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ABSTRACT
Background. Identification of accurate prognostic biomarkers is still particularly urgent
for improving the poor survival of lung cancer patients. In this study, we aimed to
identity the potential biomarkers in Chinese lung cancer population via bioinformatics
analysis.
Methods. In this study, the differentially expressed genes (DEGs) in lung cancer
were identified using six datasets from Gene Expression Omnibus (GEO) database.
Subsequently, enrichment analysis was conducted to evaluate the underlyingmolecular
mechanisms involved in progression of lung cancer. Protein-protein interaction (PPI)
and CytoHubba analysis were performed to determine the hub genes. The GEPIA,
Human Protein Atlas (HPA), Kaplan-Meier plotter, and TIMER databases were
used to explore the hub genes. The receiver operating characteristic (ROC) analysis
was performed to evaluate the diagnostic value of hub genes. Reverse transcription
quantitative PCR (qRT-PCR) was used to validate the expression levels of hub genes in
10 pairs of lung cancer paired tissues.
Results. A total of 499 overlapping DEGs (160 upregulated and 339 downregulated
genes) were identified in the microarray datasets. DEGs were mainly associated with
pathways in cancer, focal adhesion, and protein digestion and absorption. There were
nine hub genes (CDKN3, MKI67, CEP55, SPAG5, AURKA, TOP2A, UBE2C, CHEK1
and BIRC5) identified by PPI and module analysis. In GEPIA database, the expression
levels of these genes in lung cancer tissues were significantly upregulated compared with
normal lung tissues. The results of prognostic analysis showed that relatively higher
expression of hub genes was associated with poor prognosis of lung cancer. In HPA
database, most hub genes were highly expressed in lung cancer tissues. The hub genes
have good diagnostic efficiency in lung cancer and normal tissues. The expression of
any hub gene was associated with the infiltration of at least two immune cells. qRT-
PCR confirmed that the expression level of CDKN3, MKI67, CEP55, SPAG5, AURKA,
TOP2A were highly expressed in lung cancer tissues.
Conclusions. The hub genes and functional pathways identified in this study may
contribute to understand the molecular mechanisms of lung cancer. Our findings may
provide new therapeutic targets for lung cancer patients.
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INTRODUCTION
Lung cancer has become the most common type of cancer in the world, leading to the
largest number of cancer-related deaths (Siegel, Miller & Jemal, 2019). More than 80%
of lung cancer are non-small cell lung cancer (NSCLC), mainly lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC) (Travis, 2011). LUAD accounts for
over 70% of NSCLC (Hirsch et al., 2016). Smoking is the most important risk factor for
lung cancer, many other lifestyle and occupational factors also have a significant impact
(Parida, Siddharth & Sharma, 2021). Changes in risk factors for cancer, especially diet,
obesity, diabetes, and air pollution, continue to fuel the trend of cancer transformation in
China (Sun et al., 2020). Although there are various treatment methods for lung cancer,
including surgery, chemotherapy, radiotherapy, targeted therapy, immunotherapy, and
palliative treatment, the 5-year survival rate of lung cancer in recent decades is still very low
(Wang, Chen & Liu, 2020). Therefore, the identification of accurate prognostic biomarkers
and novel therapeutic targets is still particularly urgent for improving the poor survival of
NSCLC patients.

In recent years, with the development of microarray and high-throughput sequencing
technologies, a large number of open data resources, such as the Cancer Genome Atlas
Database (TCGA) and Gene Expression Comprehensive Database (GEO), have generated
a large amount of gene data (Yu & Tian, 2020). Bioinformatics can effectively screen
and mine microarray data, thereby revealing potential oncogenes at the molecular level
(Gu et al., 2018; Liu et al., 2019). Bioinformatics has been widely used to find molecular
markers and signaling pathways related to the occurrence and development of lung cancer
(Jiao et al., 2020; Li, Qi & Li, 2020; Li et al., 2020). Possibly driven by the community and
environmental factors, the observed differences in disease incidence suggest the importance
of residential location in risk assessment of lung cancer (Zhu et al., 2020). At present, most
of the GEO datasets used for lung cancer research are from different countries (Song, Tang
& Li, 2021).

In this study, the differentially expressed genes (DEGs) in lung cancer were identified
using 6 GEO datasets from Chinese population. Then, functional enrichment analysis was
conducted to evaluate the underlying molecular mechanisms involved in progression of
lung cancer. Subsequently, we conducted protein-protein interaction (PPI) andCytoHubba
analysis to identify the potential hub genes associated with lung cancer. The GEPIA, Human
Protein Atlas (HPA), Kaplan–Meier plotter, and TIMER databases were used to explore
the hub genes. ROC analysis was performed to evaluate the diagnostic value of hub
genes. Finally, Reverse transcription quantitative PCR (qRT-PCR) was used to validate the
expression levels of hub genes in 10 pairs of lung cancer paired tissues. Our research will
provide some useful biomarkers for the diagnosis and prognosis of lung cancer.
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Table 1 Characteristics of the six GEO datasets.

GEO ID Platform Normal
samples
(n)

Tumor
samples
(n)

GSE136043 GPL13497 5 5
GSE130779 GPL20115 8 8
GSE118370 GPL570 6 6
GSE85841 GPL20115 8 8
GSE85716 GPL19612 6 6
GSE89039 GPL17077 8 8

Notes.
GEO, Gene Expression Omnibus.

MATERIALS AND METHODS
The information of GEO datasets
Six datasets, including GSE136043, GSE130779, GSE118370, GSE85841, GSE85716, and
GSE89039 were selected from GEO database (https://www.ncbi.nlm.nih.gov/geo/). The
inclusion criteria for the above datasets were set as follows: (1) The samples of the datasets
were all from China; (2) the datasets included human lung cancer tissues and normal
tissues; (3) the number of samples in each dataset was more than 10. The GSE136043
dataset included five LUAD samples and five normal samples. The GSE130779 dataset
included eight LUAD samples and eight normal samples. The GSE118370 dataset included
six LUAD samples and six normal samples. The GSE85841 dataset included eight LUAD
samples and eight normal samples. The GSE85716 dataset included six LUAD samples and
six normal samples. The GSE89039 dataset included eight LUAD samples and eight normal
samples. Six datasets included a total of 41 LUAD tissues and 41 normal lung tissues (Table
1).

Identification of DEGs
R packages (GEOquery and dplyr) were performed to match the expression matrix to the
probe (Li, Qi & Li, 2020; Li et al., 2020). The DEGs in each microarray were filtrated by
the limma package. RobustRankAggreg (RRA) was used to integrate the DEGs identified
from six datasets (Kolde et al., 2012). The RRA algorithm can handle a variable number of
genes identified from different microarray platforms. Next, | log 2 FC | > 1.0 and adjusted
P-value < 0.05 were used to filtrate the DEGs.

GO and KEGG enrichment analysis
The DAVID database (v6.8, https://david.ncifcrf.gov/) was used to perform the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis (Huang, Sherman & Lempicki, 2009). The results of GO annotation contain three
parts, including biological process (BP), cell component (CC), and molecular function
(MF). The top 15 GO terms were listed according to P-value. The results were considered
statistically significant if P < 0.05. The KEGG pathways were visualized by ggplot2 package
(P < 0.05) (Tang et al., 2020).
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PPI network construction and hub genes identification
The protein-protein interactions of the overlapping DEGs were obtained via the STRING
database (https://string-db.org/) (Szklarczyk et al., 2019). The combined score of medium
confidence > 0.4 was used as the cut-off value in the STRING database. Subsequently,
a clear illustration of the PPI was demonstrated using Cytoscape software (v3.8.0)
with CytoHubba, which is a plug-in that uses the degree algorithm to screen the hub
genes (Ma et al., 2020). The degree, edge percolated component (EPC), maximal clique
centrality algorithm (MCC), and maximum neighborhood component (MNC) algorithms
in CytoHubba were used to select the hub genes (Ma et al., 2021). The top 20 nodes
with the degree, EPC, MCC and MNC were selected, and we take the intersection of the
four algorithm as the hub genes. The Cytoscape plug-in Molecular Complex Detection
(MCODE) (degree cutoff = 2, Node Score Cutoff = 0.2, and K −Core = 2) was used to
capture the hub network modules (Dai et al., 2020).

Validation of mRNA expression levels of hub genes
The GEPIA (http://gepia.cancer-pku.cn/index.html) is an online database that consists of
9,736 tumors and 8,587 normal samples from TCGA and GTEx data (Mou et al., 2021).
The mRNA expression levels of hub genes were validated by GEPIA database.

Validation of hub genes via Kaplan Meier plotter database
The identification of overall survival (OS) rates of hub genes in LUAD was performed
using the Kaplan Meier plotter database (https://kmplot.com/analysis), an online tool used
to assess the effect of 54 k genes on survival across 21 cancer types (Liu et al., 2020). The
Kaplan–Meier plotter is an online deposit of the survival analysis data of EGA, TCGA, and
GEO (Affymetrix microarrays only) databases (Yang et al., 2020). A log-rank P < 0.05 was
considered to be statistically significant.

Validation of protein expression levels of hub genes in HPA database
The protein expression levels of hub genes in lung cancer tissues and normal tissues
were validated using immunohistochemistry (IHC) results from the HPA database
(https://www.proteinatlas.org/) (Li, Qi & Li, 2020; Li et al., 2020).

Validation of hub genes by ROC analysis
Then, we performed a receiver operating characteristic (ROC) analysis using TCGA
database to evaluate the diagnostic value of hub genes (Jia et al., 2021). Usually, the AUC
value > 0.85 showed a good diagnostic value for lung cancer.

Immune infiltrates analysis of hub genes
Tumor immune estimation resource (TIMER) (https://cistrome.shinyapps.io/timer/) is a
comprehensive website for systematic analysis of tumor infiltrating immune cells of 32
different cancers in TCGA database (Yang et al., 2021). In this study, TIMER database
was used to estimate the associations between hub genes expression and immune cell
populations (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic
cells) in LUAD.
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Lung cancer tissues
Tumor and adjacent normal tissues were obtained from 10 lung cancer patients in the The
First Hospital of Changsha between September 2021 and October 2021. These patients
had no other major illnesses. A total of 20 frozen tissue specimens contained 10 tumor
tissues and 10 matched adjacent non-tumor tissues were obtained. The detailed clinical
information of the patients is shown in Table S1. All tissues were preserved and stored
at −80 ◦C. The study was approved by the Ethics Committee of The First Hospital of
Changsha and informed consent was obtained from all patients.

Quantitative real-time reverse transcription PCR (qRT-PCR)
Total RNA from lung cancer patients’ tissues was isolated by TRIzol reagent (Invitrogen,
Carlsbad, CA, USA). Real-time PCR was further performed with SYBR Green Master Mix
(Takara, Japan) according to the manufacturer’s protocols. The primers used in this study
are provided in Table S2. GAPDH were used as an internal control and 2−11Ct method
was applied to evaluate gene expression levels. Differences in relative expression levels
were analysed through t test or M ann-Whitney U test (SPSS, V 22.0). The results were
considered statistically significant if P < 0.05.

RESULTS
Identification of DEGs among six GEO datasets
The LUAD chip expression datasets GSE136043, GSE130779, GSE118370, and GSE85841,
GSE85716, and GSE89039 were normalized (Fig. S1). The GSE136043 contained 1,206
DEGs, including 541 upregulated genes and 665 downregulated genes. The GSE130779
dataset contained 2,964 DEGs, including 1,231 upregulated genes and 1,733 downregulated
genes. The GSE118370 dataset contained 789 DEGs, including 211 upregulated genes and
578 downregulated genes. The GSE85841 dataset contained 3,058 DEGs, including 1,270
upregulated genes and 1,788 downregulated genes. The GSE85716 dataset contained 1,196
DEGs, including 367 upregulated genes and 829 downregulated genes. The GSE89039
dataset contained 2,966 DEGs, including 1,129 upregulated genes and 1,837 downregulated
genes. The volcano plots of DEGs in the six datasets are shown in Fig. 1. A total of 499
DEGs were obtained through the RRAmethod, including 160 upregulated genes (Table S3)
and 339 downregulated genes (Table S4). The top 20 up- and down-regulated genes after
the integrated analysis are shown in Fig. 2.

Functional enrichment analysis of overlapping DEGs
The 499 overlapping DEGs were subjected to the GO and KEGG enrichment analysis. The
top 15 enriched GO terms from biological process, cellular component, and molecular
function are shown in Fig. 3A. In the biological process, the DEGs were mainly enriched in
angiogenesis, collagen catabolic process, and cell adhesion. In the cellular component, the
DEGs were mainly enriched in extracellular region, proteinaceous extracellular matrix, and
extracellular space. In the molecular function, the DEGs were mainly enriched in heparin
binding, calcium ion binding, and metalloendopeptidase activity. For the KEGG pathways
analysis, the DEGs were mainly enriched in pathways in cancer, focal adhesion, and protein
digestion and absorption (Fig. 3B).
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Figure 1 The volcano plots of DEGs in six datasets. The DEGs in (A) GSE136043 (B) GSE130779, (C)
GSE118370, and (D) GSE85841, (E) GSE85716 and (F) GSE89039 datasets. The red dots represent upreg-
ulated genes according to an adjusted P < 0.05 and | log fold change |> 1; the blue dots represent down-
regulated genes according to an adjusted P < 0.05 and | log fold change |> 1; the black dots represent
genes with no significant difference in expression. DEG, differentially expressed genes.

Full-size DOI: 10.7717/peerj.12731/fig-1

PPI network construction and hub genes identification
The PPI network included 423 nodes and 1,331 edges (Fig. 4A). We interacted the results
of four algorithms to improve the reliability of the hub genes (Table 2). A total of nine
genes (CDKN3, MKI67, CEP55, SPAG5, AURKA, TOP2A, UBE2C, CHEK1 and BIRC5)
were considered hub genes. The top three modules from MCODE were selected for
future analysis. Module 1 included 21 upregulated genes, including TOP2A, INCENP,
UBE2C, BIRC5, AURKA, TRIP13, CENPM, MND1, RAD54L, STIL, CHEK1, KIF14,
GTSE1, CDC25C, MKI67, CEP55, MELK, CDKN3, SPAG5, CENPF, KIF20A (Fig. 4B).
Module 2 included 14 upregulated genes and five downregulated genes (Fig. 4C). Module
3 included one upregulated gene and five downregulated genes (Fig. 4D). The functional
enrichment analysis of genes in module 1 were conducted by DAVID. These genes were
significantly enriched in cell division, midbody and ATP binding (Table 3).
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Figure 2 The top 20 up- and downregulated genes in integrated datasets. The abscissa represents the
GEO datasets, and the ordinate represents the gene name. The red represents log FC> 0; the pink repre-
sents log FC is slightly less than 0; the blue represents log FC< 0.

Full-size DOI: 10.7717/peerj.12731/fig-2
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Figure 3 The results of enrichment analysis. (A) The results of GO annotation analysis. (B) The KEGG
pathway enrichment analysis of DEGs. GO, Gene ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; DEGs, differentially expressed genes.

Full-size DOI: 10.7717/peerj.12731/fig-3
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Figure 4 PPI network construction andmodule analysis. (A) The PPI network of DEGs. The red circles
represents the upregulated DEGs and blue circles represents the downregulated DEGs. (B) Module 1 from
the PPI network. (C) Module 2 from the PPI network. (3) Module 3 from the PPI network. DEGs, differ-
entially expressed genes; PPI, protein-protein interaction.

Full-size DOI: 10.7717/peerj.12731/fig-4

Validation of hub genes by GEPIA and Kaplan Meier plotter database
We validated mRNA expression levels of hub genes in the LUAD cohorts from GEPIA
database. The LUAD cohort included 483 tumor tissues and 347 normal tissues. ThemRNA
expression levels of hub genes were higher in LUAD tissues than in normal lung tissues
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Table 2 The scored top 20 genes in Degree, EPC, MCC, andMNC algorithms.

Category Rankmethods in cytoHubba

Degree EPC MCC MNC

1 IL6 IL6 TOP2A IL6
2 MMP9 MMP9 UBE2C MMP9
3 PECAM1 PECAM1 CEP55 PECAM1
4 COL1A1 SPP1 SPAG5 COL1A1
5 UBE2C COL1A1 CENPF BMP2
6 BMP2 PPARG KIF20A PPARG
7 PPARG CTGF MELK UBE2C
8 CAV1 MKI67 CHEK1 TOP2A
9 CTGF CHEK1 AURKA MKI67
10 TOP2A TOP2A BIRC5 CTGF
11 MKI67 UBE2C MKI67 CHEK1
12 AURKA CDKN3 CDKN3 AURKA
13 CEP55 BIRC5 KIF14 SPP1
14 SPP1 CEP55 TRIP13 CAV1
15 BIRC5 BMP2 RAD54L BIRC5
16 SPAG5 AURKA CENPM KIF20A
17 CDKN3 MELK CDC25C SPAG5
18 CHEK1 CENPF GTSE1 CDKN3
19 CENPF SPAG5 MND1 MELK
20 KIF20A CDKN2A STIL CEP55

Notes.
Degree, node connect degree; EPC, edge percolated component; MCC, maximal clique centrality; MNC, maximal neigh-
borhood component.

(Fig. 5). Results from the Kaplan Meier plotter revealed that relatively higher expression of
hub genes was associated with poor prognosis of LUAD patients (Fig. 6).

Protein expression levels of hub genes in HPA database
The protein expression levels of hub genes were explored using the HPA database. As the
immunohistochemical information of CDKN3 and CHEK1 were not existed in HPA, we
have only displayed the results of MKI67, CEP55, SPAG5, AURKA, TOP2A, UBE2C and
BIRC5 (Fig. 7). The protein levels of MKI67, AURKA and BIRC5 were not detected in
normal lung tissues, while the levels of these genes were high in lung cancer tissues. No
expression of CEP55 was observed in normal lung tissues, while medium expression of
CEP55 was observed in tumor tissues. The protein levels of TOP2A and UBE2C were low
in normal lung tissues, while the levels of these genes were high in lung cancer tissues.
SPAG5 was found to have medium expression in LUAD tissues, while low expression was
observed in normal lung tissues. The results of HPA database showed that most hub genes
may be highly expressed in lung cancer tissues.
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Table 3 The top 15 enriched GO terms of genes in module 1.

Category Term Count P Value

BP Cell division 7 0.000002
BP Mitotic nuclear division 6 0.000009
BP G2/M transition of mitotic cell cycle 5 0.000019
BP Chromosome segregation 4 0.000069
BP Protein localization to centrosome 3 0.000204
CC Midbody 8 0.000000
CC Nucleoplasm 13 0.000006
CC Gcentriole 5 0.000006
CC Spindle 5 0.000008
CC Chromosome, centromeric region 4 0.000032
MF ATP binding 10 0.000013
MF Protein binding 19 0.000075
MF Protein kinase binding 4 0.008149
MF Protein C-terminus binding 3 0.017525
MF Microtubule binding 3 0.022512

Notes.
BP, biological process; CC, cell component; MF, molecular function.

The diagnostic value of hub genes in LUAD and their relationships
with tumor infiltrating immune cells
The ROC curve was used to evaluate the diagnostic value of hub genes. As shown in Fig. 8,
the AUC values of CDKN3, MKI67, CEP55, SPAG5, AURKA, TOP2A, UBE2C, CHEK1
and BIRC5 in LUAD were 0.965, 0.965, 0.980, 0.986, 0.975, 0.986, 0.984, 0.978, 0.980,
respectively. Thus, the hub genes have good diagnostic efficiency in LUAD and normal
tissues. The results from TIMER database showed that the 9 hub genes were not associated
with tumor purity (Fig. 9). However, the expression of these genes was negatively correlated
with B cell infiltration (P < 0.05). Only the TOP2A expression was associated with CD8+ T
cells. The expression of CDKN3, CEP55, AURKA andUBE2C was related to the infiltration
of macrophages. The expression of AURKA and BIRC5 was related to the infiltration of
dendritic cells. Thus, the expression of any hub gene was associated with the infiltration of
at least two immune cells.

Validation of the hub genes via qRT-PCR
The qRT-PCR was performed to further validate the expression of hub genes. As shown in
Fig. 10, the relative expression levels of CDKN3, MKI67, CEP55, SPAG5, AURKA, TOP2A
were consistent with the results of bioinformatics analysis (P < 0.05), while the expression
levels ofUBE2C, CHEK1 and BIRC5 in tumor samples were not significantly different from
adjacent normal samples.

DISCUSSION
Lung cancer is still a common cause of health issues worldwide (Ma et al., 2020). So
far, many lung cancer studies based on gene arrays have been conducted by different
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Figure 5 Validation of the mRNA expression of (A–I) CDKN3, MKI67, CEP55, SPAG5, AURKA,
TOP2A, UBE2C, CHEK1, and BIRC5 in LUAD tissues and normal tissues using GEPIA database.
LUAD, lung adenocarcinoma.

Full-size DOI: 10.7717/peerj.12731/fig-5
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Figure 6 Prognostic value of (A–I) CDKN3, MKI67, CEP55, SPAG5 (DEEPEST), AURKA, TOP2A,
UBE2C, CHEK1, and BIRC5 in LUAD patients. The prognostic information of the nine hub genes in pa-
tients with LUAD was from Kaplan–Meier plotter database. LUAD, lung adenocarcinoma.

Full-size DOI: 10.7717/peerj.12731/fig-6

Liu et al. (2022), PeerJ, DOI 10.7717/peerj.12731 13/22

https://peerj.com
https://doi.org/10.7717/peerj.12731/fig-6
http://dx.doi.org/10.7717/peerj.12731


Figure 7 Immunohistochemistry images of hub genes in LUAD tissues and normal lung tissues de-
rived from the HPA database. The protein images of (A–G)MKI67, CEP55, SPAG5, AURKA, TOP2A,
UBE2C and BIRC5 in HPA database. LUAD, lung adenocarcinoma; HPA, Human Protein Atlas.

Full-size DOI: 10.7717/peerj.12731/fig-7

researchers, forming a series of gene expression datasets. By integrating multiple datasets,
key genes involved in the progression and prognosis of lung cancer can be fully identified
(Jin et al., 2020a; Jin et al., 2020b; Wu et al., 2020). We analyzed GEO datasets from the
Chinese lung population and used bioinformatics to discover possible biomarkers of lung
cancer.

In this study,we analyzed 6GEOdatasets includingGSE136043,GSE130779,GSE118370,
GSE85841, GSE85716, and GSE89039, and a lot of 499 overlapping DEGs (160 upregulated
and 339 downregulated genes) were identified among the datasets. The GO enrichment
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Figure 8 ROC curves of hub genes in TCGA database. The ROC curves of (A–I) CDKN3, MKI67,
CEP55, SPAG5, AURKA, TOP2A, UBE2C, CHEK1, and BIRC5. ROC, receiver operating characteristic.

Full-size DOI: 10.7717/peerj.12731/fig-8

analysis indicated that the overlapping DEGs were mainly associated with angiogenesis,
extracellular region, and heparin binding. Angiogenesis is a complex process, which plays a
key role in maintaining tumor microenvironment, tumor growth, invasion and metastasis
(Yu & Tian, 2020). With a large number of studies on individual proteins, heparin-
binding proteins (HBPs) have been proven to be important signaling molecules in the cell
microenvironment affect the basic biological processes of development, homeostasis, and
diseases (Nunes et al., 2019). The KEGG enrichment analysis indicated that the overlapping
DEGs were mainly enriched in pathways in cancer, focal adhesion, and protein digestion
and absorption. We extracted nine hub genes (CDKN3, MKI67, CEP55, SPAG5, AURKA,
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Figure 9 Correlation between the expression of (A–I) CDKN3, MKI67, CEP55, SPAG5, AURKA,
TOP2A, UBE2C, CHEK1, BIRC5 and immune cell populations (B Cell, CD8+ T Cell, CD4+ T Cell,
macrophage, neutrophil, and dendritic cell) in LUAD. P < 0.05 was considered statistically significant.

Full-size DOI: 10.7717/peerj.12731/fig-9

TOP2A, UBE2C, CHEK1 and BIRC5) through PPI and module analysis. All of these genes
were up-regulated in LUAD based on GEPIA database. Up-regulation of nine seven hub
genes were associated with a poor prognosis of LUAD. Based on the HPA database, we
found that the protein expression levels of most hub genes were higher in LUAD. Based
on the ROC analysis, our results showed that all nine hub genes (CDKN3, MKI67, CEP55,
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Figure 10 RT-PCR validation of the hub genes between lung cancer tissues and normal controls (* P <

0.05, ** P < 0.01).
Full-size DOI: 10.7717/peerj.12731/fig-10

SPAG5, AURKA, TOP2A, UBE2C, CHEK1 and BIRC5) have good diagnostic efficiency in
LUAD. The qRT-PCR analysis showed that the relative expression levels ofCDKN3, MKI67,
CEP55, SPAG5, AURKA, and TOP2A were consistent with the results of bioinformatics
analysis.

The cyclin-dependent kinase inhibitor 3 (CDKN3) gene encodes a bi-specific protein,
tyrosine phosphatase, that plays a key role in cell cycle and proliferation (Yu et al., 2020).
CDKN3 overexpression is prognostic of poor overall survival in lung adenocarcinoma
(Fan et al., 2015). Ki-67 is expressed in the active phases of the cell cycle, including G1, G2
and S, and has been used as an independent biomarker to predict prognosis in patients
with lung cancer (Zheng et al., 2021). The centromeric protein CEP55, encoded by the
CEP55, is widely expressed in different types of tissues, especially in proliferating tissues
(Eloubeidi et al., 2002). CEP55 can be used as a diagnostic marker for LUAD and LUSC,
but only as an independent prognostic factor for LUAD rather than LUSC (Fu et al., 2020).
Sperm-associated antigen 5 (SPAG5, also known as asstrin) is involved in mitotic spindle
formation and chromosome segregation, and has carcinogenic effects in tumorigenesis of
various cancer types (Huang & Li, 2020). AURKA is a serine/threonine kinase that is critical
for the control of mitotic progression, centrosomal maturation/separation, and mitotic
spindle function (Miralaei et al., 2021). Studies have found that AURKAmRNA expression
is an independent predictor of poor prognosis in patients with NSCLC (Al-Khafaji et
al., 2017). TOP2A, a cycle-dependent protein, is involved in a variety of cell biological
processes, such as DNA replication, chromatin condensation, chromosome separation,
and chromosome structure maintenance (Chen et al., 2015). TOP2A may be a prognostic
biomarker and potential therapeutic target for patients with LUAD (Du et al., 2020). We
found that the expression levels of UBE2C, CHEK1, and BIRC5 in tumor samples were
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not significantly different from adjacent normal samples, which may be due to the small
sample size.

Analyzing GEO datasets of different populations may find different hub genes. A GEO
data analysis of the American LUAD population found six hub genes (VIPR1, FCN3, CA4,
CRTAC1, CYP4B1, and NEDD9) related to prognosis (Jiawei et al., 2020). Another study
on LUAD populations in Japan and USA found eight hub genes (GPX3, TCN1, ASPM,
PCP4, CAV2, S100P, COL1A1, and SPOK2) (Tu et al., 2021). These genes are different
from those found in our study.

There are some limitations in our research, such as small sample size, lack of experimental
validation in vivo and vitro, and no consideration of clinical information. More clinical
samples and molecular experiments are needed in the future to conform the function of
hub genes in lung cancer.

CONCLUSIONS
In conclusion, we filtrated a total of 499 overlapping DEGs from six GEO datasets and
further validated six hub genes (CDKN3, MKI67, CEP55, SPAG5, AURKA, and TOP2A).
The six hub genes were likely associated with the prognosis of lung patients in Chinese
population. The functional pathways identified in the study may contribute to understand
the molecular mechanisms of lung cancer. Our findings may provide new therapeutic
targets for lung cancer patients.
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