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In recent years, computational fluid dynamics (CFD) has become a valuable tool for investigating hemodynamics in cerebral
aneurysms. CFD provides flow-related quantities, which have been shown to have a potential impact on aneurysm growth and
risk of rupture. However, the adoption of CFD tools in clinical settings is currently limited by the high computational cost and
the engineering expertise required for employing these tools, e.g., for mesh generation, appropriate choice of spatial and
temporal resolution, and of boundary conditions. Herein, we address these challenges by introducing a practical and robust
methodology, focusing on computational performance and minimizing user interaction through automated parameter selection.
We propose a fully automated pipeline that covers the steps from a patient-specific anatomical model to results, based on a fast,
graphics processing unit- (GPU-) accelerated CFD solver and a parameter selection methodology. We use a reduced order
model to compute the initial estimates of the spatial and temporal resolutions and an iterative approach that further adjusts the
resolution during the simulation without user interaction. The pipeline and the solver are validated based on previously
published results, and by comparing the results obtained for 20 cerebral aneurysm cases with those generated by a state-of-the-
art commercial solver (Ansys CFX, Canonsburg PA). The automatically selected spatial and temporal resolutions lead to results
which closely agree with the state-of-the-art, with an average relative difference of only 2%. Due to the GPU-based
parallelization, simulations are computationally efficient, with a median computation time of 40 minutes per simulation.

1. Introduction

Intracranial aneurysms are pathological disorders which
consist of an abnormal dilatation of the vessel wall. In severe
cases, the aneurysm may rupture, causing subarachnoid
hemorrhage, which can lead to severe disability or death
[1]. The incidence of unruptured aneurysms is high as it
occurs in about 6% of the population; however, the rupture
incidence is very low, 7.7 in 100000 cases annually [2].

Consequently, the treatment of unruptured aneurysms also
has a high economic cost [3]. Due to its high incidence, it is
critical to accurately identify the subset of patients with high
risk of rupture and plan the treatment accordingly.

There are several treatment options available to decrease
the likelihood of rupture. One possibility is to surgically clip
the aneurysm at its neck, to isolate the aneurysmal dome,
and to prevent bleeding [4]. Another solution consists of
filling the aneurysm with thin wires that constrict the flow
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and initiate a thrombotic reaction leading to a complete
occlusion [5]. A recently proposed approach is based on
placing a flow-diverter device that reduces the flow inside
the aneurysm by directing most of the flow through the main
artery, and inducing intra-aneurysmal thrombosis [6–8]. To
establish an accurate treatment plan and to evaluate the risk
of rupture, a good understanding of aneurysm hemodynam-
ics is required. These can be used to predict the flow before
and after the implantation, i.e., to investigate hemodynamic
changes and the potential benefits of different therapies and
choices for the patient.

The recent advances made in medical imaging, algo-
rithms for automatically extracting anatomical information
from the images, as well as in modern computing architec-
tures (like graphics processing units), have enabled the devel-
opment of much simpler workflows relying on physics-based
computational models for patient-specific hemodynamic
assessment [9]. Blood flow computations, when used in con-
junction with patient-specific anatomical models extracted
from medical images, provide important insights into the
structure and function of the cardiovascular system. These
techniques have been proposed for diagnosis, risk stratifica-
tion, and surgical planning [10–12].

An increasing number of researchers suggest that there is
a strong link between flow-related quantities and aneurysm
growth or risk of rupture. This is still a highly debated subject
[13, 14], and correlations found between hemodynamic
quantities and aneurysm progression are not yet conclusive,
as researchers proposed different quantities. Boussel et al.
[15] suggest that aneurysm growth occurs in regions of low
wall shear stress. Takao et al. [16] evaluated energy loss, a
pressure loss coefficient, wall shear stress, and oscillatory
shear index for the prediction of rupture in a set of 100
patients, suggesting that the pressure loss coefficient may be
a potential parameter for predicting the risk of rupture.
Furthermore, there is a debate on whether low or high wall
shear stress is contributing to aneurysm risk of rupture
[17]. To this extent, further efforts on integrating personalized
blood flow computations in clinical workflows are crucial for
developing a unified theory on aneurysm pathophysiology.

There are important technical challenges with the large-
scale adoption of CFD-based tools for the clinical hemody-
namic analysis of aneurysms. The methods are computation-
ally intensive and lead to large runtimes, which is in
contradiction with the high cost pressure and the continuously
decreasing time a clinician can dedicate to a patient. CFD com-
putations are commonly performed based on a discretization
of the Navier-Stokes equations, using either the finite element
method (FEM), finite difference methods (FDM), or finite
volume methods (FVM). Models based on implicit integration
using FEMhave the advantage of unconditional stability, along
with the ability to easily adapt to complex anatomical
structures but require significant computational resources
[18–20] for the solution of the resulting set of discrete equa-
tions. To further investigate the potential link between hemo-
dynamic quantities and aneurysm outcome, a large number of
computations are required; hence, an efficient approach for
simulating blood flow in patient-specific anatomical models
of aneurysms is of paramount importance. Although CFD-

based approaches are nowadays routinely used in medical
research activities to compute hemodynamic quantities under
patient-specific conditions, the only CFD-based solution
currently used in clinical practice, available only as a service,
is focusing on computing fractional flow reserve in coronary
arteries [21].

Another possible limitation of employing CFD in clinical
practice is the requirement of CFD-related expertise for
performing such computations, e.g., mesh generation, defin-
ing the boundary conditions, and choosing the spatial and
temporal resolutions. Typical approaches to this problem
consist of employing automated local mesh refinement tech-
niques [22–25]. This limitation has also been addressed by
Seo et al. [26], where a solver implementation based on the
immersed boundary method has been proposed [27]. Therein,
simulations are performed on a Cartesian grid using a level-set
function that is directly extracted from medical images,
bypassing the need of mesh generation. Recently, on-site clin-
ical solutions have been proposed for hemodynamic analysis,
e.g., for the diagnosis of coronary artery disease [28], which
are based on reduced-order modeling or machine learning,
and do not require specific CFD- or hemodynamics-related
expertise. No on-site solution has been proposed to date
relying on three-dimensional hemodynamic modeling.

To achieve a fully automated workflow for patient-
specific aneurysm hemodynamics, there are two main steps
which need to be considered. The first one is the extraction
of anatomical models from images, and the second one is
the flow computation itself. Although extracting anatomical
models is a difficult problem, there are many existing solu-
tions, both fully and semiautomated [29]. We consider that
the flow computation step is still a major challenge which
needs to be addressed.

In this paper, we propose an alternative approach for
further automating cerebral blood flow simulations, starting
from a patient-specific anatomical model reconstructed from
medical images. We use a reduced-order blood flow model
for computing the initial estimates of the flow distribution
in all the vessel branches, which is then used to compute an
initial grid resolution and time step. Furthermore, we employ
an iterative approach that, if needed, then further refines the
grid resolution and time step during the simulation.

To address the computational performance challenge, we
employ a GPU-accelerated implementation of the lattice
Boltzmann method (LBM). In recent years, LBM has emerged
as a strong alternative to traditional finite element method
(FEM), finite difference methods (FDM), and finite volume
methods (FVM) for modeling fluid flows [30, 31]. Unlike
FEM-based solvers, LBM does not require the use of complex
meshing algorithms and operates on a Cartesian lattice, greatly
simplifying the preprocessing step. Further, the highly local
structure of the LBM algorithm results in an impressive
performance on modern parallel architectures [32]. LBM has
also attracted the attention in the context of cerebral flow
simulation: Chopard et al. [33] employed an open source
LBM implementation [34] for studying thrombus formation
in a cerebral aneurysm, Bernsdorf and Wang [35] used LBM
to study flow rheology in cerebral aneurysm and Závodszky
and Paál [36] performed a validation study leading to good
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results when comparing different LBM implementations with
a finite volume solver and experimental data.

Excellent results were obtained using the herein proposed
solution in a very recently published clinical research paper
[37]. Therein, 338 aneurysms were analyzed based on clini-
cal, morphological, and hemodynamic parameters deter-
mined using CFD. A lower pressure loss coefficient was
identified as a significant risk factor for the rupture of small
intracranial aneurysms.

2. Methods

2.1. The Lattice Boltzmann Method. The lattice Boltzmann
method (LBM) emerged from the lattice gas automata and
is based on a discrete representation of the linearized Boltz-
mann equation on a regular Cartesian grid, see equation
(1). Unlike the continuumNavier-Stokes-based methods that
directly act on the macroscopic quantities of the flow, LBM
operates at the mesoscopic scale on the particle distribution
function. The discretized Boltzmann equations is

∂f i
∂t

� �
+ ci ⋅ ∇f i =Ω f ið Þ, ð1Þ

where f iðx, tÞ is the probability of finding a particle at spatial
location x and time t, traveling with a velocity ci, which
belongs to a set of preselected discrete velocities. The right-
hand side of equation (1) represents the collision term and
models the rate at which the fluid state moves towards the
thermodynamic equilibrium. There are different formula-
tions for the collision term, the most commonly used being
the Bhatnagar, Groos, and Krook (BGK) model [38]. The
BGK model is formulated as a linear relaxation of the distri-
bution functions towards an equilibrium distribution f eq and
is controlled by a relaxation factor τ which is directly related
to the kinematic viscosity ν through the relation, τ = ðν/c2s Þ
+ 0:5. Here, cs is the speed of sound on the lattice, which
can be computed for standard isotropic Cartesian lattices as
c2s = 1/3. It is the most simple and efficient implementation,
but the BGK model lacks numerical stability when τ
approaches 0.5. This limitation has been addressed and has
led to other collision models, e.g., the multiple relaxation
time (MRT) model [39] and the entropic model [40].

Equation (1) is a partial differential equation where the
unknown is the density function f i. It is typically solved using
an explicit time discretization scheme based on two steps:
collision (2) and streaming (3), which are applied at each grid
point x:

f collð Þ
i = f i x, tð Þ − 〠

N

j=0
Ωi,j f j x, tð Þ − f eqð Þ

j x, tð Þ
� �

, ð2Þ

f i x + ciδt, t + δtð Þ = f collð Þ x, tð Þ, ð3Þ
where f eqi is the equilibrium distributions and depends only
on the fluid velocity u and density ρ.Ω is the collision matrix
which contains parameters controlling the relaxation of the
distributions towards the equilibrium. There are different

formulations for both f eqi and Ω, depending on the chosen
collision model, e.g., for the BGK model Ω = τI. The macro-
scopic velocity u and pressure P of the fluid are related to the
density functions f i as follows:

P = ρc2s = 〠
N

i=0
f ic

2
s ,

u = 1
ρ
〠
N

i=0
ci f i:

ð4Þ

The discrete velocities ci are associated to a lattice
structure, such that each vector ci corresponds to a link con-
necting a node x with a neighboring node x + ci. The most
commonly employed lattice structures for 3D fluid computa-
tions are based on 15, 19, or 27 velocities. Our implementa-
tion is based on the multiple relaxation time (MRT)
collision operator and a three-dimensional 19-velocity lattice
[39]. The main justification for choosing the MRT collision
model is the significant improvement in numerical stability
at higher Reynolds number flows, compared to the classic
LBGK approach. Although cerebral blood flow typically has
low Reynolds number, the presence of an aneurysm can lead
to more complex flow patterns which may require signifi-
cantly finer grid resolutions for LBGK-based simulations.
Furthermore, Závodszky and Paál [36] performed LBM sim-
ulations on an intracranial aneurysm using different collision
models and showed that the MRT model is the most accurate
for this flow configuration. In the MRT model, the relaxation
matrix takes the form Ω =M−1SM. The distribution func-
tions f are first transformed using the matrix M into
moments m =Mf , and the relaxation towards equilibrium
is performed in the moment space using the relaxation
matrix S. The relaxation matrix S is a diagonal matrix
containing a relaxation parameter for each momentmi. Once
the new moments m have been computed, they are trans-
formed back to the f space using M−1. For a more detailed
description of the MRT model and for numerical values of
the relaxation parameters, we refer to [39].

For lattice nodes located near a boundary, i.e., for which a
neighboring node is located outside the fluid region, there are
unknown f i values that are required to perform the stream-
ing step (3). The most commonly used way to compute the
unknown distributions is the bounce-back approach [41]:
the unknown f i are set to the values corresponding to the
opposite lattice direction f i′ , such as ci = −ci′ . This is equiva-
lent to reversing the velocity of a particle colliding with the
wall. Herein, we employ an interpolated bounce-back scheme
[42] that can be used for curved walls, being able to take into
account the exact location of the vessel surface between two
lattice locations:

f i′ x, t + 1ð Þ = 2qi f
collð Þ
i x, tð Þ

+ 1 − 2qið Þf collð Þ
i x − ci, tð Þ2αici′uw, qi <

1
2 ,

ð5Þ
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f i′ x, t + 1ð Þ = 1
2qi

f collð Þ
i x, tð Þ

+ 2qi − 1
2qi

f collð Þ
i′ x, tð Þ + 1

qi
αici′uw, qi ≥

1
2 :

ð6Þ
uw is the prescribed velocity and qi is a factor with a value
between 0 and 1 that accounts for the exact position of the
wall between two lattice nodes (see below for more details).
For the no-slip boundaries, i.e., the vessel wall, uw is set to
zero, while for the vessel inflow, it is set to match the
prescribed flow rate. We emphasize that this interpolated
bounce-back formulation is capable of taking into account
the exact location of the boundary. Although at a fundamen-
tal level the fluid domain is approximated as a staircase-
shaped volume, the surface is described as an isosurface of
a continuous and smooth scalar field; therefore, the boundary
surface is independent of the chosen grid resolution and its
exact location is always imposed.

For the outflow boundary, the velocity is typically
unknown and the pressure is imposed. In this case, the non-
equilibrium extrapolation method [43] is employed, which
replaces all the f i values at the boundary using information
extrapolated from a neighboring location:

f i x, t + Δtð Þ = f eqi x, tð Þ + 1 −Ωi,j
� �

f neqi xneigh, t
� �

, ð7Þ

where f neq = f i − f eqi is the nonequilibrium part of the distri-
bution functions, and xneigh is a neighboring fluid node
located along the boundary surface normal.

2.2. Grid Generation. The vessel geometry is initially given as
a surface mesh where each polygon is tagged depending on
the surface to which it belongs: inlets, outlets, or vessel wall.
Since LBM computations are performed on a Cartesian grid,
the given mesh is voxelized and a level-set representation of
the vessel geometry is obtained: a signed distance field ϕðxÞ
such that ϕðxÞ < 0 for the inside (fluid) region of the domain
and ϕðxÞ > 0 for the outside (solid) region. The distance field
ϕ is computed by mapping each node to the closest polygon
on the mesh and computing the signed point-to-triangle
distance. The exact distance is only required for nodes
located close to the boundary, to perform the interpolations
described by equations (5) and (6), i.e., for computing the
qi values. Hence, the exact distance is computed only for
nodes located in a range of ±2δx on both sides of the bound-
ary. For the rest of the domain, only the sign of ϕ is required,
and for these nodes, the distance field is extrapolated from
the boundary region range. This is an important aspect of
the performance improvement aspect, since computing the
exact distance for the entire domain would dramatically
increase the execution time [44].

The level-set function alone can be used to determine if a
grid node is located at the boundary; however, additional
information is required to determine which type of boundary
condition to apply at each boundary node, i.e., inlet, outlet, or
solid wall. Hence, each grid node needs to be labeled accord-
ingly. The labels are computed during the voxelization step
by mapping each grid node to its closest polygon on the
mesh. Boundary nodes that are located at the intersection
of two surfaces of different types, i.e. an inlet and wall
intersection or an outlet and wall intersection, are considered
corner nodes, and a special labeling logic is employed. We
found the logic of labeling corner nodes to be a highly
sensitive aspect, as it has a significant effect on the flow when
dealing with complex-shaped boundaries. A node x in the
grid is considered to be a boundary node if ϕðxÞ ≤ 0, and
there is an i such that x + ci is located on the other side of
the surface, i.e., ϕðx + ciÞ > 0. A boundary node is considered
to be a corner node if ∃i, j, such that the segment given by x
and x + ci intersects an inlet or outlet surface, and the

𝛿x

𝛿t

Stability region

Eq. (12)
Eq. (13)

Figure 2: Stability region given by the LBM stability constraints for
minimum viscosity (green) and for maximum velocity (red).

Solid nodes
Fluid nodes
Wall nodes

Inlet nodes
Outlet nodes

(a) (b)

Figure 1: 2D analogy of the node tagging process: the given surface mesh with labeled subsurfaces (a) and the grid representation (b).
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segment given by x and x + cj intersects a wall surface.
Figure 1 shows a graphical representation of the node
labeling process. In the following, we present the labeling
logic for each type:

(1) Inlet and outlet nodes: all nodes x for which ϕðxÞ ≤ 0,
and there is an i such that ϕðx + ciÞ > 0, and the
segment given by x and x + ci intersects an inlet or
outlet surface, respectively

(2) Wall nodes: all the unlabeled nodes x for which
ϕðxÞ ≤ 0, and there is an i such that ϕðx + ciÞ > 0,
and the segment given by x and x + ci intersects
a vessel wall surface

(3) Bulk fluid nodes: all the remaining unlabeled nodes
with ϕðxÞ ≤ 0

(4) Solid nodes: the remaining unlabeled nodes are
labeled as solid

We emphasize that the node labeling steps must be
performed sequentially, in the given order, to correctly prior-
itize labeling for the corner nodes.

The factors qi used in equations (5) and (6) for interpolat-
ing the distributions are computed using values of the signed
distance field ϕ at the current node x and the neighboring
node x + ci as follows:

qi =
ϕ xð Þ

ϕ xð Þ − ϕ x + c ið Þ : ð8Þ

All the operations described above are completely auto-
mated: after passing the initial surface mesh, there is no user
interaction required for setting up the simulation. Although
these operations are computationally expensive, they are only
performed once in the preprocessing stage of the simulation;
hence, the impact on the overall computation time is small.
Under typical simulation configurations, the entire prepro-
cessing step occupies a very small fraction of the whole
computation time, for example, using a grid of 23.3 million
nodes and a surface mesh of 318000 triangles, it requires
around 1.4 minutes of runtime. Furthermore, the preprocess-
ing time was found to change very little with respect to mesh
size but increases quadratically when grid size is increased.

2.3. Automatic Model-Based Parameter Selection. Reducing
the user interaction and the required CFD-related expertise
represents an important aspect for employing a flow solver
in a clinical setting. A key feature of our implementation is
the automatic tuning of the time step δt and the spatial reso-
lution δx, for optimizing accuracy and performance. To
achieve this, we propose a heuristic approach based on the
known LBM stability limits and some empirically chosen fac-
tors. More specifically, δt and δx are chosen to be as coarse as
possible, but at the same time, to be small enough to capture
relevant flow features and to satisfy LBM-specific stability
constraints:

νlbm > νmin, ð9Þ

ulbm < umax, ð10Þ
where νlbm and ulbm are the nondimensional kinematic
viscosity and flow velocity, respectively. For the 19-velocity
MRT implementation, the critical values are νmin = 2:54 × 1
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0−3 and umax = 0:19 [39]; however, we used smaller values,
umax = 0:15 and νmin = 1:00 × 10−3, to avoid coming too close
to the stability limit. These critical values are defined in terms
of a lattice-based unit system, which is different from the phys-
ical viscosity and velocities. The transformation between the
lattice and physical unit systems is performed using unit scale
factors: δx, δt, and δm for position, time, and, respectively,
mass. For example, the following transformations are employed
for velocity u = ulbmðδx/δtÞ and pressure P = Plbmðδm/δxδt2Þ.

Writing equations (9) and (10) for physical quantities,
i.e., ν = νlbmðδx2/δtÞ and u = ulbmðδx/δtÞ and collecting δx

and δt leads to the stability conditions:

δt > Vmin
V

δx2, ð11Þ

δt < umax
maxx,t uk k x, tð Þð Þ δx: ð12Þ

We emphasize that the upper threshold for the velocity
umax is expressed in lattice units, while the velocity magni-
tude kukðx, tÞ is expressed in physical units. Figure 2 displays
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a graphical representation of the stability range, i.e., the
region between the two curves. Although the lower limit of
the time step, for a given spatial resolution (i.e., equation
(11)), is not common for typical CFD models, for LBM, the
nondimensional viscosity νlbm must be above the critical
value νmin which depends on the chosen collision model.

The chosen ðδx, δtÞ values that maximize performance
while remaining in the stable region are found at the upper
intersection of the two curves. As for δm, it is computed from
the physical and nondimensional density as follows:

ρ = ρlbm
δm
δx3

: ð13Þ

The nondimensional density ρlbm is typically set to 1;
hence, δm = ρδx3. To compute the optimal ðδx, δtÞ values
using equations (11) and (12), two quantities are required:
the physical kinematic viscosity ν and the maximum physical
flow velocity umax. Viscosity ν is known, however, since it
depends on the vessel geometry (e.g., geometries with multi-
ple outlets), there is no information regarding the maximum
velocity umax at the beginning of the simulation. Hence, ini-
tially, δt and δx are computed using an estimated value, dis-
cussed below. As the flow is developing, the maximum flow
velocity is continuously monitored, and if it exceeds the crit-
ical threshold value (equation (10)), δt and δx are adapted to
satisfy the stability constraints. After a grid and/or time step
refinement, the simulation is restarted from t = 0 using the
new ðδx, δtÞ values.

The number of required refinements (and simulation
restarts) depends on the accuracy of the initial estimate of
the maximum flow velocity umax. For example, if the vessel
geometry presents narrowing segments, the flow velocity
increases locally due to convective acceleration and a high
number of refinements would be required, resulting in poor
runtime performance. Similarly, if the initial estimate is too
high, then the grid resolution and time step may be too fine,
also resulting in poor runtime performance. A good estimate
of umax would consequently result in a good estimate of the
required spatial and temporal resolutions and optimal com-
putational performance. To improve the initial estimate of
umax, we utilize a surrogate reduced-order model to estimate
the distribution of flow in the vasculature. The reduced-order
model is formulated as a local cross-sectionally averaged
version of the Navier-Stokes equations, and therefore only

solves for the total flow and pressure instead of the detailed
velocity field. Such reduced-order models have been success-
fully used in the past to compute time-varying flow rate and
pressure waveforms in full-body arterial models [45] and
under pathologic conditions in specific parts of the circula-
tion: coronary atherosclerosis [46], aortic coarctation [47],
abdominal aorta aneurysm [48], and femoral bypass [49].
The one-dimensional model used herein has been previously
introduced in [48] and was validated in several clinical stud-
ies [50, 51] in the context of coronary artery flow.

The one-dimensional blood flow model is derived from
the three-dimensional Navier-Stokes equations based on a
series of simplifying assumptions [52]. The governing equa-
tions ensuring mass and momentum conservation are

∂A
∂t

+ ∂q
∂x

= 0,

∂q
∂t

+ ∂
∂x

α
∂q2

A

� �
+ A∂p

ρ∂x
= KR

q
A
,

ð14Þ

where q = qðx, tÞ is the flow rate at the axial location x and
time t, Aðx, tÞ is the cross-sectional area, pðx, tÞ is the local
pressure, and ρ is the density. Coefficients α and KR account
for the momentum-flux correction and viscous losses due to
friction, respectively. A state equation is employed to close
the system of equations, defining a relationship between the
local cross-sectional area and the local pressure.

p =Ψel Að Þ + p0 =
4 Eh
3r0 xð Þ 1 −

ffiffiffiffiffi
A0
A

r !
+ p0, ð15Þ

where E is the Young modulus, h is the wall thickness, r0 is
the initial radius corresponding to the initial pressure p0,
and A0 is the initial cross-sectional area. Since the purpose
of using the reduced-order model is to obtain a reliable initial
estimate of the flow distribution for the rigid-wall LBM
model, a very large wall stiffness is chosen, i.e., the elastic
parameter is set to a very large value. At each bifurcation,
the continuity of flow and total pressure (sum of dynamic
and statis pressure) is imposed.

The same inlet and outlet boundary conditions as for the
LBM solver are employed, and the time-varying pressures
and flow rates along the centerlines of the anatomical model
are computed. The cross-sectional velocity profile is assumed
to be parabolic; hence, the maximum velocity umax = 2umean
is approximated as

umax ≈max 2 q x, tð Þ
A xð Þ

� �
, ð16Þ

where the maximum is taken for both the centerline position
x and time t.

The approach of using a reduced-order model, by provid-
ing reasonable initial estimates, significantly mitigates the
need for grid and time step refinement. However, since the
refinement operations are affecting the total runtime perfor-
mance, we apply a heuristic and reduce the initially estimated

Table 1: Inlet pressure drop for the solutions in [61] and for the
LBM-based approach.

Case
Steinman phase I CFD solutions

LBM
Median Interquartile range

Pulsatile 1

Peak 13.7 13.0-13.9 14.2

Cycle averaged 5.0 4.8-5.1 5.0

Pulsatile 2

Peak 20.5 19.4-21.0 20.5

Cycle averaged 7.6 7.2-7.8 7.7
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resolution by 20%, with the purpose of further improving
performance. As a result, we found that only 1-2 refinement
operations were needed on average for the 20 patient-specific
aneurysm anatomies presented in Section 3.1.

We emphasize that the sole purpose of the reduced-order
model is to provide a gross initial estimate of the required spa-
tial and temporal resolutions, which are then further refined
during the 3D simulation. Furthermore, it is not necessary
for the presented 1D model to be employed for this task; any
reduced-order flow model can be used, for instance [53–55].

Besides the two criteria described above for selecting the
initial resolution (equations (11) and (12)), an additional cri-
terion based on the geometry of the vessel was found to be
necessary. Specifically, in cases where the vessel has a second-
ary branch with a very small radius and a corresponding very
small flow rate, the estimated resolution may be too coarse
for that branch. The additional criterion consists in limiting

the δx value such that the minimum vessel diameter is
represented by at least 15 nodes.

2.4. GPU Implementation. In the past, most high-
performance computations were executed on large clusters
of computers, each capable of executing a small number of
parallel threads. However, over the last decade, general pur-
pose graphics processing units (GPUs) have shown a tremen-
dous increase in performance. Each GPU is capable of
executing thousands of low-overhead threads simulta-
neously. While this kind of performance was originally devel-
oped for supporting video applications, they have become
indispensable for scientific computing and for accelerating
the performance of machine learning algorithms.

The lattice Boltzmann method is inherently a highly
parallel algorithm, owing to the largely local nature of the
computations. As discussed earlier, there are two main

(a) (b)

(c) (d)

(e) (f)

Figure 6: Velocity contours for the Pulsatile 2 configuration: cycle averaged velocity contours at 30 cm/s (top) and peak velocity contours at
50 cm/s (bottom) for the LBM based (a, d), Nektar1 (b, e) and Nektar2 (c, f) solutions (CFD Aneurysm challenge [61]).
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operations—collision and streaming. The computations in
the collision step require only local information, whereas
the computations in the streaming step require communica-
tion between neighboring sets of nodes. Owing to this
structure of computations, advances in computing architec-
tures, e.g., GPUs, can be exploited much better than
traditional techniques such as finite element methods, which
couple the solution at all nodes in the domain at each time
step. Several past works have demonstrated the high
performance of LBM models developed for GPU systems
(for instance, [32, 56–59]).

In the following, we discuss the data structures used to
optimize the LBM implementation for GPUs. Depending
on the geometric complexity of the given vessel, the fluid
region of the domain usually occupies a small fraction of
the entire volume. Hence, allocating memory for all the
nodes would be impractical and would reduce the maximum
grid resolution due to memory constraint. Unstructured
grids are inherently better at handling such geometric com-
plexity, but they cannot be parallelized as easily. The main
advantage of a structured grid is that one is able to access
any node directly from its grid coordinates ði, j, kÞ, without
performing a search operation. This is an important perfor-
mance aspect since, during the streaming step (3), neighbor-
ing locations x + ci are required for each node x. To address
this issue and at the same time maintain the advantages of
a structured grid, we employed an indirect addressing
scheme consisting of using an additional indexing array.

A two-dimensional analogy of the indirect addressing
scheme is displayed in Figure 3. The index array contains
integer indices and is used for mapping the grid coordinates
ði, j, kÞ to a fluid node index. A location in the index array
contains an index in the fluid nodes array or -1 if it
corresponds to a solid node. Since the fluid region remains
unchanged during the simulation, the content of the index
array is computed only once during the preprocessing stage.
The fluid node array contains the information necessary for
describing the flow state: the f i values, macroscopic

pressures, velocities, etc. In this implementation, we have
one global Cartesian grid with uniform spatial sampling.
The index array is defined at every node that belongs to this
Cartesian grid, containing a default value of -1 for all nodes
which are outside the fluid domain, and the actual index of
the fluid node for valid locations. The macroscopic variables
of interest (distribution functions, velocity field, pressure,
and forces) are only defined for nodes which belong to the
fluid domain, resulting in significant memory savings.

As described earlier, the nodes are tagged in the initializa-
tion procedure either as belonging to the bulk of the fluid or
requiring appropriate execution of a boundary condition
model. Each type of node needs to be handled separately
since each one may have a different implementation for the
collide and streaming procedures. For instance, in the case
of inflow and bounce-back nodes, the streaming step (equa-
tion (3)) is replaced by the interpolated bounce-back scheme
(equation (5) and (6)), whereas for the outflow nodes the
streaming step is omitted because all f values are completely
replaced in the collision step. Therefore, an array of global
indices is created in the preprocessing stage for each node
type; these arrays are used to select all nodes of the same type
and apply the corresponding collide and stream procedures
during the simulation.

3. Results

3.1. Verification. The numerical implementation of the lattice
Boltzmann method was extensively validated in the past on
analytical cases with known results, e.g., Womersley flow
and channel flow [41, 60]. Herein, we focus on validating
the methodology on real patient anatomies. First, we
performed experiments on a benchmark aneurysm model
previously employed in [61] as part of the “Aneurysm CFD
Challenge 2012,” where the participants were required to
perform CFD simulations and predict the flow. The case
consists of a giant cerebral aneurysm with a proximal steno-
sis, displayed in Figure 4. Steinman et al. [61] reported the
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Figure 7: Comparison between LBM and Ansys CFX for pressure loss coefficient (b) and averageWSS (a) on the aneurysm dome for all cases.
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Table 2: Comparison between centerline velocity magnitudes obtained with LBM and Ansys CFX. The differences are expressed in
percentages relative to the CFX velocity at each point on the centerline and are computed separately for each outlet branch of the vessel.

Case Branch
Cycle average Peak systole

Median Interquartile range Median Interquartile range

IC1
0 -1.79 (-2.30, -1.31) -1.58 (-2.20, -1.03)

1 -2.04 (-2.56, -1.41) -1.80 (-2.83, -1.13)

IC2
0 -2.02 (-3.23, -1.42) -2.58 (-3.74, -1.38)

1 -1.67 (-2.33, -1.21) -1.90 (-2.65, -0.92)

IC3
0 -0.29 (-0.40, 0.19) -0.03 (-0.16, 2.72)

1 -0.38 (-1.83, -0.13) -0.14 (-2.91, 0.06)

IC4 0 -1.82 (-2.25, -1.15) -1.26 (-2.58, -0.70)

IC5
0 -0.43 (-0.87, -0.18) -0.52 (-0.88, -0.08)

1 -0.66 (-1.05, -0.42) -0.68 (-1.19, -0.39)

IC6
0 -1.70 (-2.45, -1.05) -2.17 (-3.10, -0.80)

1 -1.28 (-1.91, -0.50) -2.35 (-3.81, -1.06)

IC7

0 -0.65 (-0.95, -0.54) -0.60 (-0.89, -0.30)

1 -0.48 (-0.65, -0.23) -0.27 (-0.64, -0.05)

2 -0.57 (-0.75, -0.26) -0.43 (-0.78, -0.16)

IC8

0 -0.93 (-1.45, -0.61) -0.68 (-1.33, -0.33)

1 -0.90 (-1.41, -0.60) -0.64 (-1.25, -0.30)

2 -1.09 (-1.61, -0.75) -0.79 (-1.51, -0.41)

IC9 0 -0.89 (-1.60, -0.26) -0.71 (-1.90, -0.17)

IC10

0 -2.02 (-2.43, -1.33) -1.79 (-2.50, -1.20)

1 -1.94 (-2.39, -1.05) -1.71 (-2.44, -1.12)

2 -3.17 (-4.32, -2.37) -2.73 (-3.37, -1.90)

MCA1

0 -1.46 (-2.73, -0.86) -1.18 (-2.18, -0.59)

1 -0.66 (-1.10, -0.47) -0.61 (-1.24, -0.22)

2 -2.31 (-3.60, -1.35) -1.33 (-1.78, -0.79)

MCA2
0 -1.23 (-1.62, -0.73) -0.98 (-1.51, -0.61)

1 -1.59 (-2.12, -1.07) -1.74 (-3.04, -1.03)

MCA3
0 -2.06 (-2.73, -0.86) -2.09 (-2.90, -0.80)

1 -4.07 (-7.38, -2.57) -3.47 (-6.41, -2.19)

MCA4
0 -0.59 (-1.98, 0.14) -1.21 (-2.11, -0.28)

1 -2.82 (-4.12, -2.19) -3.02 (-4.05, -1.96)

MCA5

0 -2.56 (-3.01, -2.27) -2.40 (-3.09, -2.15)

1 -2.50 (-2.91, -1.56) -2.40 (-2.76, -1.61)

2 -1.03 (-3.27, -0.80) -1.43 (-2.69, -1.09)

MCA6
0 -2.15 (-3.23, -0.57) -2.30 (-3.70, -1.03)

1 2.78 (-2.13, 3.47) 2.00 (-2.07, 2.62)

MCA7

0 -2.87 (-3.92, -2.25) -2.92 (-3.81, -1.95)

1 -2.90 (-4.02, -2.25) -2.90 (-3.96, -2.19)

2 -3.64 (-4.14, -2.42) -3.49 (-4.26, -2.18)

MCA8

0 -3.87 (-4.63, -3.02) -3.62 (-4.37, -2.60)

1 -2.50 (-4.24, 0.00) -2.09 (-4.15, -0.58)

2 -2.32 (-4.33, -0.03) -1.90 (-4.22, -0.50)

3 -3.69 (-4.40, -2.16) -3.01 (-4.25, -1.72)

MCA9

0 -1.78 (-3.14, -1.32) -1.55 (-2.55, -1.12)

1 -2.60 (-3.29, -1.78) -2.39 (-3.46, -1.14)

2 -1.81 (-3.24, -1.64) -1.83 (-2.89, -1.55)

3 -1.33 (-3.63, -0.94) -1.17 (-3.02, -0.65)

MCA10 0 -2.07 (-3.31, -0.86) -1.86 (-3.00, -0.71)
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submitted solutions and concluded that the pressure drop
caused by the stenosis was reasonably well predicted among
the vast majority of the participants. We performed simula-
tions using the same configuration and compared our results
against the solutions submitted for the challenge. A time-
varying flow rate was imposed at the inlet boundary, and
simulations were performed for two different pulsatile flows
having the same waveform (Figure 4), but different mean
flow rates (5.13 and 6.41ml/s). The spatial flow profile was
flat for all simulations. At the outlet, we employed the
Dirichlet boundary conditions for the pressure, imposing p
= 0 everywhere. The initial pressure and velocity inside the
fluid domain were set to zero. To reduce the transient effects
that may be caused by the initial conditions, the simulations
were performed for three cardiac cycles and results were
extracted from the third cycle. The fluid was assumed to be
Newtonian with a kinematic viscosity of ν = 4mm2/s and a
density of ρ = 1000 kg/m3.

In Figure 5, we display the pressure and velocities along
the centerline of the vessel computed by our model and
compare them to solutions reported in [61], which
correspond to solutions submitted by participants for the
aneurysm challenge. The pressures in Figure 5 are computed
relative to the inlet, i.e., the entire curve is shifted such that
the inlet pressure is zero. Overall the centerline pressures
match the published results well. As for the centerline veloc-
ities, the variability of the solutions is larger, especially in the
regions close to the inlet and outlet. The main reason is that
only the time-varying flow curve at the inlet was prescribed,
and not the exact boundary condition to be used. This
resulted in a mix of different boundary conditions, including
flat profile, approximate parabolic profiles, and extensions at
the inlet. Furthermore, in the outlet region, the variability is
given by the turbulences that are produced by the stenosis
and other geometric features of the vessel. Apart from the
two regions with large variability, the LBM velocity field
solutions match the aneurysm challenge solutions well. We
emphasize that these computations were performed
automatically, with no user interaction other than providing
the surface mesh and the inlet flow rate (the spatial and
temporal resolutions were automatically selected based on
the approach described in Section 2).

In Table 1, we present the inlet-outlet pressure drop for
LBM and the challenge solutions, for both pulsatile configu-
rations. The median and the interquartile ranges are
computed based on the challenge solutions. The LBM-
based pressure drop values match the median values of the
published solutions very well. In Figure 6, we present contour
plots of the velocity field for the Pulsatile 2 configuration, for

the LBM-based results, and for two solutions from [61],
Nektar 1 and Nektar2, which are considered to be the refer-
ence solutions as they are based on a spectral element solver
with high spatial and temporal resolutions.

To further validate our solver, we have performed
simulations on 20 patient-specific aneurysm cases and com-
pared the results against those obtained using a commercially
available CFD solver (Ansys CFX, Canonsburg PA, http://
www.ansys.com/). The cases correspond to ten internal
carotid artery (ICA) and ten middle cerebral artery (MCA)
aneurysms. A more extensive verification of our solver on
aneurysm cases was performed in [62]. Simulations were
performed under the same configuration as herein, three
cardiac cycles, and results were extracted from the last cycle
only; a time-variable velocity is specified at the inlet bound-
ary, while the outlet is set to have constant pressure. The grid
resolution was automatically estimated using the approach
proposed in Section 2.

We first compared two quantities which were previously
shown to be important indicators for the risk of rupture in
aneurysms: the pressure loss coefficient (PLc) and the
average wall shear stress on the aneurysm dome (AvWSS)
[16]. The pressure loss coefficient is a nondimensional
quantity describing the relative pressure drop and is defined
as follows:

PLc = 1/2ð Þρu2in + Pin
� �

− 1/2ð Þρu2out + Pout
� �

1/2ð Þρu2in
, ð17Þ

where Pin and Pout are the mean pressures measured at the
inlet and outlet planes, respectively, while uin and uout are
mean velocities measured at the same planes. The inlet
and outlet planes used for computing PLc are placed per-
pendicular to the vessel centerline at approximately 1mm
before, and, respectively, after the aneurysm.

WSS is typically computed using spatial velocity
gradients; however, using MRT-LBM, the WSS can be
extracted directly from the nonequilibrium moments mneq

=m −meq, as described in [63].
In Figure 7, we present the comparison for both PLc and

AvWSS. Correlation between Ansys CFX and our proposed
implementation appears to be exceptionally good for both
quantities: the Pearson correlation was 0.999 and 0.993 for
PLc and AvWSS, respectively, while the p value was 0 for
both cases.

A quantitative comparison of the centerline pressures
and velocity magnitude was performed for all twenty cases,
and the results are displayed in Tables 2 and 3. Since most

Table 2: Continued.

Case Branch
Cycle average Peak systole

Median Interquartile range Median Interquartile range

1 -2.72 (-3.24, -1.95) -2.64 (-3.24, -1.61)

2 -2.25 (-3.31, -1.22) -2.13 (-3.13, -1.16)

Overall (mean of absolute values) 1.85 1.73
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Table 3: Comparison between centerline pressures obtained with LBM and Ansys CFX. The differences are expressed in percentages relative
to the CFX pressure at each point on the centerline and are computed separately for each outlet branch of the vessel.

Case Branch
Cycle average Peak systole

Median Interquartile range Median Interquartile range

IC1
0 -3.98 (-5.33, -2.29) -4.11 (-5.47, -2.43)

1 -3.92 (-5.48, -2.14) -4.13 (-5.64, -2.31)

IC2
0 -3.45 (-5.39, -0.94) -3.58 (-5.65, -1.13)

1 -3.81 (-4.99, -1.62) -3.90 (-5.23, -1.61)

IC3
0 -1.50 (-3.58, -0.74) -2.26 (-3.91, -0.47)

1 -1.20 (-3.82, -0.45) -2.14 (-4.20, -0.63)

IC4 0 -0.57 (-1.85, 1.05) -2.25 (-3.50, -0.59)

IC5
0 0.13 (0.00, 0.69) -0.22 (-0.40, 0.36)

1 0.08 (0.00, 0.44) -0.25 (-0.36, 0.05)

IC6
0 1.28 (0.76, 2.54) 0.53 (0.16, 1.45)

1 1.29 (0.78, 1.80) 0.23 (-0.43, 0.86)

IC7

0 -0.67 (-0.79, -0.44) -0.62 (-0.72, -0.40)

1 -0.58 (-0.86, -0.38) -0.52 (-0.76, -0.29)

2 -0.51 (-0.89, -0.26) -0.45 (-0.79, -0.10)

IC8

0 -0.24 (-1.08, 1.48) -0.61 (-1.45, 1.01)

1 -0.19 (-1.10, 1.64) -0.58 (-1.49, 1.14)

2 -0.74 (-0.90, -0.31) -0.98 (-1.16, -0.54)

IC9 0 -5.14 (-5.36, -4.58) -5.92 (-5.99, -5.62)

IC10

0 -2.09 (-4.13, 0.14) -2.42 (-4.71, 0.25)

1 -2.34 (-3.47, -1.30) -3.01 (-3.96, -1.39)

2 -0.68 (-3.33, 1.78) -0.36 (-4.09, 1.19)

MCA1

0 0.22 (-0.44, 2.74) -0.74 (-1.35, 1.49)

1 -0.11 (-0.53, 0.73) -1.17 (-1.59, 0.48)

2 2.59 (-0.40, 3.91) 1.35 (-1.41, 2.18)

MCA2
0 -0.96 (-1.98, 0.51) -1.78 (-2.90, -0.13)

1 -0.89 (-1.59, -0.27) -1.52 (-2.43, -0.70)

MCA3
0 -4.70 (-6.11, -1.99) -4.67 (-6.53, -2.07)

1 -3.21 (-5.39, 0.84) -3.39 (-5.69, 0.14)

MCA4
0 -0.49 (-0.72, -0.08) -1.35 (-1.78, -1.09)

1 1.28 (-0.05, 5.90) -0.12 (-1.53, 4.61)

MCA5

0 -1.17 (-1.89, 0.35) -1.75 (-2.55, -0.15)

1 -0.91 (-1.90, 0.45) -1.54 (-2.60, -0.08)

2 -1.38 (-2.11, -0.63) -2.01 (-2.89, -0.89)

MCA6
0 5.48 (-0.95, 8.75) 3.97 (-1.95, 7.47)

1 5.21 (2.73, 6.46) 3.62 (2.09, 4.62)

MCA7

0 -4.29 (-5.57, -2.19) -5.31 (-6.62, -2.91)

1 -3.95 (-5.44, -2.18) -4.94 (-6.47, -2.92)

2 -4.19 (-5.39, -3.06) -5.07 (-6.37, -3.88)

MCA8

0 1.14 (-2.00, 4.33) -0.13 (-3.58, 3.30)

1 1.13 (-2.00, 1.32) -0.03 (-3.53, 0.31)

2 0.99 (-1.83, 1.33) -0.05 (-3.38, 0.21)

3 1.16 (-1.94, 1.78) -0.03 (-3.43, 0.60)

MCA9

0 -5.04 (-5.39, -1.10) -5.10 (-5.41, -1.20)

1 -3.95 (-5.63, -0.59) -4.14 (-5.71, -0.64)

2 -2.50 (-5.58, -1.64) -2.50 (-5.78, -1.69)

3 -3.70 (-5.39, -2.14) -3.63 (-5.43, -2.17)

MCA10 0 -2.50 (-4.72, -2.23) -2.97 (-5.48, -2.54)
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of the cases have multiple outlet branches, the comparison
was performed for each branch separately. The centerline
curves contain between 500 and 1000 points, and the
differences were taken at each point and represented relative
to the CFX quantity averaged over the entire centerline.
More specifically, at each point on the centerline, the
absolute difference was divided by the average CFX pressure
or velocity:

d xð Þ = ∣f LBM xð Þ − f CFX xð Þ ∣
�f CFX

⋅ 100%, ð18Þ

where d is the relative difference, x is the position along the
centerline, and f is the quantity of interest, i.e, pressure/ve-
locity. The average relative difference was 2.1% and, respec-

tively, 2.21% for peak systole and cycle averaged pressure,
and 1.85% and 1.73%, respectively, for the velocity.

Furthermore, we computed the total pressure drop for all
cases, both for the LBM-based and CFX results. Since the
outlet pressure was always set to zero, the total pressure drop
corresponds to the inlet pressures. Using these values, the
relative difference between LBM and CFX was computed.
The maximum difference was found to be 4.5% for the cycle
averaged pressure and 5.14% for the peak pressure, corre-
sponding to the MCA9 case, while the minimum differences
were 0.05% and 0.36% for the cycle averaged and peak
pressures, respectively, corresponding to the ICA6 case. On
average, the relative differences were 2.15% and 2.5% for
cycle averaged and peak systole quantities.

A visual comparison of the results corresponding to one
of the cases is provided in Figures 8 and 9. Figure 8 presents

Table 3: Continued.

Case Branch
Cycle average Peak systole

Median Interquartile range Median Interquartile range

1 -2.96 (-5.30, -1.13) -3.66 (-6.26, -1.56)

2 -2.55 (-4.71, -2.13) -3.02 (-5.47, -2.43)

Overall (mean of absolute values) 2.10 2.21

0.000 125.0 250.0 375.0 500.0

Pressure (Pa)

0.000 0.000 3.750 7.500 11.30 15.00125.0 250.0 375.0 500.0

Velocities (mm/s) Wall shear stress (Pa)

Figure 8: Pressures, velocities, and wall shear stress for the ICA1 case at peak systole. Simulation results are based on LBM (first row) and
Ansys CFX (second row).
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the pressure, velocity, and wall shear stress (WSS) fields for
both the LBM-based and CFX results, and Figure 9 presents
the pressure and velocity plot along the centerline of the main
branch for the same case.

Since LBM is based on an explicit discretization scheme,
there is an implicit delay in the flow propagation from inlet to
outlet. In our experiments, we found the delay to be about
20ms for all cases and outlets. Although this is an undesired
aspect, there is a certain delay in physiological conditions
caused by wall elasticity. Unfortunately, an accurate quantifi-
cation of this physiological delay is currently not possible.

Overall, the LBM results appear to match well the CFX
results for both cycle averaged and peak systole quantities,
without requiring any human intervention in selecting an
appropriate grid resolution.

3.2. Convergence Study. To demonstrate that the automati-
cally selected grid size is sufficiently fine, we have performed
a convergence study on two representative cases, i.e., an ICA
and a MCA case. We performed computations with five
different values of the spatial resolution: δx/2, δx, 2δx, 3δx,
and 4δx, where δx is the automatically selected value. Since
the computed spatial resolution and time step are typically
chosen such that they are close to the stability limit, as
described in Section 2.3, it would normally not be possible
to perform simulations with coarser resolutions (2δx, 3δx,
and 4δx) because of the chosen stability limits. Therefore,
to perform these simulations, we set the stability for νmin
and umax to the original values from [39]: umax was increased
to 0.19, and νmin was decreased to 2.56e-3. Also, the third
criterion (Dmin/δx > 15) was removed.

Figure 10 displays the results as plots of the pressure and
velocity magnitude along the vessel centerline. The green
and blue plots correspond to the automatically selected,

and, respectively, a twice as fine spatial resolution; the other
plots correspond to coarser resolutions. The convergence
trend is well visible for both cases. All results were
compared against the reference values corresponding to
the finest resolution (δx/2). Table 4 displays for each case
the mean absolute errors as a function of the spatial resolu-
tion. For the simulations corresponding to the automatically
selected spatial resolution (first column of Table 4), the
maximum error relative to the mean quantity along the
centerline is 2.18%. We emphasize that the purpose of these
experiments is to show that running the computations at a
finer resolution will not significantly change the results,
therefore indicating that the automatically chosen resolution
is sufficiently fine.

3.3. Computational Efficiency. All LBM computations were
performed on a regular workstation with an NVIDIA GTX
1080ti graphics card. The GPU implementation was based
on the NVIDIA CUDA version 8.0, and all computations were
performed using double precision arithmetic. In Table 5 we
report the LBM computation time for each case along with
the corresponding grid size and time step. We emphasize that
δx and δt were chosen automatically using the approach
described in Section 2. The CFX simulations were performed
on a cluster of three nodes of 12 CPU cores each. The mesh
sizes ranged from 2.6 to 11.3 million tetrahedral elements
and were chosen after a grid convergence study. For the flow
configuration presented in this paper, the LBM computation
time was found to vary between 10 minutes and 300 minutes,
which is significantly faster than the typical runtimes reported
using existing methods in literature [18, 19]. We have only
used a single, commodity GPU on standard workstation for
the computations. The grid sizes varied between 50μm and
120μm, and the time step between 3μs and 23μs.
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Figure 9: Pressures and velocities along the centerline, corresponding to the main branch of the ICA1 case.
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4. Discussion

Performing CFD computations is typically a challenging
task, especially for complex flows like in the case of cerebral
aneurysms. The main challenges are given by computational
complexity, which leads to large execution times, but also by
the requirement of having an experienced user for choosing
solver parameters, mesh resolution, etc. Both of these are lim-

iting factors that reduce the potential of employing CFD-
based tools in clinical settings, where patient-specific compu-
tations need to be performed. Herein, we have addressed
these limitations and proposed a novel methodology for per-
forming hemodynamic computations in patient-specific
cerebral aneurysms. The computational cost was significantly
reduced by employing a GPU-based implementation of the
lattice Boltzmann method. A CFD simulation for one
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cerebral aneurysm can be performed in a matter of minutes
on a regular workstation compared to hours on expensive
computing clusters. We performed computations on 21
aneurysm cases and the median execution time was 40
minutes using a single-commodity GPU. We emphasize that
the measured time includes the preprocessing step, all three
simulated cardiac cycles, and also the simulation restarts
required for tuning the spatial resolution and the time step.
Although the computation time may still be considered too
high for employing such tools in a clinical setting, it can be
significantly reduced by further increasing the parallelism,
e.g., by using multiple GPUs simultaneously [32]. Further-
more, we found that there is a strong dependence between
computation time and vessel geometry complexity, i.e.,
narrowing segments, curvature, and branching. As the flow
develops more complex features, a finer resolution is
required, which increases the computation time. Also it could
be argued that real-time performance may not be necessary
for aneurysmal flow computation in clinics as there is no
reason for results to be obtained synchronously. However,
performance could become important in a virtual treatment
scenario where a clinician may want to explore the possibility
of deploying an endovascular device and change different
properties. Also computational performance could become
important for other cardiovascular diseases where flow-
related quantities are needed immediately, e.g., coronary
artery disease.

We showed that even though performance is significantly
improved, the accuracy is not affected. We extracted the
results from all simulations and compared them with other
publicly available solutions and also with a commercial solver.
First, we considered the solutions reported for a CFD
challenge [61], which contains multiple simulation results
obtained using various flow solvers and configurations. The
comparison shows an exceptionally good agreement, as our
solutions lies very close to median of the others, as indicated
in Table 1. Furthermore, we performed a comparison of the
velocity contours with two of the solutions reported in [61],
considered to be the best resolved ones. Although the flow
presents strong turbulences inside the aneurysm dome, the
velocity contours appear to match very well. Lastly, we
compared results with those obtained with a commercial
solver (Ansys CFX) on 20 aneurysm cases. A good agreement
between solutions was found, with an average relative

difference of 2%. We emphasize that for all validation experi-
ments, our results were automatically obtained using the
proposed methodology, with no user interaction other than
providing the vessel surface mesh. We further emphasize that
this comparison is by no means a definitive process for
evaluating the accuracy of our results; however, currently,

Table 4: Mean absolute errors of the results as a function of the
spatial resolution δx. ‘Av’ and ‘Pk’ entries in the third column
stand for cycle averaged and peak systolic, respectively.

Quantity Case δx 2δx 3δx 4δx

Pressures (Pa)

ICA1
Pk 1.81 7.60 17.93 27.13

Av 2.32 2.59 10.80 31.35

MCA6
Pk 2.28 9.58 22.60 34.19

Av 2.15 9.00 18.02 24.03

Velocities (mm/s)

ICA1
Pk 0.79 1.95 4.54 6.72

Av 2.10 4.35 8.62 16.90

MCA6
Pk 2.47 6.10 14.18 20.97

Av 4.17 13.38 26.89 32.37

Table 5: Execution times and grid size for each case.

Case
dx

(mm)
Dt (s)

Grid size (only fluid
nodes)

Execution time
(min)

CFD
challenge

Pulsatile 1
0.14

9.04e
-6

12.1e+6 44.6

Pulsatile 2
0.11 5.7e-6 23.3e+6 123.4

ICA1 0.084
1.03E
-05

6.23E+05 26.85

ICA2 0.080
9.90E
-06

6.70E+05 35.89

ICA3 0.069
8.54E
-06

1.62E+06 92.73

ICA4 0.093
1.43E
-05

3.96E+05 22.35

ICA5 0.052
3.25E
-06

3.32E+06 280.16

ICA6 0.115
1.77E
-05

5.46E+05 22.45

ICA7 0.057
7.03E
-06

6.74E+06 298.91

ICA8 0.090
8.83E
-06

7.74E+05 36.08

ICA9 0.118
2.28E
-05

2.26E+05 9.99

ICA10 0.093
1.43E
-05

1.03E+06 76.40

MCA1 0.051
7.89E
-06

3.19E+06 188.87

MCA2 0.053
8.21E
-06

1.79E+06 129.87

MCA3 0.082
1.58E
-05

4.87E+05 27.42

MCA4 0.091
1.75E
-05

4.67E+05 20.18

MCA5 0.059
1.13E
-05

6.95E+05 49.10

MCA6 0.078
4.99E
-02

4.74E+05 43.91

MCA7 0.082
1.59E
-05

3.46E+05 35.88

MCA8 0.079
1.52E
-05

3.10E+05 20.07

MCA9 0.038
5.91E
-06

3.22E+06 252.09

MCA10 0.070
1.07E
-05

5.95E+05 43.91
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there are no available methods for accurately measuring flow-
related quantities in vivo.

Furthermore, since the workflow is completely auto-
mated, a clinician may use such a tool without requiring
CFD-related experience and expertise. To demonstrate that
the automatically chosen grid size and time step are suffi-
ciently fine, we performed a convergence analysis on two
randomly chosen cases, by running simulations with both
finer and coarser spatial resolutions. We found that a spatial
resolution twice as fine led to a maximum of only 2.18%
relative change in centerline pressure and velocity.

To formulate the criteria for grid refinement, we start
from the stability constraints implicitly present in the LBM
method, in combination with the prior information obtained
through the reduced-order blood flow model. More rigorous
criteria for grid refinement were also proposed in the past, for
example, Axner et al. [64] proposed a criterion for cases
where the flow is driven by a Womersley profile; similarly,
Lagrava et al. [23] proposed a criterion for performing auto-
matic grid refinement with LBM. Although we employed a
rather heuristic approach, it is based on the same fundamen-
tal aspect: the error is proportional to the nonequilibrium
part of LBM distribution functions.

As for the limitations of the proposed workflow, the most
important one is the lack of patient-specific information
regarding the boundary conditions used for the simulations,
especially the time-varying flow rate and its profile imposed
at the inlet boundary, the outflow resistances, and the viscos-
ity models. Although these are important parameters, other
studies indicate that flow quantities are much more sensitive
to geometry than to flow parameters, i.e., changes in the
anatomical model of the vessel, obtained as a result of the
segmentation and reconstruction process, have the greatest
impact on accuracy [65–69]. As further research will shed
light on the relevant flow-related quantities having the great-
est impact on aneurysm pathophysiology, progress will be
made towards a unified modeling technique for aneurysmal
flow, e.g., by improving the accuracy of the relevant flow
aspects and determining which modeling methodology
performs best.

We would like to emphasize that the purpose of including
Ansys CFX in the verification process is solely for quantifying
the accuracy of our results, by comparing them with a trusted
state-of-the-art method which is generally accepted in the
community. By no means, do we consider our implementa-
tion (or LBMmethods in general) to be superior for this class
of problems in terms of efficiency or other aspects.

5. Conclusions

We proposed a workflow aimed at improving the potential of
using CFD-based tools in a clinical setting, as a tool for aiding
decision making and establishing a personalized treatment
plan for cerebral aneurysms. We addressed the main limita-
tions: the requirement of CFD-related experience and the
computational performance. To speed up the CFD computa-
tions, we employed a GPU-accelerated flow solver based on
the lattice Boltzmann method. We showed that for this
particular flow configuration, the computation time was

reduced to minutes on a regular workstation, whereas typical
CFD computation times are much larger even when
performed on expensive computing clusters. We introduced
a fully automatic pipeline for selecting the mesh resolution
and time step using solely vessel geometry information,
allowing thus clinicians to perform computations and obtain
results with minimal CFD-related expertise. We showed that
even though computation time was greatly reduced, there is
no significant impact on accuracy. We performed computa-
tions on several aneurysm cases and compared results with
other publicly available solutions and also with a commercial
solver. An average relative difference of 2% between the
solutions was found. Furthermore, a convergence study was
performed, showing that the automatically chosen spatial
resolution is sufficiently fine for the chosen case.

Future work will focus on further adapting the automated
parameter selection process to also enable the inclusion of
flow diverters in the simulation. We also consider further
extending the workflow for a broader range of blood flow
computations, e.g., the coronary arteries and aorta.
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