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To date, chronic pulmonary pathologies represent the third leading cause of death

in the elderly population. Evidence-based projections suggest that >65 (years old)

individuals will account for approximately a quarter of the world population before

the turn of the century. Genomic instability, telomere attrition, epigenetic alterations,

loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular

senescence, stem cell exhaustion, and altered intercellular communication, are described

as the nine “hallmarks” that govern cellular fitness. Any deviation from the normal pattern

initiates a complex cascade of events culminating to a disease state. This blueprint,

originally employed to describe aberrant changes in cancer cells, can be also used

to describe aging and fibrosis. Pulmonary fibrosis (PF) is the result of a progressive

decline in injury resolution processes stemming from endogenous (physiological decline

or somatic mutations) or exogenous stress. Environmental, dietary or occupational

exposure accelerates the pathogenesis of a senescent phenotype based on (1) window

of exposure; (2) dose, duration, recurrence; and (3) cells type being targeted. As the lung

ages, the threshold to generate an irreversibly senescent phenotype is lowered. However,

we do not have sufficient knowledge to make accurate predictions. In this review, we

provide an assessment of the literature that interrogates lung epithelial, mesenchymal,

and immune senescence at the intersection of aging, environmental exposure and

pulmonary fibrosis.
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AN INTRODUCTION TO PULMONARY FIBROSIS

Pulmonary fibrosis (PF) is a disease of senescence, weakened anti-inflammatory activation,
and aberrant resolution (1, 2). PF is a rare degenerative pathology (overall incidence of just
13–17/100,000 people/year) characterized by temporally and spatially heterogeneous injury. The
excessive production and disorderly deposition of extracellular matrix proteins and collagen that
accompanies disease progression is driven by (myo-)fibroblasts and immune cells clustering within
aberrant alveolar structures (honeycombs) (3). PF pathogenesis and progression is unpredictable,
with genetic mutation (surfactant protein B and C, mucin 5B, telomerases) and environmental
factors (cigarette smoke, chronic infections) provoking functional debilitating lesions, lethal within
3–5 years of diagnosis (4, 5). Stratified epidemiological analysis clearly illustrates surge in disease
incidence and prevalence in relation to age (93/100,000/year and 494/100,000/year in individuals
>65 years old) (6–8). Notably, to date chronic lung pathologies represent the third leading cause of
death in the elderly population (1, 9, 10). The magnitude of this healthcare problem is represented
by national and global census data showing∼ =15% of the population currently over 65, and over
2 billion individuals projected to surpass that mark by the year 2050 (11–13).
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Venosa Senescence in Pulmonary Fibrosis

As the medical field battles the COVID-19 global pandemic,
scientists and clinicians have come to terms with the notion that
we know very little of the mechanisms mediating lung injury and
resolution in the aged and susceptible respiratory system (14–16).
To overcome these limitations, this manuscript summarizes the
evidence linking lung injury and remodeling in the context of
biological aging and chemical exposure.

SENESCENCE AT THE BASIS OF CELL
DYSFUNCTION AND DISEASE

A series of landmark reports identified nine “hallmarks”
of aberrant cellular fitness shared by chronic degenerating
conditions such as cancer, fibrosis, and aging: (1) genomic
instability; (2) telomere attrition; (3) stem cell exhaustion; (4)
epigenetic alterations; (5) loss of proteostasis; (6) deregulated
nutrient sensing; (7) mitochondrial dysfunction; (8) senescence;
and (9) altered intercellular communication (2, 17–23). During
early life/adulthood, a checkpoint system (DNA damage
response, apoptosis, unfolded protein response) ensures maximal
cellular fitness (24). Aging, environmental exposure, or genetic
perturbations in key functional proteins induce seemingly
moderate downstream adjustments to these safeguards, but
progressively edges the cell closer to developing an irreversible
phenotype (Figure 1).

Besides the conventional notion that aging is accompanied
by replication-dependent telomere erosion and defective
recognition of toxic mutations, a number of convergent systemic
failures contribute to the development of a dysfunctional
phenotype. For instance, chemicals such as lead, nitrosamines,
air/traffic pollution, carbon black are linked to telomere
shortening (25, 26). Tobacco smoke and chronic ozone exposure
generate reactive oxygen species and trigger mitogenesis (also
linked with intracellular ROS production), thereby damaging
the DNA and shortening telomeres (27). Acetaminophen,
acrolein, chlorpyrofos, chloroquine and heavy metals, are all
known to disrupt cellular proteostasis (i.e., unfolded protein
response, UPR) (Figure 2) (28). This response is associated
with a shift in nutrient utilization to favor glycolysis (and away
from mitochondrial oxidative phosphorylation) (29). Due to the
inefficient and slow ATP production of the glycolytic cycle, the
cell progressively accumulates excess ADP and AMP and halts
its capacity to proliferate, a process that requires substantial
and rapidly available energy. AMP is the preferred substrate for
AMPK, leading to activation of p53/p21 and pRB/p16 pathways
(30). The substantial amount of pyruvate produced through
glycolysis is then shuttled to the mitochondria, leading to:
mitochondrial swelling; ROS generation, NADH and NADPH
depletion; excess AcCoA (31–33). Mitochondrial and cellular
swelling is used as a morphological biomarker to identify
senescent cells. The excess ROS production promote DNA
damage, which further favor the development of a dysfunctional
cell and is linked to the development of a SASP (senescent
associated secretory phenotype). The enzymatic conversion of
pyruvate in the mitochondria generates a surplus Acetyl-CoA
which is shunted to the Krebs Cycle, or in the nucleus where it

FIGURE 1 | The nine “hallmarks” of cell fitness. Healthy cells rely on a balance

between survival checkpoints and aberrant hallmarks. A total of nine factors

have been defined: genomic instability, telomere attrition, epigenetic

alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial

dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular

communication (represented by circles in matching colors). Skewing of this

equilibrium generates a progressively senescent phenotype as a result of

age-related checkpoint dysfunction driving cellular toxicity.

is utilized as an acetyl-donors to remodel histone structure and
thus, regulate cell transcription (34, 35). In support of this notion,
pre-senescent and senescent cells display widespread loss of
histones H3 and H4 and senescence-associated heterochromatin
foci (SAHF) at the hands of the histone chaperones Asf1 and
HIRA (36, 37). The role of these proteins is particular important
as they represent a cell cycle independent mechanism to modify
histones, a function fundamental for replication-restricted
senescent cells. This epigenetic reprogram further support SASP
by promoting expression and release of highly inflammatory
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FIGURE 2 | Chemical induced senescence. Acetaminophen, acrolein, chlorpyrofos, chloroquine, and heavy metals exposure disrupts unfolded protein response,

UPR. Nutrient utilization is then shifted toward glycolysis, leading to: (1) Enhanced AMPK signaling driven by excess AMP, resulting in proliferative latency and

pRB/p16 pathway activation. (2) Excess pyruvate enters mitochondria for conversion into AcCoA; this leads to mitochondria! overload and swelling, ROS generation

and toxic cell acidification. (3) Oxidative stress from mitochondria damages cytoplasmic proteins and DNA; AcCoA functions as a acetyl donor for localized histone

hyperacetylation, while histone chaperones Asf1 and HIRA greatly remodels chromatin independently of replicative state of the cell. Gene expression resulting from

chromatin reprogram results in senescent associated secretory phenotype (SASP), enriched in tumor suppressor proteins, transcription factors, microRNAs, growth

factors, proteases, and inflammatory cytokines (e.g., p-galactosidase, p16INK4a, IL-6, CXCR2, IL-1 receptor, C/EBPp, and NF-KB).

factors including tumor suppressor proteins, transcription
factors, microRNAs, growth factors, proteases and inflammatory
cytokines (e.g., β-galactosidase, p16INK4a, IL-6, CXCR2, IL-1
receptor, C/EBPβ, and NF-KB) (38–40). SASP elicits an immense
power to reshape the behavior of the surrounding tissue, to the
point that just over 20% of senescent cells are sufficient to trigger
systemic effects (41).

In light of this evidence, any therapeutic that effectively
reduces numbers or activity of senescent cells has significant
healthcare potential. While technological advancements
produced a broad arsenal of pharmacological moieties, their
efficacy against age- and fibrotic-related senescence has been
hindered by the paucity of models that mimic the clinical course
of disease (42–44).

CHEMICAL EXPOSURE ACCELERATES
LUNG SENESCENCE

The current PF paradigm proposes that repeated episodes of
alveolar epithelial cell dysfunction triggered by endogenous
(genetic predisposition) or exogenous stress (environmental),
is necessary to trigger lung fibrogenesis. In particular, the
latter remains mechanistically obscure and is often categorized
as idiopathic in origin. Mutations of pivotal rheostats such
as genes involved in proteostasis, telomere and mitochondrial
maintenance have been abundantly mapped in the past two
decades (45–51). This has led to the development of robust
genetic models, including the naturally occurring senescence
accelerated mouse series (SAM-1 to−8) (52), the telomerase
reverse transcriptase (TERT) deficient mice (42, 43), the

surfactant protein C mutant and null mice (44, 49), or through
disruption of cell-cell communication via genetic modulation
of key fibrotic signaling pathways (TGF-β or IL-13) (53,
54). These models all display accelerated aging, senescence
and pulmonary fibrosis initiated by the lung epithelium and
perpetuated by mesenchymal and immune cells (46, 55–57).
By comparison, clinically relevant models of chemical induced
fibrosis are limited by intrinsic differences among the thousands
of environmental, dietary, or occupational stressors the lung
comes into contact daily.

Reactive moieties (i.e., ozone), minerals and metals (silica,
asbestos, cadmium, beryllium), wildfire and cigarette smoke,
particulate matter of sizes 10µm and below (PM2.5 and PM10),
and nanoparticles/nanoplastics are widely used, yet imperfect,
surrogates of chemical senescence and fibrosis (58–65). The keen
observes may suggest that these models are not dependable or
ineffective in predicting senescence and fibrogenesis. This is, in
part, true. One clear element may be responsible for this results:
age. While epidemiological evidence overwhelmingly show that
age disproportionally impacts the outcome of chemical exposure
and/or fibrosis (i.e., clinical PF is, on average, diagnosed at age
65), experimental modeling predominantly examines young and
healthy animal cohorts. As a result, we have carefully modeled
mechanistic datasets that poorly translate to agedmurine cohorts,
or the human condition. In support of this notion, sterile and
infectious challenge (infection, radiation, and cigarette smoke)
elicits heightened toxicity in aged mice compared to young
ones, a response linked to the development of irreversible
senescence (66–69). To overcome these limitations and provide
adequate prediction of how do environmental exposures that
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lead to cellular senescence lead to different lung pathologies, it
is absolutely necessary to test chemical exposure in aged, as well
as susceptible cohorts starting, perhaps, from the aforementioned
TERT and SP-C mutant mice.

CONDITIONS FOR CHEMICAL INDUCED
SENESCENCE/FIBROSIS

In-depth analysis of the fibrogenic effects of environmental
exposure on the senescent lung is critical to advance the field
and better address the needs of susceptible populations. At
least three aspects need to be considered: window of exposure;
dose, duration and recurrence of exposure/injury; cell type-
specific responses.

Window of Exposure
Exposure to an inhaled toxicant during early life has been
suggested to increase susceptibility to disease by reshaping
the parenchymal and inflammatory cell milieu (70–72). For
instance, in utero and early life exposure to tobacco smoke,
respiratory viral infections and gestational diabetes impairs lung
development and function by reshaping the cellular metabolic
and inflammatory machinery at the chromatin level (epigenetic),
thus greatly increasing the incidence of chronic pathologies
including asthma, COPD and fibrosis (73–76).Widely used as the
standard model of acute lung injury, ozone represents the perfect
example of an environmental toxicant that produces variable
responses across the lifespan, through widespread epithelial and
bronchial oxidative damage and inflammation (77, 78). The
pattern recognition receptor TLR4 is partially responsible for
ozone responses (63, 79). Therefore, the known age-related
alteration in expression (low at birth) impacts the cellular and
structural responses elicited upon exposure (80, 81).

Dose, Duration, and Recurrence of
Exposure
There is extensive evidence that, although often well-tolerated,
repeated toxic exposure promotes progressive genetic instability,
epigenetic remodeling (i.e., cadmium); proteostatic and
mitochondrial dysfunction (i.e., ozone); genesis of SASP (i.e.,
multi-walled nanotubes, asbestos); or all of the above (i.e.,
cigarette smoke and radiation) (82–87). The (often) cyclical
nature of environmental/occupational exposure is also linked
to exhaustion of the stem cell reservoir, their depletion,
and SASP (88–90). These effects progressively diminish the
ability of the lung to respond to subsequent challenges even
of modest intensity. Figure 3 portrays possible outcomes
resulting from to acute and chronic exposure of susceptible
individuals. For instance, aging of an individual presenting
somatic predisposition (i.e., SP-C mutation) may lead to
fibrogenesis, compared to a health individual. Similar differences
can be observed following sublethal chronic exposure, with
susceptible population developing chronic pathologies. Ozone
and particulate matter/dusts, once again, provide the perfect
examples of moderate/sublethal and potentially recurrent
stressors linked to fibrotic disease. Indeed, modeling short term

FIGURE 3 | Modeling chemical exposure on the fibrotic phenotype. Depiction

of possible outcomes resulting from aging and chemical exposure and their

relationship to fibrogenesis. Highly fibrogenic chemical exposure (1, gray

dotted line, ) may drive rapid and possibly lethal fibrosis after a single

exposure. By comparison, aging may lead to different disease profiles based

on factor such as genetic instability (i.e., SP-C mutation). In such case, an

individual presenting somatic mutations may be predisposed to develop a

fibrotic phenotype without toxic challenge (2a, blue line, ), compared to a

healthy individual (2b, blue dotted line, ). Similar responses can be observed

following mild/moderate repeated exposure, with susceptible population (3a,

red line, ) passing the “fibrogenic threshold", whereas healthy cohorts will

not. (3b, red dotted line, ) or never reach that threshold depending on factor

such as genetic susceptibility. Similarly, aging may be associated with fibrotic

and non-fibrotic outcomes depending on individual biological clocks.

acute ozone exposure produces neutrophilic, monocytic, or
eosinophilic responses at doses ranging from 0.8 to 3 ppm (91–
93). Repeated low-dose ozone exposure (0.8 ppm, 4 h/day, 9 days)
generates subchronic multicellular inflammation with extensive
airway and goblet cell involvement (94), progressing to fibrosis
following 6 weeks of exposure (95). Genetic manipulation of the
inflammatory collectin surfactant protein-D further supports the
notion that a lifetime of sub-toxic inflammation and oxidative
stress reshapes parenchymal function (senescence) and could
possibly impact lung responses to exposure later in life (80, 96).

Cell Type-Specific Responses
The lung contains more than 40 types of cells representing
epithelium, interstitial connective tissue, vasculature,
hematopoietic and lymphoid tissue, and the pleura (97). Each
of these cell types participate to the correct function of the lung
and it is therefore central to consider how chemical exposure
differentially affects each cell type to better comprehend the
pathogenesis of disease. For instance, mutations of the surfactant
protein (SP)-A and -C, or ATP binding cassette subfamily
A member 3 (ABCA3) represent well-described examples of
alveolar epithelial type 2 distress resulting in chronic lung
disease and fibrosis (98, 99). A number of genetic constructs
successfully leveraged these mutations to produce lung fibrosis
and accelerated senescence triggered by a stressed epithelium
(49, 100). While to date is still unclear what effects environmental
exposure elicits on such susceptible parenchyma, work from our
group and others intends to fill this knowledge gap.
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By comparison, chemical exposure does not promote such
a cell specific response, often leading to varying degrees of
stress, ranging from susceptibility to disease later in life to
irreversible senescence and pathogenesis of disease (101, 102).
Particulate matter exposure has been widely studied for its
importance in lung health (Figure 4). This environmental and
occupational mixture is known to induce ROS production,
activating the inflammasome pathways and triggers unfolded
protein response in lung epithelial cells (103). Depending on
size (2.5 or 10µm), dose, and duration of exposure PM elicits
epithelial cell death (acute), as well as exacerbation of chronic
pulmonary conditions (asthma and COPD) and epithelial to
mesenchymal transition (104). Based in these responses it is
unsurprising that PM promote fibroblast and myofibroblast
proliferation, a response fundamental for fibrogenesis (105–
107). At the levels of mucus producing cells (goblet cells),
PM results in MUC5B hypersecretion (103). Furthermore,
PM engages and functionally impacts innate like cells type
1 (ILC1), thereby blunting their interferon gamma (IFN-γ)
production and cytotoxic function; induces antigen-presenting
cell-mediated inflammatory responses, while impairing their
migration; enhanced neutrophil and eosinophil responses; and
shifts lymphocyte differentiation toward an effector phenotype
(Th1-like) (108–111). Lastly, the effects on endothelial function
(disruption of tight junctions) have significant repercussion on
the susceptibility to cardiovascular disease and infarction (112–
115). Notably, modeling the toxicity of PM is further complicated
by the fact that intrinsic composition (levels of metals, polycyclic
aromatic hydrocarbons, carbon black content) and secondary
chemicals being carried (LPS and allergens) ranges across time
of the year and location where it is collected (116–118). In
what seems like a prohibitive task (investigating the effects of
hundreds of chemically diverse moieties on dozens of cell types),
technological advancements in single cell sequencing analysis
and multi-omics approaches significantly eased these challenges.
The next section will summarize epithelial, mesenchymal and
immune cell senescence induced by aging or chemical exposure.

CELLULAR RESPONSES IN SENESCENCE
AND FIBROSIS

Lung Epithelium
While it is well-established that initial respiratory functions
are achieved in the nasal epithelium and upper airways, the
largest share of research is devoted to the study of alveolar
type-1 pneumocytes (AT1) due to their central role in gas
exchange. A second alveolar epithelial population, termed AT2,
has gained broad recognition as a multipurpose unit in charge
of pulmonary surfactant production; regulation of fibroblast
proliferation; communication with resident immune cells during
homeostasis and injury; control of vascular endothelium
permeability to peripheral leukocytes; and replenishment of
damaged AT1 cell and mesenchymal (epithelial-mesenchymal
transition) pool in stressful conditions (119–121). It is therefore
unsurprising that epithelial cell dysfunction produces such
a multifaceted phenotype, ultimately linked to senescence

and lung remodeling. Supported by clinical evidence, TERT
and surfactant protein-C mutant lines today represent robust
platforms for modeling epithelium-driven fibrosis (44, 49, 50,
122–124). Mutations in the cystic fibrosis-linked ubiquitin ligase
NEDD4-2 produces aberrant epithelial Na+ channel (ENaC) and
pro-SP-C localization, processing and degradation, leading to
airway surface liquid depletion, impaired clearance of inhaled
irritants and progressive architectural and functional alterations
consistent with cystic fibrosis-like disease (44, 49, 50, 122–125).
The tremendous influence that these proteins elicit on epithelial
cell survival and proliferation prioritizes their evaluation in the
context of aging. While not directly examining the role of SP-C
mutations, experimental evidence linked age-related senescence
of the surfactant protein machinery to poor survival following
sublethal bacterial challenge (LPS) (126). Similarly, there is
clinical evidence that TERTmutations, both familial or exposure-
induced (i.e., cigarette smoking), is accompanied by premature
deaths (127). The paucity of data that comprehensively
examines the responses of a dysfunctional lung epithelium
to environmental challenge blurs our ability to determine
the mechanistic overlap preceding fibrogenesis. To the same
point, chemical challenge has been predominantly examined
in juvenile/healthy lungs. While these studies helped defining
senescent-like phenotype following exposure, a conspicuous
scientific gap remains.

At its essence, the most complex element associated with
the study of aging, chemical exposure, or fibrosis, is the
asynchronous nature of cellular senescence that accompanies
pathogenesis of the phenotype. Application of diffusion
pseudotime, a computational single-cell method that can trace
the dynamics of biological processes and predict cell fate,
may elegantly address this problem (128). Recent use of this
methodology to study the evolution of the epithelial cell milieu
during bleomycin induced lung fibrosis identified a unique
transitional stem cell state, defined by Krt8 expression, involved
in regeneration and healing (129). Lineage tracing techniques
and human-derived organoid cultures recently identified a
similar population of AT2 cells on their way to terminally mature
AT1 cells (130, 131), while single-cell transcriptomics of human
IPF and COPD lungs have morphologically (termed basaloid
cells for their distinct non-AT1/squamous non-AT2/cuboidal
structure) and transcriptionally linked this regenerative subset
to fibrotic remodeling (132). While investigation of these
transitional epithelial cells is still in its infancy, it is tempting to
propose their involvement in resolution of chemical-induced
injury; their progressive dysfunction in the context of aging; and
to ask whether repeated stress can “exhaust” their replicative
potential (133). Addressing each of these questions may advance
out understanding of senescence.

A number of recent reports have provided a considerable
foundation on the biology of the aging lung epithelium. By
combining single-cell RNA-sequencing analysis and proteomics,
Angelidis and colleagues generated a comprehensive cell-type
specific atlas of the 3 and 24 month old murine lungs
(unchallenged), and convincingly presented both ultrastructural
and functional changes associated with senescence, including
extracellular matrix deposition and epithelial inflamm-aging
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FIGURE 4 | Modeling cell specific responses to chemical exposure. Simplified depiction of the divergent effects of particular matter exposure in immune, epithelial

(inclusive of alveolar and mucus producing goblet cells), and mesenchymal (fibroblasts and myofibroblasts).

(134). These epithelial changes reflect, at least in part,
organ level dysfunction of the aging lung, characterized
by reduced mechanical tissue remodeling, aberrant alveolar
derecruitment and impaired oxygen saturation (44, 135). The
fibrotic lung presents comparable epithelial and organ wide
(functional) alterations, oftentimes in an accelerated and more
widespread fashion. The heterogeneity of the injury also
complicates assessment of epithelial senescence from a whole
organ perspective. As discussed above, instability generated
by TERT, ABCA3, SP-A, and SP-C mutations or fibrogenic
exposure is accompanied by an epithelial phenotype that aligns
with age-induced senescence (cell cycle checkpoint disruption
and SASP) (136–138). To date, only correlative evidence
(epidemiological) links ambient pollution exposure to acute
inflammatory exacerbations that rapidly accelerate lung function
decline in IPF patients (102, 139, 140). By combining this
observational evidence with the currently available pulmonary
disease models, the next decade of pulmonary research has
important clinical implications to our pursuit of mechanistic
answers of sublethal toxicity in the susceptible lung.

Mesenchymal Cells: Fibroblasts and
Stromal Cells
Fibroblasts are highly proliferative cells crucial in maintaining
alveolar structural integrity and architecture during homeostasis
and throughout the injury resolution process. Understanding
the biology of fibroblast senescence is central to link aging and
exposure to chronic lung pathologies (141), as their uncontrolled
proliferation and/or senescence causes aberrant alveolar
remodeling (i.e., impaired gas exchange function). Fibroblast

senescence can be triggered directly (somatic mutations and
environmental stress), or indirectly (TSLP, IL-25, and IL-33 rich
milieu produced by neighboring senescent cells) (142–144).

Aging significantly impacts the extent of fibroblast senescence.
For instance, toxic challenge of young primary fibroblasts
triggers a “reversible” senescent state, still capable of eliciting
programmed cell death mechanisms or resolution pathways.
By comparison, cells from aged mice undergo myofibroblast
trans-differentiation and develop a profibrotic phenotype (145–
147). Analysis of accelerated senescence models (TERT and
SAM1-8 murine lines) or human IPF fibroblasts demonstrate
aberrant replicative responses (increased expression of cyclins,
renin-angiotensin peptides, insulin-like growth factor–binding
proteins 3 and 5, Wnt signaling pathway), and altered survival
signaling (i.e., apoptosis and autophagic flux) (148–151). A
number of environmental stressors, such as ozone and particulate
matter, are known to trigger similar oxidative stress and
survival pathways. While environmental/occupational exposure
to these chemicals is often time subtoxic, chronicity and
window of exposure progressively burdens healthy fibroblasts
to develop a senescent phenotype (151, 152). This notion is
corroborated by experimental modeling using “high-impact”
fibrogenic stressors such as bleomycin and gamma radiation,
which produces a senescent phenotype comparable to that
described in aging (aberrant proliferation and survival, as well as
MCP-1, PAI1, TNF-α, MMP10, MMP12, Col1a1, TGFβ, p16, and
p53 overexpression) (153).

Mesenchymal Stromal/Stem Cells (MSC): For the past 20
years the acronym MSC has been used to define several subsets
belonging to the same mesenchymal family (mesenchymal stem
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cell, mesenchymal stromal cell, and multipotent stromal cell).
Today, it defines multipotent mesenchymal stromal cells, a
nomenclature that separates them from mesenchymal stem cells
on the basis of self-renewal and the capacity to differentiate down
multiple lineages. While there is no truly unique MSC marker, a
combination of hematopoietic progenitor markers CD73, CD90,
and CD105 appears to be well accepted (154). This population
is canonically associated with a bone marrow origin, but it has
been reported that lung resident MSCs are involved in local
sustenance of the mesenchymal compartment (155). Although
still debated, some evidence also suggest that lung MSCs might
be susceptible to differentiate into myofibroblasts and promote
airway fibrosis (156).

Dampened stromal signaling in aging immune organs such
bone marrow, thymus, lymph node, and spleen is thought to
be responsible for the progressive contraction in lymphoid cell
numbers and loss in adaptive immune system function in the
elderly population (157). The inflammatory microenvironment
described with age (inflamm-aging) also triggers stromal cells
to produce activation factors (TNFα IL-1β, IL-6, MCP1, MMP-
12, MMP-13) that contribute to the phenotypic reprogramming
of peripheral myeloid cells prior to their egression to the lung
(1, 158, 159). Chemical exposure to pesticides, doxorubicin,
bleomycin and radiation demonstrate that the added pressure
provided by acute or chronic exposure accelerates stromal
cell senescence, thereby contributing to the pathogenesis
and progression of the fibrotic response (153, 160, 161).
Indeed, primary bone marrow MSCs from IPF demonstrate
a highly senescent phenotype, characterized by mitochondrial
dysfunction, debilitating DNA damage, and the secretory
capacity to induce senescence in normal fibroblasts (162).

Immune Cells
Myeloid and lymphoid cell senescence can be described
as a combination of heightened inflammatory tone in
homeostatic conditions (inflamm-aging), and abnormal
immune reaction following challenge (immune-senescence)
(163, 164). These responses result in reduced pathogen clearance
and inflammatory resolution at the innate immune level. By
comparison, senescence of the adaptive system is associated with
blunted humoral response and failure to recognize “self ” and
increases the susceptibility to develop autoimmune disorders.
As we dive into cell specific mechanisms of senescence, it
is important to define its divergence from “exhaustion,” the
altered differentiation state observed in chronic infection
and cancer. Granted, these two states share a number of
features inherent to the function of key transcription factors,
metabolic derangement, and a failure to transition to quiescence.
However, proliferative dysfunction (irreversible in senescence)
and activation state (incompetent in exhausted T cells) is
profoundly different (165, 166). Justification of these differences
may provide important insights to our understanding of both
cellular conditions.

As introduced in the previous sections, senescence is triggered
by biological aging and accelerated by fibrotic remodeling,
whether induced by somatic mutations or secondary to external
challenges (167, 168). Aberrant activation of the immune

system has profound effects on disease outcome. To counter
excess immune activation in pulmonary injury and fibrosis we
adopted broad spectrum immunomodulation (corticosteroids,
anti-cytokine antibodies) (169, 170). However, its efficacy has
been sporadic and a number of dilemmas remain, as to whether
steroid immunomodulation is at all effective in toning down the
activation of a senescent immune cell; or if the doses used to treat
elderly individuals are adequate to address the myeloid lineage
expansion typical of aging (171, 172).

The ever-increasing toolbox of immunological models
available to investigate immune cells in pulmonary fibrosis
have rarely been used to examine aging and senescence. These
include, germ line and inducible knock outs targeting M-CSF,
GM-CSF, CD68, and CCR2, as well as Cre/Lox and diphtheria
toxin depletion lines targeted against CD25+, LysM+, CD11b+,
and CD11c+ cells (93, 173–177). Adoptive transfer, bone marrow
chimerism, parabiosis, and lineage tracing have also provided
substantial data on inflammatory cell dynamics in lung injury
(178, 179). The advent of CRISPR/Cas9 technology has expanded
even further the range of possibilities at hand to investigate these
questions (180, 181).

It is fundamental to recognize that the behavior of
immune cell subtypes is unique and often dependent on
the surrounding environment. The failure of broad-spectrum
immunomodulatory therapy in PF is a reminder of this. The
next section summarizes the current knowledge of age- and
chemical-induced senescence on a cell by cell basis.

Macrophages (an in vitro Preamble)
Macrophages are considered the archetypal resident guardians of
any tissue, acting in unison with their neighboring cells to mount
the adequate response to challenge. Today’s deep understanding
of macrophage phenotype and function results from extensive
in vitro testing of immortalized cell-lines and bone marrow-
derived macrophages to generate two phenotypic states: M1/pro-
inflammatory (classically activated; elicited using IFNγ or LPS)
and M2/anti-inflammatory (alternatively activated; induced by
IL-4/13 or IL-10) (Table 1) (182). This research provided the
necessary insights to define macrophage extreme plasticity and
a bench work for comparison against in vivo responses. While
in vitro assessment of aging is prohibitive, extrapolation of
the effects of age-related senescence on macrophage function
demonstrated positive results. Utilizing analogous stimulatory
conditions (M1: LPS or IFNγ; M2: IL-4) evidence show that
macrophage isolated from old mice and conditioned with M1 or
M2 prototypical activators exhibit blunted activation compared
to macrophages isolated from young mice (iNOS, IL-6, TNFα,
and IL-1β, as well as YM-1 and Arginase), a response consistent
with the notion of immune-senescence (198). Similarly, bone
marrow derived macrophages isolated from p16 knock out mice
demonstrate a phenotype resembling that of IL-4 treated M2
cells and inability to elicit pro-inflammatory functions upon
IFNγ challenge (199). This wealth of information provided the
foundation of in vivo research on fibrosis, senescence and aging,
and emphasized the perception that macrophage phenotype and
activation is organ-specific and non-dichotomous (200, 201).
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TABLE 1 | Phenotypic characterization of nine prototypical macrophage populations including M1, M2a/b/c/d, Mox, Mhb, and M4.

Phenotype Trigger Transcription Factor Function Activation signature

M1 IFN-γ, TNF-α, and LPS STAT1/5, IRFs, NF-κB and

AP-1

Antibacterial, Destructive, Th1

immunity; Type-IV hypersensitivity,

tumor resistance

TLR-2/4, CD80, CD86, iNOS, and MHC-II on

the surface. Produce TNF-α, IL-1α, IL-1β,

IL-6, IL-12, IL-23, CXCL9, CXCL10, CXCL11

M2a IL-4/-13 STAT3/6, glucocorticoid

receptor, (PPAR)-γ and -δ,

STAT6, IRF4, JMJD3

Repair and remodeling (pro-fibrotic);

Th2 immunity; endocytic activity; cell

growth

YM1, FIZZ1, Arg-1, CD206, IL1R surface

expression. Produce IL-10, TGF-β, CCL17,

CCL18, and CCL22

M2b TLR ligands + IL-1β Th2 immunity; Immunoregulatory

(breadth and depth of inflammatory

responses)

CCL1, TNF-α, IL-1β, IL-6, and IL-10

M2c Glucocorticoids, IL-10

and TGF-β

Immunoregulation, tissue repair, matrix

remodeling; Clearance of apoptotic

tissue

TLR-1/8, Arg-1, CD163, CD206 surface

expression. Produce IL-10, TGF-β, CXCL13,

CCL16, and CCL18

M2d Adenosine + TLR2/4/7

antagonists

Pro-angiogenic; clearance of apoptotic

tissue

IL-10R, IL-12R surface expression; no

Dectin-1 expression. Produce VEGF, IL-10

and iNOS; low levels of TNF-α and IL-12;

intermediate Arg-1

Mox Oxidized phospholipids Nuclear factor erythroid

2–related factor 2 (NRF2),

Nurr1

Pro-atherogenic. Reduced phagocytic

and chemotactic function

TLR-2 surface expression. Produce NRF2

response genes, reactive oxygen species,

IL-1β and IL-10

Mhb Haptoglobin – Phagocytic (erythrocyte clearance) HO-1 and CD163 surface expression

M4 CXCL4 KLF2 Pro-atherogenic; no phagocytic

capacity

No CD163, MHC-II, and HO-1 expression.

Produce TNF-α, IL-6, CCL2, CXCL8,

MMP-12, and S100A8

References: (182–197)

Table describes the chemical mixture necessary to trigger phenotype in vitro; transcription factors involved in macrophage activation; biological function; and activation signature.

Appropriate references are listed at the bottom of the table.

Circulating Monocytes
Peripheral monocytes (Mo) can be simplistically
defined as immature myeloid intermediates recruited
to sites of injury through chemical gradient. Three
major populations of circulating monocytes have been
recognized both in mice (CD11b+CD11c−Ly6C) and
humans (CD11b+HLA−DR+CD169−): classical monocytes
(CCR2+Gr1−Ly6Chi in mice; CD206−CD14++CD16− in
humans) are short lived (mean survival ≈1 day), acting as a
reservoir to replenish tissue resident cells following injury.
Notably, restoking the resident macrophage compartment
was recently shown to produce a highly fibrogenic monocyte-
derived subtype in experimental models of primary allograft
rejection, rheumatoid arthritis, and fibrosis (100, 179, 202–
204). Intermediate monocytes (mean survival ≈4 days) patrol
the vasculature and are known to transition to non-classical
monocytes. Non-classical/intravascular (CX3CR1+Gr1−Ly6Clo

in mice/CD206+ CD14+CD16+ in humans) represent subset
known to patrol the endovascular space by tightly adhering to
the microvasculature (205–208). These cells survive up to 7 days
in the circulation and replenishing the interstitial and alveolar
compartment in conditions of stress, and playing important role
in inflammatory termination and tissue remodeling (179, 209).

The limited invasiveness of human blood monocyte collection
and the simplicity of phenotypical characterization on the
basis of surface expression has provided a useful tool to
interrogate their role in aging and pulmonary disease. Although
aging does not affect total monocyte counts, non-classical

CD14+CD16+ monocytes significantly increased with age,
but display reduced HLA-DR (aka MHC-II) and CX3CR1
surface expression in the elderly; by comparison, classical
CD14++CD16− monocyte numbers are not affected by age
(210, 211). In the context of pulmonary disease (fibrosis
and COPD), number of CX3CR1+ anti-inflammatory non-
classical monocytes are inversely proportional to disease severity;
this is juxtaposed to the increases in classical CD14+ and
CCR2+ monocytes in patients with poor prognosis (212–214).
Evidence of monocyte functional senescence is demonstrated
by analysis of blood monocytes collected from aged cohorts
present blunted responses to bacterial infection (LPS) as a result
of decrease in TLR1 and TLR4 surface expression (215), as
well as substantial age-associated defect in CD80 expression and
functional engagement (89, 216). With blood derived monocytes
are clinically (easily) accessible, it is surprising to see such
limited number of datasets screening for transcriptional changes
across an individual lifespan in conjunction with the progression
of fibrosis. It would be a tremendous achievement to direct
research efforts onto this question and combine it with the
current advancements in therapeutics aimed at control myeloid
cell phenotype (217–219).

Alveolar and Interstitial Macrophages
In terms of pulmonary immunobiology, alveolar macrophages
(AMs) represent the most studied population. These long-
lived resident sentinels constantly communicate with the
surrounding parenchyma to elicit innate and adaptive immune

Frontiers in Medicine | www.frontiersin.org 8 November 2020 | Volume 7 | Article 606462

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Venosa Senescence in Pulmonary Fibrosis

activities, promote immune-tolerance, and participate in lung
surfactant reuptake (209, 220, 221). One notable immunological
discrepancy between the murine and human lung is represented
by the frequency of AMs. Westphalen et al., estimated one
macrophage per three alveoli (222). By comparison, the
human lung is composed by ∼480 million alveoli and 2.1
billion alveolar macrophages, thus suggesting a ratio of over
four macrophages/alveolus (223, 224). The evaluation of
human alveolar macrophage ontogeny can only be inferred
from murine evidence (225). The advent of fate mapping
approaches defined fetal liver origin for murine AMs,
while attributing their homeostatic sustenance throughout
life to local proliferation (209, 226–228). These cells can
be characterized by a unique signature of transmembrane
integrins and sugar binding lectins associated with maturity
(MerTK+F4/80+SigF+Ly6CloCD64hi). Consistent with this
notion, human AMs can be defined by their expression of
CD11b+HLA-DR++CD206++CD169+ (225, 229, 230).

A second resident macrophage population is represented
by interstitial macrophages (IMs). These cells originate from
sequentially recruited progenitors in the yolk sac and bone
marrow, an observation that suggests functional diversity across
resident lung macrophages on the basis of ontogeny (227).
CX3CR1 reporter mice has helped visualization of IMs within
the bronchial parenchyma, in the proximity of the lymphatic
vessels. Flow cytometric characterization of IMs reveals
strong similarities to blood monocyte’s in mice and humans
(mouse IMs: MerTK+CX3CR1+F4/80+SigF−Ly6CloCD64hi

and monocytes: MerTK−F4/80+SigF−Ly6CloCD64int; human
IMs: CD11b+HLA-DR++CD206+CD169−; and monocytes:
CD11b+HLA−DR+CD206−−/+CD169−), thus indicating
blood monocytes replenish the interstitial compartment across
the lifespan (227, 231–234). Unbiased (single-cell) and biased
(cell sorting) RNA-sequencing was utilized to functionally define
unique IM subpopulations. The resulting datasets independently
found Lyve-1 and MHC-II as discriminants. While providing
nuanced differences, these studies demonstrated: (1)
heterogeneity within the interstitial compartment; (2)
transcriptome divergence from alveolar macrophages; (3)
existence of parallel populations in heart, fat, and dermis;
(4) monocytic origins (Ly6Chi); (5) mobilization/residency
to specific tissue sites, wither adjacent to nerve bundles
(Lyve1loMHCIIhi) or blood vessels (Lyve1hiMHCIIlo); (6)
immunomodulatory functions (their depletion exacerbates
fibrosis following challenge) (231, 235, 236).

A third population of resident macrophages is represented
by monocyte-derived alveolar macrophages (MoAMs). This
population develops in response to significant challenge of the
lung, sufficient to recruit peripheral monocytes. These immature
myeloid cells have been shown to mature into macrophages,
replenish the alveolar compartment, and persist in the tissue
for extended periods after bleomycin induced injury, where they
elicit a fibrotic phenotype (100, 179, 237).

Senescence of the resident macrophage compartment has
been investigated across the spectrum of lung health (genetic
susceptibility, acute and chronic chemical challenge, and
biological aging), but seldom in combination. Exposure to

the warfare agent, nitrogen mustard is accompanied by
early pro-inflammatory macrophage activation, followed by
transition to a pro-resolution/pro-fibrotic phenotype (238).
While identification of a senescent phenotype was beyond
the scope of these studies, RNA-sequencing analysis of lung
macrophages at a time coordinated with fibrosis found features
consistent with senescence, including apoptosis, p53, and cell
cycle signaling, paired with morphologically aberrant appearance
(foamy) (239, 240). In the context of biological aging, tissue-
resident macrophages persist in the lung without input from
bone marrow-derived monocytes. Aged alveolar macrophages
demonstrate increased signs of inflamm-aging (interferon
signaling) and down-regulated cell cycle signaling, phagocytotic
and antigen recognition function (241, 242). Preliminary
evidence by McQuattie-Pimentel et al., elegantly shows that
resident macrophages from aged cohorts adoptively transferred
to young lungs acquires a transcriptome prolife reflecting the
age of the recipient, thus suggesting that lung microenvironment
governs macrophage behavior (243). While the work is still in
preprint form, the authors bring up significant points related to
the differential responses of lung resident AMs and MoAMs to
a second challenge. This (and other) work could reshape how
we view macrophage biology. A more complete understanding of
monocyte biology in the context of aging and fibrosis could help
identify unique signatures to define monocyte-derived alveolar
macrophages, and even achieve selective targeting during the
fibrogenic process.

Eosinophils
Eosinophils are extensively studied in the context of eosinophilic
esophagitis, hyper-eosinophilic syndrome, asthma, allergy,
and parasitic infection. There is observational evidence
linking eosinophils to fibrosis and COPD; however, not
much has been done to show their functional role (244–249).
Eosinophils perform a number of functions important in tissue
remodeling, including modulating lymphocyte recruitment
and homeostasis and coordinating Th2 polarization (250).
As seen with macrophages, ontogeny impacts cell behavior
and physiological function. Indeed, resident eosinophils
(SigFintCD62L+CD101lo) have been reported to reside within
the lung airspace where they display a regulatory phenotype,
while bone marrow cells exhibit a highly destructive phenotype
(IL-5 dependent, SigFhiCD62L−CD101hi) (251, 252).

Eosinophilia is infrequent and not well-understood in
pulmonary fibrosis. Nevertheless, blood eosinophil counts have
been shown to be a valuable biomarker predicting development
of acute inflammatory exacerbations and prognosis in chronic
pulmonary disease (253–255). These intermittent events are
currently treated with corticosteroids, although a number of large
clinical trials demonstrate that prednisone has minimal positive
impact (and could even be detrimental) on patient survival
during or after acute inflammatory exacerbations (256–258).
Asthma therapy provides important data on the pro-apoptotic
effects of broad spectrum corticosteroid therapy (prednisone,
dexamethasone) (259). In the absence of stratified analysis to
determine whether eosinophilic IPF patients represent the group
most responsive to steroid therapy, it is tempting to argue that
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eosinophil blood count could provide a valid aid to improve
therapeutic regimen and, perhaps, disease outcome. One caveat
could be related to age-related diminution in peripheral blood
eosinophil counts and function (reduced IL-5 stimulation) across
a lifespan, since the median age of PF diagnosis is ≥65 and by
this time eosinophil development from bonemarrow progenitors
is significantly reduced (260–262). This could, in turn, reduce
steroids responsiveness in the elderly to a level comparable to that
seen in asthma and COPD individuals resistant to glucocorticoid
therapy (262–266). In this context, it is interesting that parabiosis
or adoptive transfer attempting to replenish old mice with
juvenile/younger eosinophils successfully prevented age-related
declines in physical and immunological functions (267).

Dendritic Cells
Dendritic cell (DC) represent a cellular link between innate and
adaptive immunity. Their ever-expanding taxonomy reflects
their myeloid/lymphoid lineage differentiation as conventional
DCs (CD103+CD11b+CD11c+MHC-II+), plasmacytoid
DCs (CD11c+PDCA1+B220+), monocyte-derived DCs
(CD11b+CD141+) (268). DCs are primarily tasked to perform
antigen recognition functions. Their age-related senescence
has been associated with increased immune response against
self-antigens (269). This effect, combined with diminished
secretion of innate cytokines such as type I and III interferons
by plasmacytoid DCs, as well as reduced expression of the
anti-inflammatory cytokine, IL-10, significantly impacts the
principal functions of these cells with respect to impaired
vaccine responses in the elderly (270). It is currently unclear
whether DC’s functional senescence results from permanent
remodeling of the epigenome leading to aberrant response to
challenge, and identification of inaccessible DNA regions during
the inflammatory response is an active area of DC research (via
ATAC-sequencing analysis alone and/or in combination with
single-cell RNA-sequencing) (271).

Dendritic cell presence in the lung is dependent on bone
marrow recruitment of pre-DCs, that mature locally into DC
subsets (272). Fate-mapping analysis shows that CD103+ cells
arise almost exclusively from commonDCprogenitors (maturing
from macrophage-DC progenitors), while that number drops
drastically for CD11b+ DCs (273). Plasmacytoid DCs are
critically dependent on IRF8 and STAT3 signaling, while GM-
CSF and signaling via STAT5 inhibit their maturation (274).
It is therefore unsurprising that STAT3 signaling declines with
aging, a response that may explain the systemic contraction of
this DC subset (275, 276). The role of lung resident dendritic
cells in pulmonary fibrosis remains largely unstudied. Single cell
sequencing analysis of IPF lungs shows only minimal increases
in dendritic cell population (132), while experimental modeling
(adenoviral-TGFβ overexpression) indicates that fibrogenesis is
accompanied by increases in CD11b+ and CD103+ DCs, but that
their ablation does not affect lung remodeling (277).

B Cells
The lung adaptive/humoral immune response is carried by
highly specialized lymphoid populations, including B cells and
T cells. There are some important differences between humans

and mice. Much of the information on B cell cellular and
molecular pathways described here was derived in murine
models. Canonical B cells are mostly known for their adaptive
(immunoglobulin-dependent) function against infections and
cancer (278). CD19+ B cells populate ∼5% of the lung immune
compartment, and their numbers almost quadruples in non-
small cell lung cancer (279). Two self-renewing B cell subtypes,
B1A and B1B, have been described to develop in the fetal liver
from a distinct progenitor and perform innate-like functions
in the lung (280). These subsets can be distinguished by their
differential expression of CD5 and CD43. They mobilize from
the bone marrow to the respiratory tract in a CXCL13 dependent
fashion (281), and trigger an IgM and IgA response following IL-
5, IL-10, and TLR-agonist signaling (282). Their role in aging
and fibrotic senescence is not well-established, but mounting
evidence suggests that fetal exposure may produce a battery of
specialized subtypes that favor pathogenesis and progression of
lupus, diabetes and asthma (283–285).

Evaluation of telomere length as a proxy for senescence is
abnormal in B cells since naïve and germinal center B cells exhibit
long telomeres, while circulating and memory B cells show
extremely short ones (286). By comparison, B cells functional
senescence is more linear, as demonstrated by increased
incidence of infection in the elderly (287, 288). Decline in bone
marrow stromal cell IL-7 production significantly impacts B cell
numbers and their maturation. As a result, a highly autoreactive
and pro-inflammatory (inflamm-aging) senescent B cell is noted
(287–290). Mechanistically, this response appears to be driven by
progressive reliance on inflammatory TLR7/TLR9 engagement,
rather than the B cell receptor, to trigger a humoral response
(287, 291–293). In turn, these autoantibodies lead to chronic lung
lesions that can be only resolved via scarring/fibrosis. Perhaps
as a compensatory mechanism, aberrant expansion of ectopic
inducible bronchus-associated tissues (iBALT) independently
supports the maturation and selection of B cells (CD5+ and
CD20+) in aged, COPD, and IPF clinical cohorts, in particular
those with cigarette smoking history (294–296). Single cell
sequencing and proteomic analysis of lungs and peripheral blood
cells from IPF individuals shows strong evidence of B1 and
CD38+CD138+ plasma cells accumulation, while experimental
modeling of fibrosis generated strong correlation between
the degree of pulmonary fibrosis and B-cell numbers in the
germinal center (297–300). The involvement of B cells in sterile
(environmental) injury is not as well-established, aside from
allergen induced IgE production in aging asthma cohorts (301).
Nevertheless, the potential role of memory and B1 B cells in
shaping humoral immunity against senescent cells should not be
overlooked (302, 303).

T Cells
There are several non-lung resident T cell subsets defined by
their surface expression and cytokine production (Table 2).
These cells reside in primary and secondary lymphoid organs
(bone marrow, spleen, thymus, lymph nodes), and can be
promptly mobilized to the lung through the lymphatic and
vascular system. By comparison, only a handful of lymphocyte
subsets are recognized as “lung resident,” with their appearance
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conditional to pathogen exposure across the lifespan (i.e., flu)
(311–314). These include tissue-resident memory T cells (TRM),
innate (innate lymphoid cells, ILCs), and unconventional T cells
(invariant natural killer T cells, iNKT; CD8αα+ cells; mucosal-
associated invariant T cells, MAIT; γδ T cells; and intestinal
intraepithelial lymphocytes, IELs) (304, 305). Our understanding
of tissue resident lymphocyte senescence is limited by subset
novelty or their abundance (TRMs expressing a specific antigen
are infrequent). Nevertheless, there are numerous reports
describing senescence of the machinery in charge of T cell
differentiation and selection as well dysfunction of peripheral
lymphocyte populations due to toxic microenvironment. Due to
the abundance of T cell subtypes to be discussed, a single section
would not be sufficient. There are comprehensive reviews that
highlight T cell senescence and human health (315–317).

Lymphocyte senescence, and the health associated effects
it produces, is the product of direct (cellular dysfunction)
and indirect (declining T cell selection machinery; exposure)
mechanisms. Clinical and experimental evidence indicate that
CD57 and KLRG-1 expression defines senescent conventional
T cells (316, 318). Epigenetic analysis of aged senescent
lymphocytes demonstrate progressive expansion of reactive
effector cells (i.e., Th17) through DNA hypermethylation
of transcriptional regulators essential to T cell responses
(LGALS1, IFNG, CCL5, GZMH, CCR7, CD27, and CD248)
and differentiation (SATB1, TCF7, BCL11B, and RUNX3) (319).
These responses are complemented by locus specific chromatin
remodeling favoring terminal differentiation of naïve T cells into
effector cells (CD8 and Th17) (320). As a result, evaluation
of Th17-to-Treg ratio in aging cohorts indicates progressive
skewing toward effector Th17+ (high affinity for self-antigens)
in lieu of suppressive Tregs (312, 321–323). Similarly, aging is
associated with progressive loss in mucosal-associated invariant
T cell and iNKT numbers and variant diversity due to functional
decline in CD8 negative/double negative ratio in the thymus
of aged cohorts (324–326). Further analysis also identifies time
related shift in CD4+ MAIT, and within this subtype a decrease
in interferon IFNγ/IL-4 ratio indicating Th1 to Th2 transition
(327). Their importance should not be understated, as they
represent up to 10% of circulating T cells and accumulate in
large numbers in the bowel and airways and perform central role
in epithelium protection from pathogens (328). Notably, clinical
and experimental evidence suggested they play juxtaposing role
in homeostasis (protective) and chronic kidney, bowel and non-
alcoholic liver disease (profibrotic) (329–331). In the context
of asthma, MAITs communicate with B cells and eosinophils
to promote allergen-induced airway inflammation (332). The
latter function is shared with iNKT cells, a population for
which we have more detailed information. These effector cells
have been shown to promote T cell dysfunction in aging
murine cohorts through proliferative inhibition of splenic T
cells (333). Their intrinsic (functional) senescence is still not
well-understood. However, clinical and experimental evidence
shows that cigarette smoke promotes their accumulation and
activation in the lung, a response linked to the development of
COPD (334, 335). Nevertheless, iNKT cell’s role in recognizing
and clearing senescent cells may unlock their potential

in attenuating progression of already established age-related
disorders (336).

Experimental modeling of environmental and occupational
hazard exposure corroborates the notion that external stress
accelerates T cell biological senescence. For instance, inhalation
of vanadium fumes, used as an additive in the production of
steel, and exposure to titanium oxide nanoparticles impacts
“normal” T cell selection and differentiation by depleting thymic
antigen presenting cells and extensive inflammation (337, 338).
Chronic inflammation induced by particulate matter exposure
triggers T cell senescence, with external stimuli or neighboring
senescent cells producing an inflammatory microenvironment
(SASP) that reprograms themetabolic machinery of CD8+ T cells
by boosting mitochondrial biogenesis, and thus ROS production,
distinctively defined as inflamm-aging (339). Cigarette smoke
from human studies show an increase in inflammatory CD4+
Th17 lymphocytes at blood- and pulmonary level in smokers
(340, 341).

At the crossroads between innate and adaptive immunity,
innate lymphoid cells represent a rare and powerful population
that can shape the behavior of surrounding cells during stressful
conditions. Of the three subtypes described to date, ILC2 and
ILC3 have been clearly implicated in lung injury, wound healing,
and fibrogenesis. Their role is primarily linked to the production
of mediators that promote extracellular matrix destruction and
remodeling (IL-17, TGFβ, IL-5, IL-13) [extensively reviewed
by (342, 343)]. Recent reports describe transcriptional and
functional ILC2 senescence/exhaustion in the aging lung and
brain, resulting in inability to restock the ILC2 pool in aged
mice (344). Interestingly, these effects were, at least in part,
alleviated by adoptive transfer of activated ILC2s (345). While
identification of these tissue resident lymphocytes is progressing
fairly rapidly thanks to single-cell techniques, analysis of their
roles in specific disease states still at its infancy. Thus, further
functional examination of these cells in the context of a senescent
state (aging and fibrosis) represents a promising strategy to
advance the field and perhaps therapy.

BIOLOGICAL SIGNATURES AND THERAPY

A few non-specific serum biomarker link disease progression and
patient’s survival to senescence (IL-6 and TNFα) or pulmonary
fibrosis (SP-A, SP-D, KL-6,MMP-7), while epigenetic remodeling
has gained considerable traction in early detection both
conditions (346–348). Changes in global and site-specific DNA
hypermethylation (gene silencing) patterns are well-described
in the literature and are been considered therapeutically (349–
351). Blood screening of elderly populations and individuals
with interstitial lung abnormalities identified complexmicroRNA
signatures linked to senescence, proliferation, cell survival,
transcript processing, translation, and immune function (348,
352). While the overlap between PF and aging miRNA signatures
is not currently available, a three-arm analysis examining young,
aged, aged fibrotic lung could be very informative. At the
transcriptional level, the Least Absolute Shrinkage and Selection
Operator (LASSO) regression method was recently used to
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TABLE 2 | Phenotypic characterization of peripheral and tissue resident lymphocyte populations including CD4, CD8, Th17, Treg, innate (innate lymphoid cells, ILCs), and

unconventional T cells (invariant natural killer T cells, iNKT); CD8αα+ cells; mucosal-associated invariant T cells, MAIT; γδ T cells; and intestinal intraepithelial lymphocytes,

IELs).

Phenotype Trigger Transcription Factor Function Activation signature

CD4+ (Cellular Response) Antigen presenting cell

and epithelial signals

(CXCL10 and CXCR3)

STAT4, Tbet Th 1 Immunity (Enhance macrophage

killing activity, proliferation of cytotoxic

CD8+ T cells)

IL-2, IL-12, IFN-γ, and TNFα

CD4+ (Humoral Response) Antigen presenting cell

and epithelial signaling

(IL-33, IL-25, and

TSLP)

STAT6, GATA3 Th 2 Immunity (Recruit/activation of

eosinophils, basophils, mast cells,

and B cells

IL-4, IL-5, IL-9, IL-10, IL-13, and

IL-25

CD8+ (Cytotoxic T) Antigen exposure Tbet, EOMES, RUNX3 Intracellular pathogen defense, tumor

surveillance

(a) TNF-α, IFN-γ secretion; (b)

cytotoxic granule release; (c) direct

cytotoxicity (Fas/FasL)

Th9 IL-4 and TGF-β STAT6, PU.1 Anti-parasitic IL-9

Th17 Antigen dependent and

independent activation,

IL-6 and IL-23

RORγt, STAT3 (IL-17A, IL-17F, IL-21, and IL-22)

Th25/Treg TGF-β FOXP3 Immunosuppressive; prevent

autoimmunity

IL-10, TGFβ, IL-35

Tissue resident memory T

(TRM)

Pathogen exposure,

epithelial signaling

(IL-25)

BCL6, Blimp-1 Immunological memory IL-5, IL-17, and CCR7

Unconventional T

(Innate-like, NKTs, IELs,

MAITs, γδTs)

IL-33, IL-25, TSLP PLZF, RORγt, Tbet IFNγ (all); IL-4, IL-13 (MAIT); IL-17

(MAIT, γδT);

References: (304–310)

Table describes the milieu necessary to trigger phenotype; transcription factors involved in subset activation; biological function; and activation signature. Appropriate references are

listed at the bottom of the table.

identify a signature spanning across age- and chemical-induced
senescence. This machine learning approach using training
datasets from chronic exposure to cigarette smoke and radiation,
allowed to build a transcriptomic age model that accurately
predicts chronological age in untreated mice and the deviations
associated with certain exposures based on a 57-gene signature
including Cyp1a1, Lcn2, MMPs, and immunoglobulins (87).

There is no panacea or elixir to counter the effects of age-
or chemical-induced senescence. Nevertheless, recent evidence
highlighted a number of bioactive nutrients, supplements
and therapeutics (termed senolytics), that blunt oxidative
damage and reprogram the cells’ inflammatory, metabolic
and death machinery (353). Two such chemicals are the
macrolides azithromycin and rapamycin, shown to clear
senescent fibroblasts and thus reduce SASP-related factors
through autophagic modulation (354). The anti-diabetic drug
metformin and the immune-suppressor rapamycin have shown
significant affinity to modulate AMP-activated protein kinase
(AMPK), thereby reducing cellular apoptosis, and extending cell
longevity (355–357). Lastly, a long line of natural compounds
(i.e., resveratrol, fisetin, piperlongumine, and quercetin) that
activate Nrf2 (nuclear factor erythroid-derived 2-related factor 2)
are shown to be cytoprotective while also inducing senescence
or apoptosis in damaged and potentially precancerous cells
(358). There is increasing evidence that these chemicals are
effective beyond aging, with ample research focusing on their
anti-cancer benefits. Examination in the context of fibrosis

is still in its infancy, with clinical and in experimental data
(bleomycin) supporting the feasibility of quercetin, as well as
metformin, against fibrosis. This appears to be achieved via
AMPK activation in myofibroblasts, enhanced mitochondrial
biogenesis and regulation of apoptotic sensitivity, which aids
reversal of SASP and collagen deposition (359–362).

A second potentially groundbreaking approach to reverse
pulmonary fibrosis and aging induced senescence, is represented
by allogeneic injections of mesenchymal stem cell/multipotent
stromal cell/marrow stromal cell (MSCs). A number of
experimental and clinical evidence reveals promising results in
chronic pulmonary disease, fibrosis and age-related frailty (363–
365). These cells can be obtained in vitro through expansion
of adherent bone marrow mononuclear cells and may function
as a trophic source to support immune-senescent inflammatory
cells (366).

CONCLUSIONS AND FUTURE
PERSPECTIVES

This review exposes the wealth of evidence that pertains to aging,
environmental exposure, and fibrosis. While demonstrating
some degree of mechanistic redundancy across the spectrum
of senescence, it also highlights a number of knowledge gaps
that need to be addressed to impact human health (i.e.,
therapeutics). Based on this foundation, the next cycle of
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research questions should test: (1) whether senescence of the
remodeled/fibrotic lung occurs faster and through the same
mechanisms as an architecturally pristine one? (2) Since it is
understood that age-related dysfunction lowers the threshold
necessary to trigger an irreversible senescent phenotype, can we
model and accurately predict such levels? (3a) Can we identify
mutual factors involved in senescence across the spectrum of
chemical exposure? (3b) Can we identify shared and exclusive
factors that drive senescence across the lung disease spectrum?
For instance, how does PF senescence compare to that observed
in COPD, emphysema, asthma? (4) Can we modulate/reprogram
the behavior and communication of specific cell types, and thus
amplify an anti-senescent signal? (5) Can senolytics modulate
seemingly irreversible changes in the fibrotic (and aging) lung?

As we look beyond the next decade, it is absolutely
necessary that we boost our effort to define sex and hormonal
differences as they relate to lung function, senescence, response to
environmental toxicants and fibrosis. In the context of immune
cell function, it is shown that females elicit an estrogen driven
humoral response (Th2 like), while testosterone supports Th1
immunity (367). Peripheral blood analysis shows that aging

males exhibit marked epigenomic alteration linked to naïve T
and B cell decline and increased monocyte cytotoxicity (368).
How these hormones, or their imbalance during menopause
and andropause, support or protects the lung from exogenous
stressors and disease is not well-understood. This is likely the
most important puzzle piece to understand clinical datasets. Yet,
there is a canyon-sized knowledge gap in front of us.

Although we are a long way away from getting all the answers,
it is comforting to see an increasingly collaborative scientific
community and frequent technological advancements that help
us comprehensively study cell biology. The successes of the next
decade of research lies in good hands.
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