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1  | INTRODUC TION

Historically, interspecific competition is deemed as one of the major 
forces responsible for shaping the distribution of species in space 
and time (Connor & Simberloff, 1983; Diamond, 1973). However, 
competition importance is disputable, especially for phytophagous 
insects, and some authors argue that food resources were not a 

limiting factor, and therefore, competition would be absent or very 
weak (Hairston, Smith, & Slobodkin, 1960; Strong, 1982). Later, with 
rising knowledge about plant defenses, the role of competition has 
gained prominence (Kaplan & Denno, 2007; Murdoch, 1966; Reitz 
& trumble, 2002), and recent studies have highlighted the import‐
ant role of competition for phytophagous insect community struc‐
ture (Cornelissen, de Carvalho Guimarães, Rodrigues Viana, & Silva, 
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Abstract
Environmental factors act as drivers of species coexistence or competition. Mesic 
environments favor the action of parasites and predators on gall communities, while 
the factors that determine the structure of gall communities in xeric environments 
remain unknown. We evaluated the structure of gall communities along an environ‐
mental gradient defined by intrinsic plant characteristics, soil fertility, and aridity, and 
investigated the role of competition as a structuring force of gall communities in xeric 
environments. We created null models to compare observed and simulated patterns 
of co‐occurrence of galls and used the C‐score index to assess community aggrega‐
tion or segregation. We used the NES C‐score (standardized C‐score) to compare 
patterns of co‐occurrence with parameters of environmental quality. Xeric environ‐
ments had poorer and more arid soils and more sclerophyllous plants than mesic 
environments, which was reflected in the distribution patterns of gall communities. 
Values of the C‐score index revealed a segregated distribution of gall morphospe‐
cies in xeric environments, but a random distribution in mesic environments. The 
low availability of resources for oviposition and the high density of gallers in xeric 
environments reinforce interspecific competition as an important structuring force 
for gall communities in these environments.
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2013;	Kaplan	&	Denno,	2007).	Indirect	mechanisms,	such	as	extreme	
or unstable environmental conditions, can now be incorporated into 
models to help understand the role of competition in assembling 
communities in climate change scenarios.

The structure of gall‐inducing insect communities can be deter‐
mined by environmental factors (Blanche, 2000; Butterill & Novotny, 
2015;	Craig,	Itami,	&	Craig,	2007;	Cuevas‐Reyes,	Quesada,	&	Oyama,	
2006;	da	Costa,	de	Siqueira	Neves,	de	Oliveira	Silva,	&	Fagundes,	
2011; Price, 2002), by top‐down (Fagundes, Neves, & Fernandes, 
2005;	Price,	1997)	or	bottom‐up	(Egan	&	Ott,	2007;	Espírito‐Santo,	
de S. Neves, Andrade‐Neto, & Fernandes, 2007; Hunter & Price, 
1992; Malinga, Valtonen, Nyeko, Vesterinen, & Roininen, 2014) 
mechanisms, and by interactions that occur within the same trophic 
level, such as interspecific competition (Cornelissen et al., 2013; 
Fagundes & Fernandes, 2011; Fagundes et al., 2018). Studies have 
reported that the results of interspecific interactions involving 
phytophagous insects can be habitat‐dependent (Kuchenbecker & 
Fagundes, 2018).

The environmental stress hypothesis (ESH) predicts that gall‐
inducing	 insect	diversity	 should	be	greater	 in	more	 stressful/xeric	
habitats (Fernandes & Price, 1988). The mechanisms underlying 
greater species richness in xeric habitats involve evolutionary and 
ecological processes (Fernandes & Price, 1988; Price, Fernandes, 
& Waring, 1987; Ribeiro & Basset, 2007). Among ecological mech‐
anisms, the actions of parasites and predators (third trophic level) 
are thought to be less effective at regulating gall‐inducing insect di‐
versity in xeric habitats, thus leading to greater diversity of gallers 
in	such	habitats	(Castellanos,	Cuevas‐Reyes,	Rios‐Casanova,	Oyama,	
&	Quesada,	2006).	Studies	have	also	shown	that	plants	growing	on	
water‐ and nutrient‐deprived soils are more sclerophyllous (Poorter, 
Niinemets, Poorter, Wright, & Villar, 2009) and accumulate higher 
levels of chemical compounds (Fagundes et al., 2018). Thus, internal‐
feeding gall‐inducing insects attacking such plants would experience 
greater protection from their natural enemies (Hardy & Cook, 2010; 
Ribeiro & Basset, 2007). These hypotheses have been supported by 
several studies conducted in tropical (Fernandes, Gonçalves‐Alvim, 
&	Carneiro,	2005;	Jesus,	Silva,	&	Fernandes,	2012;	Julião,	Almada,	
& Fernandes, 2014; Lara, Fernandes, & Gonçalves‐Alvim, 2002) and 
temperate (Fernandes, Duarte, & Lüttge, 2003; Fernandes & Price, 
1988, 1992) habitats.

Recent studies have shown that interspecific competition be 
an important phenomenon capable of shaping the community 
structure of sedentary organisms, such as gall‐inducing insects 
(e.g., Cornelissen et al., 2013; Fagundes et al., 2018). Some char‐
acteristics of the interaction between galling insects and their 
host plants make this system suitable for better understanding 
the processes that structure natural communities. For example, 
gall‐inducing insects have high specificity with regard to their host 
plant and the target organ to oviposition (Carneiro et al., 2009; 
Joy & Crespi, 2007) they synchronize the oviposition period with 
the plant phenological period, where there is growth but the tis‐
sues are not yet lignified (Whitham, 1978; Yukawa, 2000). Soon 
after oviposition, hatched larvae of galling insects induce rapid 

morphological and physiological changes in host plant tissue, 
draining resources for their own development (Höglund, 2014; 
Ollerstam,	 Rohfritsch,	Höglund,	 &	 Larsson,	 2002),	which	 poten‐
tially interferes with the oviposition behavior of females of other 
gall‐inducing insects species (Cornelissen et al., 2013). Because 
they are sessile and highly specific, galls are excellent models for 
understanding the effects of interspecific competition on commu‐
nity structuring (Cornelissen et al., 2013; Fagundes et al., 2018).

Interspecific	 competition	 in	 endophagous	 insect	 communities	
is affected by the direct action of bottom‐up and top‐down forces, 
which put pressure on the community (Kaplan & Denno, 2007). 
Because gall‐inducing insects have greater richness and abundance 
in habitats under higher stress and lower incidence of natural ene‐
mies (Castellanos et al., 2006; Fernandes & Price, 1988), competi‐
tion	can	be	expected	to	exert	pressure	in	this	community.	One	way	
to test these competitive hypotheses in natural communities when 
the manipulation of species is not possible is through the use of null 
models (e.g., Ribas & Schoereder, 2002). Null models are models of 
communities that have characteristics of their real equivalents, while 
the randomness of the distribution of the species is maintained, spe‐
cifically excluding the effects of biological interactions (Gotelli & 
Graves, 1996).

Adverse environmental characteristics, such as extreme tem‐
peratures, low water availability, high light incidence, and low soil 
fertility, are stress factors that directly affect plant development 
(Lázaro‐Nogal	et	al.,	2015;	Pennington	&	Collins,	2007;	Sapijanskas,	
Paquette, Potvin, Kunert, & Loreau, 2014). Variation in leaf charac‐
teristics and tree growth have been correlated with the efficiency 
of resource use and with plant phenotypic plasticity in response 
to such abiotic variation (Chaturvedi, Raghubanshi, & Singh, 2014; 
Lázaro‐Nogal	et	al.,	2015).	For	example,	 leaf	sclerophylly	is	a	plant	
response to stress factors, where leaves with thicker cuticles and 
greater stomatal density minimize water loss through transpiration 
(Bussotti,	 Pollastrini,	 Holland,	 &	 Brüggemann,	 2015;	 Reich	 et	 al.,	
2003; Williams & Black, 1993). These morphological and physiologi‐
cal adaptations of plants can determine the colonization and survival 
of plant species in different environments (Sultan, 2001). Therefore, 
measuring characteristics of plants can be a suitable surrogate for 
the	combined	effect	of	stress	 factors	acting	on	each	 individual.	 In	
this sense, species with wide geographical distributions must un‐
dergo changes in their development according to the great variation 
in the conditions that they are exposed to, with the effect escalating 
to higher trophic levels (Souza et al., 2018).

Copaifera langsdorffii (Fabaceae) has a wide geographical distri‐
bution and occurs in varied environments that vary widely in rainfall 
and soil quality. The species hosts the greatest richness of gall‐in‐
ducing insects in the Neotropical Region, which change as a function 
of habitat and host quality (Costa, 2016). Using this system, we seek 
to understand how interactions in communities can be modified 
under various environmental conditions, and how possible climate 
change can affect the structure of communities. We hypothesized 
that interspecific competition would be prevalent in xeric environ‐
ments. We predicted that plants should possess more sclerophyllous 
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leaflets and greater richness and abundance of gall‐inducing insects 
in xeric environments.

2  | MATERIAL S AND METHODS

2.1 | Study system

Copaifera langsdorffii Desf. (Fabaceae: Caesalpinioideae) is a tropi‐
cal	 arboreal	 plant	 species	 that	 can	 reach	 between	 8	 and	 25	m	 in	
height. The species has a wide geographical distribution, occurring 
in Argentina, Bolivia, and throughout the Brazilian cerrado, Atlantic 
Forest, and Amazon (Almeida, Poença, Sano, & Ribeiro, 1998; Costa 
et al., 2016). The species exhibits a high degree of phenotypic plas‐
ticity in seed size and other morphological and physiological traits, 
which explain the vast geographical distribution of this species 
(Souza & Fagundes, 2014). This plant has a remarkable period of 
deciduousness from July to August, with new leaves growing soon 
thereafter	(Souza,	Solar,	&	Fagundes,	2015).	Thus	far,	C. langsdorffii 
has been recorded to host 24 gall‐inducing insect species (Costa, 
Fagundes, & Neves, 2010; Fagundes, 2014). The wide geographical 
distribution of the species and the architecture of its plants are fac‐
tors that probably favored diversification of the gall‐inducing insects 
that this species hosts (da Costa et al., 2011; Fagundes, 2014).

2.2 | Study areas

This study was developed at seven sites with the presence of a pop‐
ulation of C. langsdorfii, each located in a different plant formation 
(Figure 1, Table 1). The sites were chosen to include a gradient of 
environmental stress, ranging from dry environments, such as rup‐
estrian grasslands and ironstone outcrops, to humid environments, 
such as Atlantic forest and riparian forest. The distance between 
sampling	areas	ranges	from	90	to	500	km.

The rupestrian grasslands were evaluated in a conservation 
unit of Serra do Cipó State Park (area of ca. 33,000 ha). This 
environment is dominated by tree–shrub species with sclero‐
phyllous leaves, and shallow and sandy nutritionally poor soils 
(Giulietti,Menezes, Pirani, Meguro, & Wanderley, 1987). The 
Ironstone	 outcrops	 are	 located	 in	 a	 conservation	 area	 in	 the	
Calçada mountain range of approximately 1,100 ha. These en‐
vironments have nutrient‐poor hight iron content soils, and the 
plants are sclerophyllous adapted to the sudden variations in tem‐
peratures	 and	 high	winds	 (Giulietti	 et	 al.,	 1987;	Oliveira‐Filho	&	
Ratter, 2002). The cerrado sensu stricto is located in a private re‐
serve of 20 ha, the soils are acidic and poor in nutrients, and the 
vegetation has leathery leaves, generally taken as an adaption to 
dry	conditions	(Oliveira,	1998;	Rizzini,	1997).	The	arboreal	cerrado	

F I G U R E  1  Map	of	the	seven	sites/populations	in	the	state	of	Minas	Gerais,	Brazil
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is located in a National Forest with 203.29 ha, the soils are deep 
and slightly acidic with medium content of organic matter from the 
fall of the leaves in the dry season, and the vegetation is large with 
closed crowns (Rizzini, 1997; Sano, 2008). The deciduous forests 
(dry	forests)	were	evaluated	in	a	private	reserve	with	350	ha,	the	
vegetation	is	large	(which	can	exceed	25	m),	and	the	total	leaf	ab‐
scission in the dry season is the main feature of this environment. 
The soils are alkaline and rich in nutrients, and leaf fall contrib‐
utes to soil fertility (Fagundes & Fernandes, 2011; Sano, 2008). 
The Atlantic forest was evaluated in a remnant of forest in the 
UFMG ecological station with an area of ca.114 ha. The vegetation 
has a large size forming a continuous canopy and high humidity. 
Soils are moist, shallow and poor in mineral nutrients; however, 
decomposition of organic matter is an important factor in nutrient 
availability for plants (Sano, 2008). The riparian forest was evalu‐
ated in an environmental protection reserve with an average area 
of ca. 98 ha. The vegetation forms corridors following the riverbed 
with,	the	fertile,	the	soils	and	high	relative	humidity	(Oliveira‐Filho	
& Ratter, 2002).

2.3 | Measurements of environmental stress

We obtained meteorological data for each of the studied sites for 
the 24 months preceding the study—a period corresponding to veg‐
etative investment by each plant (Fagundes et al., 2016). The data 
were obtained from the closest meteorological station to each of 
the sites using the public platform of the Brazilian Meteorological 
Institute	(www.inmet.gov.br).	Using	the	meteorological	data,	we	cal‐
culated	the	aridity	index	(AI)	for	each	site	using	the	formula:	AI	=	(P/
PET), where P is total monthly precipitation, and PET is potential 
monthly	evapotranspiration	(Picotte,	Rhode,	&	Cruzan,	2009).	In	this	
case,	 lower	AI	values	 indicate	higher	aridity	 (i.e.,	a	more	water‐de‐
prived habitat).

We also measured the chemical characteristics of the soil of 
each of the studied sites. We collected soil samples (three samples 
at 10 cm depth) below each individual plant of C. langsdorffii selected 
for	the	study	(45	soil	samples	at	each	site).	The	soil	samples	of	each	
site were homogenized to obtain a single composite soil sample 

per site, which were then submitted to chemical analysis at the Soil 
Laboratory of the Federal University of Minas Gerais.

2.4 | Biological data collection

Biological data were collected in the months of April and May of 
2015,	 before	 leaf	 fall,	 but	 when	 galls	 are	 completely	 established	
in the plants (Fagundes, 2014). Fifteen healthy and adult individu‐
als (i.e., individuals who have undergone a reproductive phase) of 
C. langsdorffii were selected at each sampling site. The plants have 
irregular distribution in the environment but while assuring a mini‐
mum distance of 30m between individuals in order to maximize in‐
dependence among samples. Ten terminal branches were removed 
from the crown of each plant (Costa et al., 2010), packed in plastic 
bags, and taken to the laboratory. The last three leaves of the last 
vegetative investment (annual plant growth easily identified by the 
visible scar on the branch) were selected from each branch for meas‐
uring other parameters.

The second pair of leaflets of each of the 10 branches removed 
per plant (300 leaflets for each site) was used to determinate leaf size 
and specific foliar mass (sfm) of C. langsdorffii. A disk (0.38 cm2) was 
removed from each leaflet, dried in oven at 40°C for 92 hr, and in‐
dividually weighed in an analytical balance (Cornelissen et al., 2003; 
Dwyer, Hobbs, & Mayfield, 2014). The size and mass of the leaf are 
proxy for foliar sclerophylly of the plants, so in this work we use only 
the sfm in the analyses, but the size of the leaf follows the same 
pattern. A total of 137 leaflets were evaluated in each population 
to determine the distribution pattern of galls. The method selected 
required	that	all	leaflets	possess	at	least	one	species	of	gall.	In	this	
way,	it	was	possible	to	create	a	presence/absence	matrix	of	galls	per	
leaflet, where presence is equivalent to more than one species on a 
leaflet, and absence is equivalent to a single species of gall on the 
leaflet.	Such	a	matrix	was	created	separately	 for	each	population/
site evaluated. Sampling was standardized at 137 leaflets per each 
population because this was the maximum number of leaflets found 
with	galls	 in	all	populations/sites.	The	galls	present	on	each	leaflet	
were counted and identified according to their morphology, color, 
texture, and size (da Costa et al., 2011; Fagundes, 2014).

TA B L E  1   Historical climatic characterization of the environmental variables of the study sites. Mean maximum temperature (°C) (T.max.), 
mean	minimum	temperature	(°C)	(T.min)	and	Piche	evaporation	(mm)	(Evapo).	Data	for	previous	55	years,	obtained	from	INMET	website,	
August	2015.	The	data	obtained	from	meteorological	stations	closest	to	the	study	sites

Habitat Coordinates Elevation Insolation T‐max T‐mim Evapo

Rupestrian grasslands 20°04′S,	43°59′W 1,423 185.21 28.12 14.65 89.43

Ironstone	outcrops 19°16′S,	43°35′W 1,200 168.73 28.05 15.39 87.71

Cerrado sensu stricto 16o40′S,	43o48′W 652 222.86 29.73 17.54 138.52

Arboreal cerrado 19°20′S	44°24′W 732 221.39 28.51 15.89 88.66

Dry forest 15º58′S,	44º16′W 826 240.36 31.44 18.39 143.51

Atlantic forest 19°53'S	43°58'W 915 208.05 27.13 17.26 116.92

Riparian forest 56°25′S,	80°96′W 480 229.28 31.03 18.30 125.62

http://www.inmet.gov.br
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2.5 | Data analysis

We performed a principal component analysis (PCA) to obtain a sum‐
mary of the soil variables by ordinating soil traits of the seven sites 
using soil fertility characteristics (Ph, H+ Al, Al3+, Ca, Mg, P, K, SB, t, 
m, V). We used generalized linear models (GLMs) followed by devia‐
tion	analysis	(ANODEV)	to	evaluate	whether	slm	varied	as	a	function	
of	sites	and/or	soil	fertility.	The	identity	of	each	site	and	the	scores	
of the first axis of the PCA were used as explanatory variables, while 
slm was used as the response variable. Models were evaluated using 
the “F” test with Gaussian error distribution.

Variation in gall‐inducing insect richness and abundance 
among	 sites	was	 also	 tested	 using	GLMs	 followed	 by	ANODEV.	
In	 this	 case,	 gall‐inducing	 insect	 richness,	 or	 abundance,	 was	
the	 response	 variable	 and	 sites/population	was	 the	 explanatory	
variable. The error distribution used was Poisson, corrected by 
quasi‐Poisson as necessary. Finally, to test the effects of slm on 
gall‐inducing insect richness and abundance we used generalized 
linear mixed‐effects models (GLMEr; Bolker et al., 2009). Here, 
gall‐inducing insect richness, or abundance, was the responses 
variable	 and	 slm	was	 the	 explanatory	 variable,	 while	 site/popu‐
lation was assumed to be a random effect, based on the Poisson 
distribution. The models were tested by comparison with a null 
model using a chi‐square test.

2.6 | Analysis of co‐occurrence and 
community structure

We used null models to compare observed and simulated patterns 
of	the	occurrence	of	gall‐inducing	insects	within	each	population/
site. Data on gall species of the leaflets were transformed into 
presence/absence	matrices	in	which	columns	represented	individ‐
ual leaflets, while rows represented species of galls. An individual 
matrix	was	created	for	each	site/population,	which	were	analyzed	

separately. The null hypothesis predicts that the presence of one 
gall species on a leaflet does not influence the presence of another 
on the same leaflet. Gall occurrence was analyzed using the EcoSim 
software (Gotelli & Entsminger, 2001). Thus, we used the C‐score 
index (Stone & Roberts, 1990) as the metric quantifying co‐oc‐
currence patterns, or “checkerboard units” (CU) between possible 
pairs	of	galls	species,	given	by	the	formula:	CU	=	(ri	−	S) (rj	−	S). The 
C‐score measures the average frequency of all possible pairs of spe‐
cies interacting at least once in the matrix. We used a “fixed‐fixed” 
algorithm	with	5,000	randomizations,	where	the	rows	and	columns	
of the original matrix were preserved (Gotelli & Entsminger, 2001).

Nine algorithms have been described for testing null models, 
with the most appropriate choice depending on the structure of the 
original matrix (Gotelli, 2000). The C‐score indices (Stone & Roberts, 
1990) measure the pattern of exclusion of species, which reflects 
competitive interactions. Thus, this index is an ideal model for work 
of this type where it is not possible to test the effect of the removal 
of one gall versus the removal of others (Cornelissen et al., 2013). 
Nonetheless, this index does not incorporate species abundance 
(Gotelli & Graves, 1996); on the other hand, it is less prone to type 
I	and	type	II	errors	(Gotelli,	2000).	Some	authors	point	out	that	an‐
alyzing the distribution of species with the C‐score reveals patterns 
of segregation when species do not interact simply because they 
use different resources (Diamond & Gilpin, 1982; Gotelli & Rohde, 
2002).	 In	 this	work,	 the	 evaluated	 species	 use	 the	 same	 resource	
(leaflet), and so the index is suitably applicable.

We	 obtained	 a	 single	 index	 value	 for	 each	 site/environment,	
which reflects the pattern of structure of the local community. 
However, the normalized effect size [(NES C‐score	 =	observed‐ex‐
pected	scores)/expected	scores)	(Ulrich,	Jabot,	&	Gotelli,	2016)]	was	
used	so	that	the	indexes	were	comparable	among	site/environment.	
High values of the NES C‐score index indicate low co‐occurrence of 
species in the community (Gotelli, 2000).

To test the hypothesis that competition operates in xeric envi‐
ronments, we built models in which the “NES C‐score” of each pop‐
ulation/site	was	tested	against	the	indicators	of	environmental	(soil	
fertility and aridity index) and plant (slm) stress. For this, we used 
GLMs,	where	mean	slm	(of	the	plants	of	each	population/site)	was	
used as the explanatory variable and NES C‐score as the response 
variable, with the Gaussian distribution.

All models described above were submitted to residual analysis 
to verify their adequacy and adjustment to the chosen error distri‐
bution	 (Crawley,	 2007).	 All	 GLMs,	 ANOSIM	 (Vegan	 package)	 (Jari	
Oksanen	et	al.,	2013),	and	generalized	linear	mixed‐effects	models	
(GLMEr) (Bates, Mächler, Bolker, & Walker, 2014) were performed in 
R software (R Core Team, 2017).

3  | RESULTS

The first two axes of the PCA together explained 76.98% of the total 
variation in soil quality among the seven sites (Figure 2). Sites with 
low soil quality (rupestrian grasslands and ironstone outcrops) were 

F I G U R E  2   Principal component analysis (PCA) of soil quality 
indicator parameters of the seven study sites
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negatively related to the first axis, while sites with higher soil qual‐
ity (arboreal cerrado, dry forest, and Atlantic forest) were positively 
related	 to	 the	 first	axis.	 In	addition,	 sites	with	average	soil	quality	
exhibited a weak relationship with the first axis of PCA. Therefore, 
the first axis of PCA represents a gradient of soil quality among the 
study sites.

The slm of plants of C. langsdorffii	varied	among	sites/environ‐
ments (F1,6	=	26.507	p < .001). Plants grown in more stressful sites 
with poorer soils (e.g., rupestrian grasslands, ironstone outcrops, and 
cerrado sensu stricto) have more sclerophyllous leaves than plants 
growth in more humid sites (e.g., arboreal cerrado, dry forest, ri‐
parian forest, and Atlantic forest; Figure 3a). More importantly, we 
found a positive relationship between soil quality (here represented 
by scores of the first axis of the PCA) and leaf sclerophylly (i.e., slm) 
(F1,6	=	6.70,	p	=	.04;	Figure	3b).

Richness	(deviance	=	28.915,	F	=	9.325,	p < .001) and abundance 
(deviance	=	176.55,	F	=	4.656,	p < .001) of gall‐inducing species per 
plant varied among the study sites, with more stressed sites having 
greater richness (Figure 4a) and abundance (Figure 4b) than more 
mesic sites. However, slm of plants did not affect the richness (de‐
viance:	325.83,	χ2	=	0.24,	p	=	.101)	or	abundance	(deviance:	648.8,	
χ2	=	234.4,	p	=	.276)	of	gall‐inducing	insects.

The patterns of co‐occurrence of gall‐inducing species also 
varied	among	 sites	 (Table	2).	 In	 fact,	 the	null	models	 showed	 that	
the communities of gall‐inducing insects at the xeric sites were not 
randomly distributed, with greater co‐occurrence than expected by 
chance, indicating that biotic forces are structuring these communi‐
ties	of	herbivores.	On	the	other	hand,	the	observed	pattern	of	gall‐
inducing insect co‐occurrence did not differ from that expected by 
chance	 in	mesic	environments.	 In	 this	 case,	biological	 interactions	

F I G U R E  3   (a) Variation in specific leaf mass of plants of Copaifera langsdorffii	among	the	seven	study	sites/environments	with	different	
levels of stress. Same letters on bars represent grouping by contrast analysis. (b) Variation of specific leaf mass by soil fertility (axis 1 of PCA)
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cannot be used to explain the distribution of gall‐inducing insects on 
plants of C. langsdorffii.

Finally, we observed that mean leaf sclerophylly of host plants 
and environmental stress affected the observed values of the C‐
score	index	of	gall‐inducing	insects	(Table	3).	In	fact,	leaf	sclerophylly	
(Figure	5a)	and	soil	quality	(Figure	5b)	were	positively	related	to	the	
C‐score index of the gall‐inducing insect communities, while the arid‐
ity	index	was	negatively	related	(Figure	5c).

4  | DISCUSSION

Our	assessment	of	the	role	of	competition	in	structuring	gall	com‐
munities along a gradient of environmental stress advances the un‐
derstanding of the role of environmental filters in biotic responses 
imposed by abiotic changes in a natural environment. Co‐occurrence 
analysis and the use of null models (Stone & Roberts, 1990) allowed 
us to conclude that there is less co‐occurrence of galls on the same 
leaflet in xeric environments, whereas species co‐occur freely on the 
same leaflet in mesic environments. With this, we can affirm that 
competition acts in the structuring of gall communities, but only in 
xeric environments. We also found structural changes in plant char‐
acteristics (leaf sclerophylly) and in the pattern of occurrence of galls 
that were dependent on the environments where they were found, 
with greater richness, abundance and aggregate patterns in xeric en‐
vironments.	Our	results	are	very	similar	to	patterns	of	gall	richness	
and abundance previously described in the literature (Fernandes et 

al.,	2005;	Lara	et	al.,	2002).	This	set	of	results	allows	a	better	under‐
standing of how environmental changes (e.g., temperature increase, 
desertification) can modify ecological interactions and the resultant 
impacts on biodiversity.

4.1 | Plastic responses of plants to 
environmental variation

Variation in the structural traits of plants along environmental stress 
gradients can be seen as adaptive strategies, which ultimately deter‐
mine the range of conditions and resources in which species can suc‐
cessfully survive and reproduce (Sultan, 2001). The environments 
studied here represent a gradient of hydric stress, which is mani‐
fested in structural differences of leaves in the different habitats, so 
that changes in these characteristics can be used as indicators of en‐
vironmental stress. Hence, the changes we observed here in vegeta‐
tive parameters of C. langsdorffii can alter the interactions between 
galling insects and their host plants, and may even have effects scal‐
ing	to	higher	trophic	levels	(Craig	et	al.,	2007;	Egan	&	Ott,	2007).

4.2 | Communities of galling insects

Many studies have shown that the distribution and survival of gall‐
ing insect communities are dependent on the characteristics of 
the environment where the host plant is established, and which 
ultimately shape such traits of galling insects (Blanche, 2000; 
Fernandes	&	 Price,	 1992;	 Price,	 2002).	 Stiling	 and	Moon	 (2005)	

Habitat

Indices for randomized 
matrices

Observed index

p‐Values

Minimum Maximum Obs. ≥ exp. Obs. ≤ exp.

Rupestrian 
grasslands

120.30 123.84 123.25 .001 .98

Ironstone	
outcrops

74.83 76.85 76.81 .0002 .9998

Cerrado sensu 
stricto

114.82 121.92 121.66 .003 .9970

Arboreal 
cerrado

128.66 132.98 130.78 .552 .456

Dry forest 115.62 118.62 117.89 .252 .757

Riparian 
forest

99.84 103.24 101.92 .15 .846

Atlantic forest 122.45 127.21 123.40 .89 .11

TA B L E  2   C‐score indices of the 
occurrence of galls species on Copaifera 
langsdorffii	in	the	seven	populations/
sites analyzed. Maximum and minimum 
indices	were	calculated	from	5,000	
randomizations of the original matrix. The 
p‐values were obtained by the bi‐flow 
test and represent the probability that 
the observed index is greater, less than, 
or equal to that expected by randomized 
matrices.	Observed	(obs),	expected	(exp)

TA B L E  3   Deviance analysis of the appropriate minimum models to evaluate the effects of stress indicators (environmental and plant) on 
the co‐occurrence of galls of Copaifera langsdorffii	in	the	seven	different	study	sites/populations

Response variables Explanatory variables Deviance Residual deviance DF F p

NES C‐score Specific leaf mass 0.005 0.0054 6 94.7 <.01

NES C‐score Aridity index 0.001 0.0014 6 10.5 .04

NES C‐score Soil fertility (PC1) 0.0001 0.0002 5 8.42 .04
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showed that the quality and availability of plant resources are the 
bottom‐up factors that most affect the growth, establishment, 
survival, and feeding preference of herbivores. Furthermore, host 
plant quality can directly influence the third trophic level (natu‐
ral enemies) (Legrand & Barbosa, 2003) and favor a high diver‐
sity of galls in the xeric environments (Fernandes & Price, 1992). 
We found a pattern consistent with those described in the litera‐
ture, that is, greater richness and abundance of galling insects in 
the	more	xeric	environments	 (Fernandes	et	al.,	2005;	Fernandes	
& Price, 1992; Jesus et al., 2012; Julião et al., 2014; Lara et al., 
2002). The plants inhabiting xeric environments tend to have 
higher availability of amino acids and free organic nitrogen com‐
pounds, which means that they are more nutritious (Price, 1991; 
White, 1969). These plants also have a limited capacity to present 
induced defense mechanisms (Fernandes, 1990, 2000; Fernandes 
&	Negreiros,	2001;	Hoglund,	Larsson,	&	Wingsle,	2005),	and	thus	
favor a greater amount of galling insects (Barbosa & Fernandes, 
2014). Therefore, it is plausible that there will be a higher abun‐
dance and richness of specialized galling insects in these xeric 
environments, as previously postulated by Fernandes and Price 
(1992).

4.3 | Gall community structure

We showed that habitat quality affects the diversity of gall‐inducing 
insect communities and that the structure of these communities var‐
ies across the range of stress. Some studies have shown competition 
between herbivorous insects to be a fairly common (Cornelissen et 
al., 2013; Kaplan & Denno, 2007; Reitz & Trumble, 2002) and cen‐
tral	process	to	community	structure	(Denno,	McClure,	&	Ott,	1995;	
Jennings, Krupa, Raffel, & Rohr, 2010; Kaplan & Denno, 2007; Reitz 
& Trumble, 2002). We also showed that the distribution patterns of 
galls species differed among the studied environments, with more 
xeric environments having a more segregated community pattern. 
Considering that we also found that individuals inhabiting xeric en‐
vironments have smaller leaflets, this pattern is likely to be result of 

competition for oviposition sites. As expected, galling species are 
distributed randomly among leaflets in mesic environments, with no 
patterns of segregation.

Several factors may explain the nonrandom distribution of gall‐
ing insect species in xeric environments, such as the high abundance 
of galls (Fernandes & Price, 1992; Price et al., 1987), the lower avail‐
ability of resources (space dispute, suitable places for oviposition), 
and less activity of natural enemies, all of which would allow more 
effective	infection	by	galling	insects	(Fernandes	et	al.,	2005;	Jesus	
et al., 2012; Lara et al., 2002). Another factor that operates on the 
scale of the leaflet, and which potentially favors the segregation of 
gall	species,	is	interference	competition.	Organisms	that	have	a	ses‐
sile habit are more susceptible to competitive influences because 
once they are established they cannot escape from their neighbors, 
with the outcome of such an interaction resulting in a segregated 
distribution pattern (Cornelissen et al., 2013; Kuebbing, Souza, & 
Sanders, 2014; Sanders, Gotelli, Heller, & Gordon, 2003). For exam‐
ple, using invasive plants as a model (i.e., sessile organisms), Sanders 
et al. (2003) demonstrated that interference competition was re‐
sponsible for the segregation pattern they found, which was similar 
to that found by the present study. Although galling insects occur 
on small islands of resources (e.g., the leaflet), we observed that 
in environments where leaflets are smaller (xeric environments), 
only a single gall morphospecies occurs on any given leaflet; that 
is, space might be moderating the choice of oviposition site. Similar 
results have been found for other systems, such as the invasive 
plants mentioned above (Sanders et al., 2003), arthropods (Ellwood, 
Manica, & Foster, 2009), and galls (Cornelissen et al., 2013), and in 
these cases, there was also evidence that competition was the main 
process responsible for community structure.

We used null models to evaluate the effect of competition 
on gall communities in different environments since they were 
the most viable (Cornelissen et al., 2013; Ribas & Schoereder, 
2002). The alternative of conducting exclusion experiments was 
not feasible since the effects of the removal of one gall on a 
competitor are difficult to detect (Cornelissen et al., 2013). The 

F I G U R E  5   Relationship between standardized NES C‐score values for all evaluated sites and (a) specific leaf mass, (b) soil fertility (axis 1 
of the PCA), and (c) aridity index (obtained with environmental variables of each site)
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significant relationship between NES C‐score indices and the in‐
dicators of environmental stress (specific leaf mass, soil fertility, 
and dryness index) found here allows us to conclude that bot‐
tom‐up forces, such as competition for foliar resources, are im‐
portant drivers of gall community structure. Xeric environments 
tend to have high NES C‐score values, indicating a low co‐occur‐
rence of the species evaluated in the study sites and revealing a 
segregated pattern of gall species in habitats where more sclero‐
phyllous traits prevail.

In	conclusion,	we	showed	how	environmental	variation	can	change	
plant structures and influence higher trophic levels (i.e., galling insects). 
Xeric environments have nutrient‐poor and arid soils with plants that 
are more sclerophyllous (high foliar mass), yet these environments 
have high richness and abundance of gall‐inducing insects. Likewise, 
the co‐occurrence of species also responded to environmental vari‐
ation, with less co‐occurrence of galls in xeric environments and no 
distribution pattern in mesic environments. The distribution of species 
among different environments is determined by assembly rules, mainly 
interspecific competition (Diamond, 1986), which is defined by the 
availability of resources. This work represents a step toward a better 
understanding of the evaluation of abiotic effects in tropical environ‐
ments and shows how species interactions can be affected by unstable 
environmental	conditions.	In	this	way,	we	accept	our	initial	hypothesis	
and argue that competition is an important force in structuring the gall 
communities in xeric environments.
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