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Abstract
The scientific debate following the initial formulation of the “bad luck” hypothesis in cancer development highlighted how 
measures based on analysis of variance are inappropriately used for risk communication. The notion of “explained” variance 
is not only used to quantify randomness, but also to quantify genetic and environmental contribution to disease in heritability 
coefficients. In this paper, we demonstrate why such quantifications are generally as problematic as bad luck estimates. We 
stress the differences in calculation and interpretation between the heritability coefficient and the population attributable frac-
tion, the estimated fraction of all disease events that would not occur if an intervention could successfully prevent the excess 
genetic risk. We recommend using the population attributable fraction when communicating results regarding the genetic 
contribution to disease, as this measure is both more relevant from a public health perspective and easier to understand.
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Introduction

In 2015, the “bad luck” hypothesis in cancer development 
was put forward, which initially claimed that a majority of 
the variation in cancer risk is due to randomness [1]. The 
origin of the hypothesis was the observed strong correla-
tion (R2 = 0.66 = 66% explained variance) across cancer 
types between the total number of stem cell cellular divi-
sions, assumed to represent the randomness, and lifetime 
cancer risk. The subsequent scientific debate was intense, 
and highlighted how measures based on analysis of variance 

are inappropriately used for risk communication [2, 3]. The 
notion of “explained” variance is not only used to quantify 
randomness, but also to quantify genetic and environmental 
contribution to disease in heritability coefficients (h2) [4]. 
Examples can be found both in scientific writing, e.g. “herit-
able factors were estimated to account for 42% of prostate 
cancer risk” [5], and in media, e.g. “About a third of all 
cancer cases can be blamed on inherited genes, a giant study 
finds” [6]. In this article, we argue that such quantifications 
of the genetic contribution to disease are generally just as 
problematic as bad luck estimates. We stress the differences 
in calculation and interpretation between two seemingly 
similar but quite different measures, the heritability coef-
ficient and the population attributable fraction. As motivat-
ing examples, we use studies of individual genetic variants 
and studies of the aggregated impact of the whole genome.

Notation and framework

We first consider genetic variation at a specific locus, where 
A denotes the risk variant and a the normal (reference) vari-
ant. The risk allele frequency is p, implying that the geno-
types aa, aA and AA can be expected to occur with frequency 
(1 − p)2 , 2p(1 − p) , and p2 , respectively, in the population. 
Let R0 be the background risk for disease during a specific 
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follow up period in the reference group with individuals 
without the risk variant (i.e. genotype aa). RR denotes the 
relative risk for disease due to carrying one copy of the risk 
variant versus none. A multiplicative model is assumed, 
implying that the relative risk due to carrying two risk vari-
ants is RR · RR = RR2. The overall risk for disease in the 
population, RPop can be calculated as a weighted average of 
the three genotype-specific risks

More generally, the overall risk for disease can be aver-
aged over k mutually exclusive genetic risk groups over the 
whole genome as

where pi and Ri represents the prevalence and risk associated 
with group i (group 0 is the reference group with background 
risk R0).

Heritability models based on analysis of variance have 
for long been used in genetics to study quantitative traits 
in the population that are subject to genetically determined 
differences across individuals [7]. The quantitative trait 
can either be observable, such as height, intelligence, lipid 
levels, or blood pressure, or be an underlying, unobserved 
trait (referred to as liability) that is assumed to give rise to 
an observed binary trait (e.g. disease or no disease) above 
a certain threshold. We use standard assumptions in herit-
ability models [7], i.e. the underlying liability is normally 
distributed with the same variance and the same threshold 
for disease within all genetic risk groups. Excess disease 
risk due to genetic variation leads to shifts in the liability 
distribution curves across the groups. The size of the shift is 
in the case of genetic variation at a specific locus determined 
by the allele effect RR (Fig. 1).

Heritability coefficient

The heritability coefficient h2 can for binary disease events 
be interpreted as the estimated proportion of the variance 
in disease risk that can be attributed to genetic variation. 
To calculate h2 we let VPop denote the overall variance in 
liability in the population and V0 the corresponding vari-
ance in the reference group. For simplicity we let V0 = 1 and 
thus VPop > 1 if genetic variation in the population increases 
the variance in disease risk. If the effect of the risk allele 
could be prevented in a way that leaves the contribution of 
other sources (including the environment) to the variance in 
disease risk unchanged (cf. Lewontin [8]), then the overall 
variance in the liability in the population would decrease 

RPop = (1 − p)2 ⋅ R0 + 2p(1 − p) ⋅ RR ⋅ R0 + p2 ⋅ RR2
⋅ R0.

RPop =

k−1
∑

i=0

pi ⋅ Ri,

from VPop to 1. The heritability coefficient reflects this rela-
tive contribution of genetic variation to the overall variance 
in liability:

Population attributable fraction

The population attributable fraction (PAF) is the proportion 
of the disease events in a population that can be attributed 
to genetic or environmental risk factors [9–11]. PAFs can be 

h2 =
VPop − V0

VPop

=
VPop − 1

VPop

.

Fig. 1   Conceptual illustration of the heritability model for a genetic 
variant A at a specific locus. The distribution of the liability is 
assumed to be normally distributed with the same variance in the 
three genotype groups. a Genotype aa (reference group) b Genotype 
aA c Genotype AA. The shifts in liability is determined by the mag-
nitude of the increased risk associated with A. Disease is assumed 
to occur if the liability exceed a certain threshold t (vertical dashed 
lines)
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calculated for specific risk factors (e.g. specific genetic vari-
ants or lifestyle factors such as smoking), but can also be used 
to assess aggregated effects of, e.g., the whole genome [12]. 
Using the previous notation, the overall risk for disease in the 
population would decrease from RPop to the background risk 
R0 if the excess risk due to the genetic variation could be pre-
vented. PAF provides an estimate of the proportion of disease 
events that would disappear:

Example 1: genetic variation at a specific 
locus

Suppose the background risk R0 is 0.01 (1%) during a specific 
follow up period. A risk allele A that is occurring with 20% 
frequency increases the risk for disease two times per copy, i.e. 
p = 0.20 and RR = 2.0.

Thus,

i.e. the overall average risk in the population is 1.44%. The 
genetic variation associated with A only leads to a marginal 
increase in the overall variance in liability:

The associated heritability coefficient is

PAF =
RPop − R0

RPop

.

RPop = 0.82 ⋅ 0.01 + 2 ⋅ 0.2 ⋅ 0.8 ⋅ 2 ⋅ 0.01 + 0.22 ⋅ 22 ⋅ 0.01 = 0.0144,

VPop ≈ 1.0249 (see Supplementary file for computational details).

h2 =
VPop − 1

VPop

≈
1.0249 − 1

1.0249
≈ 0.024 = 2.4%,

i.e. 2.4% of the total population variance in disease risk (lia-
bility) is attributable to the risk allele. PAF reflects the rela-
tive reduction in disease risk that would occur if the effect 
of A could be prevented:

i.e. 31% of the cases occurring in the population has the risk 
allele A as a component cause [13], and would therefore 
not occur if an intervention could successfully prevent its 
excess risk. The h2 increases to 4.4% if R0 = 0.05 and to 6.6% 
if R0 = 0.10. The dependence of the heritability coefficient 
h2 on the background risk R0, in addition to the risk allele 
frequency p and RR, is illustrated in Fig. 2. Maximum in h2 
for a given combination of R0 and RR is reached for values of 
p between 50 and 60%. The magnitude of the PAF increases 
monotonically based on p and RR, but is independent of R0 
(Fig. 3).

Example 2: genetic variation over the whole 
genome

Next we consider genetic variation over the whole genome. 
To simplify, we assume that the population can be divided 
into three risk groups: low (R0 = 0.1%, prevalence p0 = 25%), 
medium (R1 = 10%, p1 = 70%) and high risk (R2 = 25%, 
p2 = 5%). The resulting liability distribution curves are illus-
trated in Fig. 4, where the location of each curve is determined 
by the risk and the mode (height) is determined by the preva-
lence. The average population risk is

PAF =
RPop − R0

RPop

=
0.0144 − 0.01

0.0144
≈ 0.31 = 31%,

RPop = 0.25 ⋅ 0.001 + 0.70 ⋅ 0.1 + 0.05 ⋅ 0.25 = 0.08275 ≈ 8.3%,

Fig. 2   The association between 
risk allele frequency (p) and 
heritability coefficient (h2) at 
various levels of the relative 
risk (RR; 1.2, 1.5 or 2.0) for 
disease per copy of the risk 
allele and the baseline risk (R0; 
0.01, 0.05 or 0.10). For RR = 1.2 
only R0 = 0.10 is shown since h2 
is marginal when R0 < 0.10 at 
this effect level
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and the overall variance in liability is

Thus, the associated heritability coefficient is

i.e. 40% of the total population variance in disease risk 
(Fig. 4; solid black curve) is attributable to the genetic vari-
ation. The corresponding PAF can either be calculated by 
assuming that only the excess risk in the group with high 

VPop ≈ 1.6583 (see Supplementary file for computational details).

h2 =
VPop − 1

VPop

≈
1.6583 − 1

1.6583
≈ 0.40 = 40%,

risk can be prevented (average population risk decreases 
from 8.3 to 7.03%)

or by assuming that all excess genetic risk (both in the 
medium and in the high risk group can be prevented (aver-
age population risk decreases from 8.3% down to the back-
ground risk 0.1%)

Thus, inhibiting the excess high risk would prevent 
15% of all cases whereas inhibition of both excess high 
and medium risk would prevent 99% of all cases.

PAF =
0.08275 − 0.0703

0.08275
≈ 0.15 = 15%,

PAF =
0.08275 − 0.001

0.08275
≈ 0.99 = 99%.

Fig. 3   The association between 
risk allele frequency (p) and 
attributable fraction (AF) at 
various levels of the relative risk 
(RR; 1.2, 1.5 or 2.0) for disease 
per copy of the risk allele

Fig. 4   Impact of genetic varia-
tion on the liability distribution 
curves in example 2 (see text) 
with three genetic risk groups: 
low (risk 0.1%, prevalence 25%; 
dotted grey), medium (risk 10%, 
prevalence 70%; dashed grey) 
and high risk (risk 25%, preva-
lence 5%; solid grey curve). The 
solid black curve represents the 
liability in the overall popula-
tion and the dotted black curve 
the reference distribution, i.e. 
the corresponding liability dis-
tribution in a population without 
this genetic variation
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Why these two measures may differ so much

It may seem counterintuitive that a risk allele that only 
contributes to 2.4% of the variance in disease risk (h2) as 
in example 1 still can be a component cause in 31% of all 
disease events (PAF). The explanation is that numerically 
small shifts in liability may be relatively unimportant for the 
increase in variance but have a large impact on the number 
of individuals that exceed the disease threshold in the tail 
of the liability distribution and become cases. In example 
2, genetic variation contributed substantially (40%) to the 
variance in liability. The corresponding PAF ranged between 
15 and 99% depending on how much of the excess genetic 
risk that could be prevented. Hence h2 and PAF capture dif-
ferent aspects of the genetic contribution, i.e. the effect on 
variability in risk (h2) versus the effect on average risk (PAF) 
[14]. In other words, a low h2 as in example 1 suggests that 
the risk allele contributes little to the variance in population 
risk. On the other hand, a high PAF implies that a substantial 
reduction in the average population risk would occur if a 
successful intervention could wipe out the excess risk [15].

Discussion

Variance is a statistical measure that is hard to interpret 
even for observed traits, and not only because its unit is the 
square of the original measurement unit (e.g. for blood pres-
sure the variance is expressed in (mmHg)2). Estimating the 
variance from unobservable constructs, such as liability in 
the heritability coefficient h2 for binary disease traits, adds 
further complexity to the interpretation. Calculation of h2 
and similar measures of explained variance sometimes yield 
seemingly paradoxical results. One such example is Crohn’s 
disease where the risk variant at rs11209026 is very com-
mon in the population (prevalence above 90%) and most 
individuals thus have the same elevation in risk. This implies 
that h2 for this allele is close to zero as it contributes little 
to the population variance in risk, even though the relative 
risk for disease due to carrying one copy of the risk vari-
ant versus none exceeds two [16]. Similarly, smoking would 
explain zero percent in the variance in lung cancer risk in a 
population where everyone smokes equally much, but would 
nevertheless be the major cause of lung cancer in that popu-
lation. Measures based on analysis of variance may in many 
situations lead to flawed take home messages (e.g. “Cancer 
is a matter of bad genes or bad luck—life style makes little 
or no difference”) [3]. For these reasons, we advise against 
the use of h2 and similar measures that originate from analy-
sis of variance when communicating results to the media 
and the public.

Measures based on analysis of variance were classi-
fied as useless for genetic research by Lewontin already in 
1974 [8], but are still commonly used also in epidemiol-
ogy. If interpreted correctly, we believe that h2 can have 
some value as a complementary measure to PAF in scien-
tific discussions, as these two measures describe different 
aspects of the genetic and environmental contribution to 
disease risk [14]. It is however important to stress that the 
purpose of the calculations are different. PAF is a useful 
measure in an analysis of causes and provides estimates of 
public health effects of interventions. By contrast, analysis 
of variance cannot be used to analyse causes or to estimate 
meaningful public health effects, as its result is determined 
in an intricate way by the present distribution of both envi-
ronmental exposures and genotypes in the population [8].

Concerns have been raised against PAF as a measure to 
assess the genetic component in disease. One argument put 
forward is that PAF generally leads to higher numerical 
estimates of the genetic contribution, not only compared 
to h2 but often also higher than other genetic measures 
such as the sibling recurrence risk explained, the propor-
tion of genetic variance explained on a log relative risk 
scale and the proportion of the area under the receiver-
operating curve (AUC) explained [16]. PAF-values of 80% 
or above have even been referred to as “astonishing” [16]. 
However, the relationship between h2 and PAF is complex 
and depends on several parameters including the back-
ground risk for disease [15]. Under certain circumstances 
it has been shown that h2 can be higher than PAF [15]. 
The numerical differences can be better understood if we 
phrase explicitly the questions being asked by each meas-
ure (1) PAF: What estimated fraction of all cases have the 
genetic risk factor as a component cause?, (2) h2: What 
estimated fraction of all variance in liability (disease risk) 
can be attributed to the genetic risk factor? Thus, what we 
mean by genetic “contribution” to disease clearly depends 
on the type of ruler we are using [16].

In studies of multiple exposures (e.g. multiple genetic 
variants), it may seem disturbing that PAFs calculated 
for each exposure separately can exceed 100% if they are 
summed up. However, this should only be disturbing if we 
are studying causes that are mutually exclusive [8]. In all 
situations with multiple causes of disease there is no con-
tradiction between statements such as “factor A is a cause in 
50% of the cases” and “factor B in 75% of the cases” [13]. 
Thus, one cannot generally partition causes into fractions 
(such as genetic, environmental and random) that add up 
to 1.0 [2]. Similarly there is not conflict per se in claiming 
that (1) smoking causes a strong increase in lung cancer risk 
and (2) who develops lung cancer among the smokers is to 
a large extent (at least with present knowledge) a random 
process [3]. In order to estimate the combined contribution 
of different exposures (e.g. multiple genetic variants) to the 
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disease load we have to model, or more preferably observe, 
their joint effects on disease [17].

In conclusion, we advise against the use of all measures 
based on analysis of variance when communicating the 
impact of a specific factor on disease risk, as they are often 
misunderstood in relation to what can make a difference for 
individual disease risk. The fraction of all disease events 
that could potentially be prevented is a measure that is both 
more relevant from a public health perspective and easier 
to understand.
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