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Abstract

Oxalate oxidase is a manganese containing enzyme that catalyzes the oxidation of oxalate

to carbon dioxide in a reaction that is coupled with the reduction of oxygen to hydrogen per-

oxide. Oxalate oxidase from Ceriporiopsis subvermispora (CsOxOx) is the first fungal and

bicupin enzyme identified that catalyzes this reaction. Potential applications of oxalate oxi-

dase for use in pancreatic cancer treatment, to prevent scaling in paper pulping, and in bio-

fuel cells have highlighted the need to understand the extent of the hydrogen peroxide

inhibition of the CsOxOx catalyzed oxidation of oxalate. We apply a membrane inlet mass

spectrometry (MIMS) assay to directly measure initial rates of carbon dioxide formation and

oxygen consumption in the presence and absence of hydrogen peroxide. This work demon-

strates that hydrogen peroxide is both a reversible noncompetitive inhibitor of the CsOxOx

catalyzed oxidation of oxalate and an irreversible inactivator. The build-up of the turnover-

generated hydrogen peroxide product leads to the inactivation of the enzyme. The introduc-

tion of catalase to reaction mixtures protects the enzyme from inactivation allowing reactions

to proceed to completion. Circular dichroism spectra indicate that no changes in global pro-

tein structure take place in the presence of hydrogen peroxide. Additionally, we show that

the CsOxOx catalyzed reaction with the three carbon substrate mesoxalate consumes oxy-

gen which is in contrast to previous proposals that it catalyzed a non-oxidative decarboxyl-

ation with this substrate.

Introduction

Oxalate oxidase (OxOx, E.C. 1.2.3.4) catalyzes the cleavage of the carbon-carbon bond of oxa-

late to yield two moles of carbon dioxide as molecular oxygen is reduced to hydrogen peroxide

[1]. Oxalate oxidase activity has been identified in numerous plant species including wheat [2],

barley [3–5], sorghum [6, 7], rice [8], and beet [9, 10] where it participates in the defense

against pathogens and in signaling [11]. As plant OxOx enzymes possess a single manganese
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ion within a single cupin (β-barrel), they are structurally classified as monocupins [12–15].

Sequence analysis indicates that oxalate oxidase from Ceriporiopsis subvermispora (CsOxOx) is

the first manganese-containing bicupin enzyme characterized that catalyzes this reaction [16].

There exists a 49% sequence identity with the bicupin microbial oxalate decarboxylases

(OxDC). OxDC catalyzes the carbon-carbon bond cleavage of oxalate to yield carbon dioxide

and formate in a reaction in which there is no net oxidation or reduction [17].

Recent interest in oxalate oxidase for its potential applications to mediate the enzymatic

degradation of oxalate for the prevention of scaling in the paper pulping industry [18] and as a

component of enzymatic biofuel cells [19, 20] highlight the need to understand its product

inhibition by hydrogen peroxide. Additionally, it has been noted that pancreatic cancer cells

have increased concentrations of ascorbate derived oxalic acid compared to normal cells [21]

and recent work exploring glutamine and ascorbate metabolism in pancreatic cancer [22, 23]

provide a rationale to determine if hydrogen peroxide producing oxidases introduced into

pancreatic cancers would have a cytotoxic effect. The only available information on the effects

of hydrogen peroxide on oxalate oxidase was a survey of the effects of a variety of compounds

found in bleaching filtrates (pulping) on the enzyme [24]. It was reported that hydrogen perox-

ide is well tolerated by barley oxalate oxidase up to 1 mM but that at 20 mM H2O2 only 30% of

the initial enzymatic activity remained. The fact that OxOx is typically assayed using a continu-

ous spectrophotometric assay in which H2O2 production is coupled to the horseradish peroxi-

dase (HRP) catalyzed oxidation of 2,2’-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid)

(ABTS) [5, 25] has confounded previous efforts to address this question. In this study, we

apply a membrane inlet mass spectrometry (MIMS) assay for OxOx [26] to directly measure

initial rates of carbon dioxide formation and oxygen consumption in the presence and absence

of hydrogen peroxide. MIMS uses a semipermeable membrane as an inlet to a mass spectrom-

eter for the measurement of the concentration of small uncharged molecules in solution. The

MIMS method of measuring oxalate oxidase activity involves continuous, real-time direct

detection of oxygen consumption and carbon dioxide production from the ion currents of

their respective mass peaks. 13C2-oxalate was used to allow for accurate detection of 13CO2 (m/

z 45) despite the presence of adventitious 12CO2 [26].

Despite much effort, the chemistry that oxalate degrading enzymes catalyze is not fully

understood. Recent investigations have informed a number of mechanistic proposals for the

degradation of oxalate by OxOx and OxDC. Common features of these proposals include the

binding of oxalate directly to Mn(II), the formation of Mn(III), and a radical intermediate spe-

cies [27–31]. A manganese-bound formyl radical results from a reversible proton-coupled

electron transfer. EPR spin-trapping experiments support the existence of an oxalate-derived

radical species formed during turnover [25, 32–34] that is common to both the OxOx and

OxDC mechanisms. OxOx is proposed to go through a percarbonate intermediate species

before the second mole of carbon dioxide is released. In OxDC from Bacillus subtilis, an active

site glutamic acid is proposed to protonate the manganese-bound formyl radical before for-

mate is released [27]. Initial rate measurements in the presence of hydrogen peroxide indicate

that OxDC is not inhibited by hydrogen peroxide [35]. While it has been reported that the Mn

(II) EPR signal of barley OxOx is not significantly altered in the presence of H2O2 [36], a

detailed consideration of the hydrogen peroxide inhibition of these enzymes is absent from the

literature.

In this work, we apply the MIMS direct measurement of carbon dioxide formation and

oxygen consumption to demonstrate that hydrogen peroxide is both a reversible noncompeti-

tive inhibitor of the CsOxOx catalyzed oxidation of oxalate and an irreversible inactivator.

HPLC analysis of reactants and products suggests that the build-up of turnover-generated

hydrogen peroxide leads to the inactivation of CsOxOx. The introduction of catalase to

Bicupin oxalate oxidase
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reaction mixtures protects the enzyme from inactivation thus allowing reactions to proceed to

completion. Circular dichroism spectra indicate that no changes to global protein structure

take place in the presence of hydrogen peroxide. Furthermore, we show that the CsOxOx cata-

lyzed reaction with the three carbon substrate mesoxalate consumes oxygen which is in con-

trast to previous proposals that it catalyzed a non-oxidative decarboxylation.

Materials and methods

Recombinant oxalate oxidase from Ceriporiopsis subvermispora was expressed and purified as

a secreted soluble protein using a Pichia pastoris expression system (Invitrogen) as previously

described [25]. 13C2-oxalate and 13C3-glycerol were purchased from Cambridge Isotope Labo-

ratories. Reagents were of the highest purity available and were purchased from either Sigma-

Aldrich or Fisher Scientific unless otherwise stated. A modified Lowry assay (Pierce) was used

to determine protein concentration using bovine serum albumin as a standard [37]. NMR

spectra were recorded on a Bruker DPX 300.

Membrane inlet mass spectrometry (MIMS)

A Hiden Analytical HPR40 membrane inlet mass spectrometer was used with a newly offered

probe from Hiden Analytical designed to match that described in work from the Silverman

laboratory [38–40]. The inlet probe comprised a length of tubular Silastic membrane (1.96

mm OD and 1.47 mm ID) sealed at one end by a ruby/sapphire ball (2 mm) and attached at

the other end to a piece of quartz tubing (120mm length, 2.3 mm ID, and 6.35 mm OD). A

stainless steel membrane support spring (316SS) was used to support the tubular Silastic mem-

brane at running vacuum pressures. The length of membrane from the ruby/sapphire ball to

the beginning of the glass tubing was 3.3 mm. For some measurements, the quartz tubing was

connected to a 76.3 cm length of Teflon tubing exiting into the main vacuum chamber of a

Hiden Analytical HPR-40 DSA Membrane Inlet Mass Spectrometer. When measuring oxygen

consumption, the quartz tubing was attached to an elbow joint that exited directly into the

main vacuum chamber.

The membrane inlet mass spectrometer was calibrated by measuring solutions of known

CO2 concentration prepared by adding solutions of K2CO3/KHCO3 (pH 10.2) into the reac-

tion vessel containing 50 mM acetic acid. The ion current at m/z 44 was recorded and plotted

versus CO2 concentration (Figure A in S1 File). The sensitivity of the measurements was

directly proportional to the stir rate so that standard curves were prepared for each experimen-

tal condition. Similarly, a standard curve for O2 is prepared by recording the average ion cur-

rents at m/z 32 in solutions of different O2 concentrations prepared by dilution/mixing of O2,

or air saturated reaction buffer at 25˚C (not shown).

Steady-state kinetic assays

In order to distinguish the CO2 generated by CsOxOx from CO2 dissolved in the reaction mix-

tures, doubly 13C labelled oxalate was employed. We measured the production of CO2 through

the m/z 45 peak (13CO2) and the consumption of O2 through the m/z peak 32. The 2.0 mL

reaction typically contained 50 mM succinate, pH 4.0, 10 mM 13C2–oxalate, pH 4.0 and was

initiated at 5 minutes by the addition of enzyme to a final concentration of 0.10 μM. The

response time of the instrument is about 6 seconds. To convert the measured ion currents into

reactant and product concentrations and rates, the spectrometer was calibrated for CO2 and

O2 as described above. A typical experiment is shown in Supporting Information Figure B in

S1 File. Measurements made using the MIMS assay are in good agreement with those from the

HRP coupled spectrophotometric assay [26]. The m/z 45 of reaction mixtures were measured

Bicupin oxalate oxidase
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until the rate of baseline decay was less than 5 x 10−15 torr per millisecond over two minutes.

Upon enzyme addition, the initial rate was subtracted from the baseline. All standard curve

and kinetic measurements were made in duplicate. The initial reaction rates at specific sub-

strate and enzyme concentrations were fit to the Michaelis-Menten formula (Eq 1) using the

software KaleidaGraph to determine the kinetic parameters Vmax and KM.

v ¼
Vmax½S�
KM þ ½S�

ð1Þ

In order to demonstrate the reversible nature of the hydrogen peroxide inhibition of the

CsOxOx catalyzed oxidation of oxalate, kinetic parameters were determined from initial rate

measurements made in initial concentrations of 2 mM, 4 mM, and 10 mM hydrogen peroxide.

To determine hydrogen peroxide kinetic constants of inhibition (KI app and αKI app values),

kinetic parameters were determined from initial rate measurements made in initial concentra-

tions of 10 mM, 20 mM, and 40 mM hydrogen peroxide. The hydrogen peroxide inhibition

kinetic model was approximated to a unireactant noncompetitive system as it is assumed that

oxygen binding occurs after oxalate binding and that the oxygen concentration is large enough

to assume the binding of oxygen is irreversible. This is reasonable since the KM for dioxygen

was reported to be less than 70 μM [26] and the concentration of oxygen in air saturated solu-

tion is 256 μM at 25˚C. The hydrogen peroxide kinetic constants KI app and αKI app where

determined from a series of Lineweaver-Burk plots and the respective secondary plots of slopes

or x-intercepts of the Lineweaver-Burk plots versus hydrogen peroxide concentration. The

value KI app was estimated from the x-intercept of the slope secondary plot, the value αKI app
was estimated from the x-intercept of the x-intercept secondary plot. The value α was esti-

mated by two methods. The first estimation was done by taking the ratio of αKI app to KI app
(Eq 2).

a ¼
aKI app
KI app

ð2Þ

The second estimation was done by determining the inverse velocity at the point around

which the Lineweaver-Burk plots constellate. The inverse initial velocity at the point of inter-

section (1/vint) and the Vmax values were then used to find α by Eq 3.

a ¼
1

1 � 1

vint
Vmax

ð3Þ

In order to distinguish reversible inhibition from irreversible inactivation, a plot was con-

structed in which the Vmax app (in total U) was determined using the MIMS assay as previously

described for assay mixtures containing 0 and 10 mM hydrogen peroxide [41]. Vmax app values

were obtained by measuring initial rates at five concentrations of potassium oxalate, pH 4.0

ranging from below 0.1 KM to 10 KM for oxalate (0.2 mM, 0.5 mM, 1.0 mM, 5.0 mM, and 10.0

mM final oxalate concentrations) at total enzyme concentrations of 104.5, 69.7, 34.8, and 17.4

nM (measured in duplicate). Vmax app values were plotted against total enzyme concentration.

To test that the observed decreased initial rates were the result of inhibition and not inactiva-

tion, 772 nM CsOxOx was pre-incubated for two hours at 25˚C with 10 mM hydrogen perox-

ide present. The enzyme was then assayed at a final enzyme concentration of 77.2 nM in final

concentrations of 1 mM and 10 mM hydrogen peroxide.

In order to explore the inactivation of CsOxOx during turnover, 772 nM enzyme was incu-

bated at 25˚C with 10 mM potassium oxalate in 50 mM sodium succinate, pH 4.0 in the pres-

ence and absence of 1.0 mg/mL bovine catalase [42]. To test the stability of the enzyme, 772

Bicupin oxalate oxidase
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nM enzyme was incubated also at 25˚C without oxalate present. Aliquots were removed at

time 0, 2 hours, and 24 hours and assayed to determine initial rates under saturating substrate

conditions (>10 KM) as described in the MIMS assay. Total enzyme concentrations of 128.8,

103.0, 77.2, and 51.5 nM were measured in duplicate. Rates under these conditions were plot-

ted against total enzyme concentration for the 0 and 2 hour time points.

Horseradish peroxidase coupled steady-state kinetic assay

A continuous spectrophotometric oxalate oxidase activity in which the production of H2O2 is

coupled to the horseradish peroxidase (HRP) catalyzed oxidation of 2,2’-azinobis-(3-ethyl-

benzthiazoline-6-sulphonic acid) (ABTS) was also used to measure the rate of hydrogen perox-

ide formation [5]. Reaction mixtures contained 25 U HRP, 5 mM ABTS, 50 mM potassium

oxalate (or mesoxalate), and CsOxOx dissolved in sodium succinate, pH 4.0 (total volume 1.0

mL). An extinction coefficient of 10,000 M-1 cm-1 (at 650 nm) for the ABTS radical product

was assumed in these experiments. Samples omitting HRP served as a control in order to dis-

tinguish between H2O2 production and any oxalate-dependent dye oxidation activity by

CsOxOx. Measurements were made at specific substrate and enzyme concentrations in dupli-

cate, and data were analyzed to obtain the values of Vmax app and KM app by standard com-

puter-based methods [43].

HPLC analysis of the products of the CsOxOx catalyzed oxidation of

oxalate

HPLC analyses were carried out using a 300mm x 7.8 mm Aminex HPX-87H ion exchange

column (Bio-Rad) attached to a Dionex HPLC system fitted with a 25 μL sample loop and UV/

Vis detection at 230 nm. The mobile phase was 4.0 mM sulfuric acid and all separations were

made at 25˚C in isocratic and isothermal 40 minute runs with flow rates of 0.6 mL/min. The

composition of samples was determined by comparison of retention times of sample peaks

with those of commercially available mesoxalate, oxalate, and glyoxylate. Reactions containing

50 mM sodium succinate at pH 4.0, approximately 5 μg/mL of CsOxOx and 10 mM of potas-

sium oxalate were incubated for 24 hours at 25˚C. At times 0 minutes, 20 minutes, 1 hour, 2

hours, and 24 hours, 50 μL aliquots were removed from the reaction mixture and injected into

the HPLC and assayed using the MIMS CsOxOx assay. Identical reactions containing 0.5 mg/

mL of bovine catalase were also performed and analyzed.

Circular Dichroism (CD) studies

All Circular Dichroism (CD) experiments were performed using a JASCO J-1500 Spectropo-

larimeter (JASCO Inc., Tokyo, Japan) using a 0.1-cm path length cell. All samples were ex-

changed into 25 mM potassium phosphate (pH 7.0). Analysis of CD spectra was performed

using Spectra Analysis (JASCO Inc., Tokyo, Japan). To test the effect of hydrogen peroxide on

global protein structure of CsOxOx, spectra were recorded of a 1.0 mg/mL solution at 4 mM,

8 mM, 12 mM, 16 mM, and 20 mM hydrogen peroxide at 25˚C. In order to observe the effects

of thermal denaturation on the secondary structural elements of CsOxOx, spectra were re-

corded of a 0.68 mg/mL solution at increasing temperatures (10˚C to 90˚C, with 10˚C incre-

ments). Each spectrum was taken after ten minutes of incubation at each temperature. A

Teflon stopper was used to retard evaporation. The scan rate, time constant and numbers of

scans were 10 nm/min, 2 s, and 3, respectively. Each spectrum was an accumulation of five

scans. A blank spectrum was performed with buffer and subtracted from the spectra.

Bicupin oxalate oxidase
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Results and discussion

Initial rate measurements reveal that hydrogen peroxide is a reversible

noncompetitive inhibitor of the CsOxOx catalyzed oxidation of oxalate

Product inhibition is a special case of inhibition in which the inhibitor is also a product of the

enzyme catalyzed reaction. Typically kinetic studies of enzymatic activity are done under con-

ditions at which the amount of product present during the reaction is effectively zero. This

removes the effects of the reverse reaction forming reactants as well as those effects observed

by the binding of product to enzyme thus simplifying the velocity equation dramatically, and,

in the case of a simple unireactant system, producing the well-known Michaelis-Menten equa-

tion (Eq 1). Introducing non-zero initial concentrations of product reintroduces the product

dependent terms of the velocity equation and often allows one to differentiate between two

similar potential kinetic models. The Michaelis-Menton and Lineweaver-Burk plots for vary-

ing concentrations of hydrogen peroxide are shown in Fig 1A and 1B, respectively. The per-

cent of the uninhibited specific activity and KM values for the CsOxOx catalyzed oxidation of

oxalate in the presence and absence of hydrogen peroxide measured by MIMS is presented in

Table 1. Initial concentrations of hydrogen peroxide reduce the apparent maximum velocity of

catalysis with only mild perturbations (a 60% increase) of the observed KM app values. These

data suggest that hydrogen peroxide behaves as a noncompetitive inhibitor of CsOxOx. Non-

competitive inhibitors may bind to the enzyme form that the substrate binds and a different

enzyme species [44, 45]. In the classic noncompetitive case, the equilibrium constants for the

binding of inhibitor with enzyme alone (KI) and inhibitor with another enzyme species (αKI,
described further below) are equal. When the two equilibrium constants are different, tradi-

tional inhibition nomenclature becomes ambiguous with this case often defined as a “mixed-

type” inhibitor and not a noncompetitive inhibitor. However, Cleland states that since there is

no a priori reason that the equilibrium constants should be equal, mixed inhibition should be

referred to as noncompetitive inhibition [44]. By this definition, a noncompetitive inhibitor

will reduce the apparent maximal velocity, but can reduce, increase or have no effect on the

apparent KM value. All models consistent with this observation have hydrogen peroxide

reversibly binding both CsOxOx alone and another CsOxOx complex.

To assign KI app and αKI app values for the noncompetitive inhibition observed in Fig 1A

and 1B, experiments at substrate concentrations resulting in Lineweaver-Burk plots of equi-

distance and equal weight points were carried out in a larger range of hydrogen peroxide

Fig 1. Michaelis-Menten (A) and Lineweaver-Burk (B) plots of the initial rates of oxalate oxidation by CsOxOx

demonstrating the effects of varying initial hydrogen peroxide concentrations: black, no H2O2; red, 2 mM

H2O2; blue, 4 mM H2O2; green, 10 mM H2O2.

https://doi.org/10.1371/journal.pone.0177164.g001

Bicupin oxalate oxidase
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concentrations. The resulting plots of reciprocal initial oxalate oxidase activity versus recipro-

cal oxalate concentration for CsOxOx are shown in Fig 2A. Fig 2B shows the secondary plots

of the slopes and intercepts of the reciprocal plot linear best fit lines versus hydrogen peroxide

concentration. The αKI app and KI app values are estimated to be 7.91 ± 1.12 and 2.84 ± 1.06

from the x-intercepts secondary plots [44]. The slope and intercept secondary plots are linear

(R2 values greater than 0.99) which suggests that the hydrogen peroxide inhibition of CsOxOx

is complete (no product is released from the inhibitor and the different enzyme species) and

not partial (up to 40 mM hydrogen peroxide). From these data, α was estimated to be 2.79 ±
1.12. A way to mathematically check this value is to use the regression lines from the reciprocal

plots (Fig 2B) [44]. The lines intersect at the point -0.207±0.011 on the x-axis and 0.195±0.042

on the y-axis, which corresponds to an α value of 2.25 ± 0.59. The values for the α constant

determined using two different the methods are in good agreement.

Reversible noncompetitive inhibition and irreversible inhibition may be distinguished by

plotting Vmax app data as a function of [E]t, where [E]t represents the total units of enzyme ac-

tivity added to the assay [41]. These data for the hydrogen peroxide inhibition of the CsOxOx

catalyzed oxidation of oxalate are shown in Fig 3. The rate of product formation is equal to the

product of the enzyme concentration and a kinetic factor which is a function of all substrate,

product activator, and inhibitor concentrations. The reaction rate of an enzyme catalyzed

reaction is, therefore, a linear function of the enzyme concentration with a y-intercept of 0 and

a slope of f([S], [P], [A], [I]) [42]. A non-zero x-intercept implies that the concentration of

enzyme has been changed with the difference of the x-intercept from zero defining the con-

centration of active enzyme removed or added. Reversible inhibitors by definition do not per-

manently inactivate the enzyme and therefore can only affect the slope of the line but not its

Table 1. Percent of the uninhibited specific activity and KM values for the CsOxOx catalyzed oxidation of oxalate in the presence and absence of

hydrogen peroxide measured by MIMS.

Substrate ± H2O2 % of Uninhibited Spe. Act., U/mg KM app, mMa

Oxalate 100 0.47 ± 0.03

+ 2 mM H2O2 81.3 0.47 ± 0.03

+ 4 mM H2O2 66.5 0.56 ± 0.04

+ 10 mMH2O2 42.9 0.76 ± 0.08

aUncertainties represent standard errors in the fit to the Michaelis–Menten expression.

https://doi.org/10.1371/journal.pone.0177164.t001

Fig 2. (A) Lineweaver-Burk plots of initial oxalate oxidase activity versus oxalate concentration for CsOxOx in

varying H2O2 concentrations: circles, no H2O2; squares, 10 mM H2O2; diamonds, 20 mM H2O2; triangles, 40

mM H2O2. (B) Secondary plots of the slopes and intercepts from of the reciprocal plot linear best fit lines (Fig

2A) versus hydrogen peroxide concentration; circles, slopes; squares, intercepts.

https://doi.org/10.1371/journal.pone.0177164.g002
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x-intercept. In Fig 3 the curves with and without initial concentrations of hydrogen peroxide

present do not appear to have different x-intercepts. The x-intercept for the plot without inhib-

itor present was 7 nM ± 8 nM and the x-intercept for the plot with inhibitor present was 8

nM ± 9 nM. These x-intercepts from both linear fits are not significantly different from each

other and they are not significantly different from zero (one standard deviation from the x-

intercept for both lines includes zero) suggesting that CsOxOx is not inactivated upon addition

of hydrogen peroxide within the time frame of the kinetic assay. Since the curve with hydrogen

peroxide present has a smaller slope and goes through the approximate origin, these data are

consistent with hydrogen peroxide being a reversible noncompetitive inhibitor of the CsOxOx

catalyzed oxidation of oxalate. In the case of an irreversible inhibitor, the slope of the line with

inhibitor present would have the same slope and intersect the x-axis at a position equal to the

amount of enzyme that is irreversibly inactivated [41, 42]. It is important to note that these

data (Fig 3) show that the concentration of irreversibly inactivated enzyme is negligible under

initial rate conditions.

Turnover-generated hydrogen peroxide leads to inactivation of CsOxOx

HPLC chromatograms monitoring the amounts of hydrogen peroxide and oxalate at discrete

time points are shown in Fig 4A (no catalase present) and 4B (catalase present). Hydrogen per-

oxide, oxalate and succinate standards eluted at 6.3 minutes, 6.9 minutes, and 12.4 minutes,

respectively and informed the peak assignments shown. In the absence of catalase the amount

of oxalate remaining after 24 hours was approximately 85% of the initial amount (10 mM) and

the appearance of an accumulation of hydrogen peroxide was visible in the chromatogram.

The proximity of the hydrogen peroxide peak and the oxalate peak confounded precise inte-

gration of their respective areas. After 24 hours, an aliquot of the sample without catalase had

no detectable activity in the MIMS assay suggesting that the CsOxOx present had become

inactivated by the build-up of turnover-generated hydrogen peroxide. Further, the addition of

Fig 3. Plot of Vmax app versus [E]t of the CsOxOx catalyzed oxidation of oxalate with (blue, 10 mM) and

without (black) hydrogen peroxide present. Each point represents a Vmax app determination at five

concentrations of oxalate (0.2, 0.5, 1.0, 5.0, and 10.0 mM).

https://doi.org/10.1371/journal.pone.0177164.g003
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catalase to the inactivated enzyme does not return any active CsOxOx from the observed inac-

tivation. These results suggest that hydrogen peroxide is having at least two separate effects on

CsOxOx. First, hydrogen peroxide behaves as a reversible noncompetitive inhibitor of the ini-

tial reaction velocity as described above. Separately, hydrogen peroxide also appears to be

involved in the slow onset inactivation of the CsOxOx enzyme observable minutes to hours

after initial enzyme turnover.

In order to observe the effects of turnover on CsOxOx, a plot of reaction velocities after 0

and 2 hours of turnover is shown in Fig 5. Similar to the data in Fig 3, the slope of the turnover

“treated” (two hours of turnover in the presence of 10 mM oxalate) initial rate curve is smaller

than that of the “untreated” (no prior turnover) control. This suggests that a perturbation of

Fig 4. HPLC analysis of the reaction products of the CsOxOx catalyzed of oxalate. An aliquot of the

incubation reaction without (A) or with (B) recombinant bovine catalase was analyzed at initiation, 20 minutes,

1 hour, 2 hours, and 24 hours.

https://doi.org/10.1371/journal.pone.0177164.g004

Fig 5. Plot of rates under saturating oxalate (>10 KM) versus [E]t of the CsOxOx catalyzed oxidation of

oxalate after no prior turnover (black) and prior incubation with oxalate (blue, 10 mM, 2 hours).

https://doi.org/10.1371/journal.pone.0177164.g005
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the kinetic function is at least partially due to the build-up of the hydrogen peroxide product

during the two hours of turnover. In Fig 5, however, the x-intercept of the turnover treated

curve is different from the control curve. This observation is consistent with inactivation

of CsOxOx over the two hour time period [41, 42]. The inactivation of the enzyme is only

seen when the enzyme is pre-incubated with oxalate. Pre-incubation in buffer or buffer and

hydrogen peroxide showed no inactivation. Specifically, CsOxOx preincubated with 10 mM

hydrogen peroxide for two hours then assayed at final concentrations of 1 mM and 10 mM

hydrogen peroxide resulted in measured initial rates that were commensurate with those

expected from the inhibition studies described above (91.4% and 44.3% of the uninhibited spe-

cific activity, respectively). Enzyme pre-incubated with 10 mM potassium oxalate possessed

less than 20 percent of the original enzyme activity after two hours (data not shown) and no

activity was detectable after 24 hours. Table 2 shows the results of MIMS measurements of

samples with no prior turnover, turnover in the absence and in the presence of 1.0 mg/mL

bovine catalase as described in the Materials and Methods section. The enzyme was reasonably

stable under the conditions of the experiment with 73 percent of original enzyme activity

remaining after incubation at 25˚C for 24 hours. When catalase is present, however, approxi-

mately 80 percent of the enzyme activity remains after 24 hours. These data suggest that hydro-

gen peroxide or a derivative there of has a key role in the turnover-dependent inactivation of

CsOxOx.

It is not immediately apparent how the presence of turnover-generated hydrogen peroxide

inactivates CsOxOx. One proposed mechanism for barley oxalate oxidase catalysis identifies

the fraction of enzyme containing Mn3+ as the active form of the enzyme [28]. In this proposal,

turnover is initiated after oxalate binds to the metal center and an electron is transferred from

the oxalate ligand to a Mn2+ ion. The loss of an electron facilitates the decarboxylation of the

oxalate ligand leaving a manganese bound carbon dioxide radical anion which is proposed to

react with diatomic oxygen to produce carbon dioxide and a hydroperoxyl radical. Spectro-

scopic studies consistent with the persistence of the hydroperoxyl radical species being critical

to enzyme turnover support this proposal. Whitaker et al have hypothesized that the hydroper-

oxyl radical directly reoxidizes the Mn2+ ion, reactivating the enzyme to the Mn3+ form for fur-

ther turnover. Loss of the hydroperoxyl radical would thus prevent the reoxidation of the

metal center rendering it inactive [28]. A similar mechanism of inactivation of OxDC was put

forth to describe the EPR observation of a spin trapped carbon dioxide radical species suggest-

ing a “leaky” active site from which the carbon dioxide radical can dissociate and enter bulk

solution. Again, it was proposed that in the absence of an electron sink at the active site, the

inactivation of the enzyme would occur after carbon dioxide radical dissociation [33]. It is

important to note that the Whitaker et almechanism and observations for monocupin barley

oxalate oxidase may not be accurate for CsOxOx. One significant difference is that the barley

Table 2. MIMS measurements of CsOxOx with no prior turnover, turnover in the absence and in the presence of 1.0 mg/mL bovine catalase.

Time, hours No prior turnover, U/mina,b Turnover

Treated, U/min

Turnover

treated plus catalase, U/min

0 0.026 ± 0.001 0.026 ± 0.001 0.030 ± 0.001

24 0.019 ± 0.001 ndc 0.024 ± 0.003

a error reported is the standard deviation of duplicates.
b a final enzyme concentration of 77.2 nM was used in all determinations.
c nd is not detectable under the conditions of the assay.

https://doi.org/10.1371/journal.pone.0177164.t002
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enzyme is inactivated under anaerobic condition in the presence of oxalate and remains so

even after the reintroduction of oxygen. In contrast, CsOxOx, while inactive under anaerobic

conditions in the presence of oxalate, regains activity upon reintroduction of oxygen (data not

shown). Another significant difference is that the presence of catalase accelerated enzyme inac-

tivation of the barley enzyme while catalase protects against inactivation in CsOxOx. These

observations are not consistent with a mechanism for CsOxOx utilizing a hydroperoxyl radical

alone for the regeneration of catalytically competent enzyme, and supports the role of the Mn

(II) in the reductive activation of diatomic oxygen. Our results suggest a completely different

method of inactivation. We observe that enzyme inactivation occurs during CsOxOx turnover

and only in the presence of hydrogen peroxide. This suggests that hydrogen peroxide is react-

ing irreversibly with a turnover intermediate rendering the enzyme inactive reminiscent of the

hydrogen peroxide inactivation of catalase [46].

MIMS measurements reveal approximately 1.3 moles of CO2 is produced per one mole of

O2 consumed. When this ratio is plotted as a function of oxalate (from 0.5 to 10 mM) in the

reaction mixture (Figure C in S1 File), the result is essentially a horizontal line indicating that

the ratio is independent of initial oxalate concentration. Furthermore, the ratio of CO2 pro-

duced per one mole of O2 consumed is independent of hydrogen peroxide concentration (in

both initial rate measurements and in the case of turnover induced inactivation). Despite the

application of numerous assay techniques and much interest in the stoichiometry of this reac-

tion, this is to our knowledge the first report of the observed stoichiometric ratio of moles of

CO2 produced per mole of O2 consumed of oxalate oxidase. It has been reported that for sor-

ghum OxOx, the consumption of oxalate was directly related to the formation of hydrogen

peroxide [6]. The application of Warburg manometric techniques to peroxisomal preparations

from the leaves of the spinach beet enzyme were not able to establish the stoichiometry due to

the small amount of oxygen consumed and carbon dioxide formed [10]. Manometric measure-

ments of rates of the enzyme from the parasitic fungus Tilletia controversa were confounded

by impure enzyme preparations [47]. Liquid scintillation procedures were used to relate 14CO2

formation to 14C-oxalate disappearance but the consumption of oxygen was not measured in

those experiments [48]. Interestingly, oxalate decarboxylase from Bacillus subtilis (BsOxDC)

has been mutated (SENS161-4DASN) to carry out the oxidation reaction and a ratio of 1.3

moles of hydrogen peroxide produced to 1 mole of the one electron oxidation of the dye ABTS

has been reported [27]. Recent MIMS measurements of this mutant BsOxDC assumed a ratio

of 2 moles of CO2 is produced per one mole of O2 consumed at low oxalate concentrations

[29]. This assumption contributed to the conclusion that only 9% of the total number of active

sites of the SENS161-4DASN mutant BsOxDC carry out the oxidation reaction with the

remaining sites nonoxidatively decarboxylating oxalate.

Previously proposed mechanistic schemes all assume a 2 to one molar relationship be-

tween CO2 production and O2 consumption. That a 1.3 to one ratio is observed in all con-

ditions tested raises the possibility that an additional oxidation may be taking place. One

possible explanation could reside in the fate of the carbon dioxide radical anion formed

after the first decarboxylation. As mentioned above, the spin trapping of this species in both

CsOxOx and OxDC [25, 32–34], suggests that it leaks out the active site. This radical may

react with dissolved oxygen from bulk solution to form a superoxide radical. Superoxide

radicals have been trapped in the case of the OxDC catalyzed redox neutral decarboxylation

of oxalate [33]. Since superoxide radicals (pKa of 4.88) exist primarily as hydroperoxyl radi-

cals under our experimental conditions, escape of this species from the active site and subse-

quent oxidation of exogenous species, would result in the observed increased consumption

of oxygen [28].
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Circular Dichroism (CD) studies of CsOxOx show no global structural

changes in the presence of hydrogen peroxide

CD experiments were performed to monitor the secondary structure as a function of hydrogen

peroxide concentration and temperature. Fig 6A shows that the CD spectrum for CsOxOx is

unperturbed by hydrogen peroxide concentrations up to 20 mM. These data indicate that

hydrogen peroxide does not affect the overall global protein structure of the enzyme. In con-

trast, the effect of temperature on the CD spectrum of CsOxOx is shown in Fig 6B. Spectra

taken at higher temperatures exhibit a deeper minimum and a shift toward the near UV

region. Typically, examples in the literature of the effect of temperature on the CD spectrum of

proteins show a lesser degree of molar ellipticity upon increasing temperature [49]. There are,

however, examples where the CD spectra display a greater degree of molar ellipticity as does

CsOxOx [50].

HPLC and MIMS analysis suggests that the products of the CsOxOx

mediated oxidation of mesoxalate are carbon dioxide and hydrogen

peroxide

We have previously used multiple injection isothermal titration calorimetry (ITC) to demon-

strate that the three carbon molecule mesoxalate (oxopropanedioic acid) serves as a substrate

for the CsOxOx-catalyzed reaction, with kinetic parameters comparable to that of oxalate, and

to identify a number of small molecule carboxylic acid compounds that also serve as substrates

for the enzyme [51]. It was previously proposed that the OxOx catalyzed reaction with mesoxa-

late yielded glyoxylate and carbon dioxide [19] in a reaction in which there is no net oxidation

or reduction. In an effort to establish, this we carried out an HPLC analysis of the reaction

products over time similar to that described above for the CsOxOx catalyzed oxidation of oxa-

late. No glyoxylate, however, was observed (data not shown). Furthermore, MIMS measure-

ments using unlabeled mesoxalate resulted in rates comparable to those measured using the

ITC assay and the horseradish peroxidase coupled spectrophotometric assay. A typical MIMS

experiment using 10 mM mesoxalate as the substrate is shown in Fig 7. MIMS measurements

show clear oxygen consumption demonstrating that CsOxOx oxidatively decarboxylates

mesoxalate. From these data we propose that the products of the CsOxOx mediated oxidation

of mesoxalate are carbon dioxide and hydrogen peroxide. Since mesoxalate exists primarily as

the hydrated form [52], we suggest the following balanced equation: C3O6H4 + O2! CO2

+ C2O4H2 + H2O2. Here we briefly note that to explore this reaction further we attempted the

preparation of 13C3-mesoxalate from 13C3-glycerol. In our hands, however, the application of a

published procedure for the one pot preparation of mesoxalate through the oxidation of glyc-

erol by TEMPO and sodium hypochlorite [53] yielded oxalate instead of the desired product.

That the oxidation of 13C3-glycerol by TEMPO and sodium hypochlorite yields 13C2-oxalate is

described in the Supporting Information section and 13C NMR spectra are shown in Figures

D-F in S1 File.

In summary, potential applications of CsOxOx have underscored the need to better under-

stand the hydrogen peroxide inhibition CsOxOx. Through the application of the MIMS direct

measurement of carbon dioxide formation and oxygen consumption, we have demonstrated

that hydrogen peroxide is both a reversible noncompetitive inhibitor and an irreversible inacti-

vator of the CsOxOx catalyzed oxidation of oxalate. HPLC analysis of reactants and products

indicate that the build-up of turnover-generated hydrogen peroxide leads to the inactivation of

CsOxOx. The introduction of catalase to reaction mixtures protects the enzyme from inactiva-

tion thus allowing reactions to proceed to completion and has broader implications for the use

of CsOxOx as a biocatalyst. Circular dichroism spectra indicate that no changes to global
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protein structure take place in the presence of hydrogen peroxide. The MIMS assay of the

CsOxOx catalyzed reaction with the three carbon substrate mesoxalate demonstrates that oxy-

gen is consumed which is in contrast to previous proposals that it catalyzed a non-oxidative

decarboxylation.

Fig 6. Circular dichroism spectra of CsOxOx. A. CD spectra of wild-type CsOxOx in the presence and

absence of hydrogen peroxide: light blue, no H2O2; orange, 4 mM H2O2; grey, 8 mM H2O2; yellow, 12 mM

H2O2; dark blue, 16 mM H2O2; green, 20 mM H2O2. B. CD spectra of .0.68mg/ml CsOxOx in 25 mM

potassium phosphate (pH 7.0) at different temperatures: dark grey, 90˚C; rust, 80˚C; dark blue, 70˚C; blue,

60˚C; green, 50˚C; yellow, 40˚C; grey, 30˚C; orange, 20˚C; light blue, 10˚C.

https://doi.org/10.1371/journal.pone.0177164.g006
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Supporting information

S1 File. Supplementary Information. Figure A: Standard curve constructed by measuring the

ion current (arbitrary scale) at m/z 44 of solutions of known CO2 content. Figure B: The con-

sumption of O2 and production of CO 2 (in arbitrary ion currents) during the CsOxOx cata-

lyzed oxidation of 13C2–oxalate. Figure C: Plot of the ratio of moles CO2 formed per mole of

oxygen consumed as a function of oxalate concentration. Text A: The oxidation of 13C3-glyc-

erol by TEMPO and sodium hypochlorite yields 13C2-oxalate. Figure D: 13C NMR of product

of the oxidation of 13C3-glycerol by TEMPO and sodium hypochlorite according to the

method of Ciriminna et al [53], pH 4.0. Figure E: 13C NMR 100 mM 13C2-oxalate (Cambridge

Isotope Labs), pH 4.0. Figure F: 13C NMR of product of the oxidation of 13C3-glycerol by

TEMPO and sodium hypochlorite (66 mM) spiked with 66 mM 13C2-oxalate (Cambridge Iso-

tope Labs).

(PDF)
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