.
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