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Abstract

Recently, we investigated the effect of the wheat 90K single nucleotide polymorphic (SNP)

array and three gene-specific (Ppd-D1, Vrn-A1 and Rht-B1) markers on quantitative trait loci

(QTL) detection in a recombinant inbred lines (RILs) population derived from a cross

between two spring wheat (Triticum aestivum L.) cultivars, ‘Attila’ and ‘CDC Go’, and evalu-

ated for eight agronomic traits at three environments under organic management. The

objectives of the present study were to investigate the effect of conventional management

on QTL detection in the same mapping population using the same set of markers as the

organic management and compare the results with organic management. Here, we evalu-

ated 167 RILs for number of tillers (tillering), flowering time, maturity, plant height, test

weight (grain volume weight), 1000 kernel weight, grain yield, and grain protein content at

seven conventionally managed environments from 2008 to 2014. Using inclusive composite

interval mapping (ICIM) on phenotypic data averaged across seven environments and a

subset of 1203 informative markers (1200 SNPs and 3 gene specific markers), we identified

a total of 14 QTLs associated with flowering time (1), maturity (2), plant height (1), grain

yield (1), test weight (2), kernel weight (4), tillering (1) and grain protein content (2). Each

QTL individually explained from 6.1 to 18.4% of the phenotypic variance. Overall, the QTLs

associated with each trait explained from 9.7 to 35.4% of the phenotypic and from 22.1 to

90.8% of the genetic variance. Three chromosomal regions on chromosomes 2D (61–66

cM), 4B (80–82 cM) and 5A (296–297 cM) harbored clusters of QTLs associated with two to

three traits. The coincidental region on chromosome 5A harbored QTL clusters for both flow-

ering and maturity time, and mapped about 2 cM proximal to the Vrn-A1 gene, which was in

high linkage disequilibrium (0.70� r2� 0.75) with SNP markers that mapped within the QTL

confidence interval. Six of the 14 QTLs (one for flowering time and plant height each, and

two for maturity and kernel weight each) were common between the conventional and
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organic management systems, which suggests issues in directly utilizing gene discovery

results based on conventional management to make in detail selection (decision) for organic

management.

Background

More than 85% of wheat in Canada is produced in the western Canadian prairie provinces of

Alberta, Saskatchewan and Manitoba, with a small proportion in British Columbia and eastern

Canada [1]. Wheat breeders in western Canada primarily develop short stature cultivars that

are early maturing, high yielding with high protein content and elevated dough strength. Cur-

rently, wheat cultivars to be registered in western Canada must have at least intermediate resis-

tance to leaf rust (Puccinia triticina Eriks. f. sp. tritici), stripe rust (P. striiformis f. sp. tritici),
stem rust (P. graminis f. sp. tritici), common bunt (caused both by Tilletia tritici and Tilletia
laevis) and Fusarium head blight (caused mainly by Fusarium graminearum) (http://www.

pgdc.ca). The availability of various improved wheat cultivars not only for good agronomic

characteristics and quality traits, but also with better resistance to wheat diseases, have

increased average wheat productivity in Canada by approximately four-fold from 0.8 Mg ha-1

in 1961 to 3.1 Mg ha-1 in 2014 (http://faostat3.fao.org). Wheat is grown in the region both

under conventional and organic management systems, with the demand for organic produc-

tion intensified in the last decade for different reasons, including concerns on human health,

food quality and environment [2–4]. Conventional management system depends on high

inorganic fertilizer and high pesticides and herbicides. On the contrary, organic management

system relies on the use of (i) organic residues as soil amendments; (ii) biological nitrogen fixa-

tion, compost, manure and green manure as the major source of nutrients; (iii) mixed crop-

ping, crop rotation and cover crops to minimize bare fallow; (iv) biological pest control; and

(v) diverse plant species to minimize weeds and pests, support below-ground processes and to

control soil erosion (www.intechopen.com). Most wheat breeders in western Canada develop

semi-dwarf cultivars, which require high inputs (high nitrogen fertilizers, high pesticides and

herbicides) to produce high grain yield and attain satisfactory protein content, but such culti-

vars types often produce lower grain yield in organic management due to weaker weed com-

petitiveness [5]. Taller plants exhibit better competitive ability against weeds in organic

management than shorter ones, mainly due to better light interception [6–8], but suffer lodg-

ing under high input demanding conventional management. Although most traits of interest

in breeding for conventional management are similar to organic management, some of the

traits relevant to the high-input demanding conventional farming may have negative effects in

organic systems.

The Wheat Breeding group at the University of Alberta has been evaluating the perfor-

mance of wheat cultivars and breeding lines under both conventional and organic manage-

ment systems in Alberta, Canada [6, 7, 9–17]. In one of the recent studies [9], we evaluated a

recombinant inbred line (RIL) population developed from a cross between ‘Attila’ (CM85836-

50Y-0M-0Y-3M-0Y) [18] and ‘CDC Go’ in 2008, 2009 and 2010 under conventionally and

organically managed field conditions and genotyped the population with 579 diversity arrays

technology (DArT) and the Rht-B1 gene specific markers. The soil at both organically and con-

ventionally managed sites was an Udic Boroll (Orthic Black Chernozem in Canadian system)

with loam or clay loam texture, neutral pH (6.7 to 7.4), and high soil organic matter (6 to

11%). The crop rotation on the conventionally managed site was wheat-pea-canola, while it
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was wheat followed by a green manure rye plow-down in the organic management site. The

conventionally managed sites received 36–40 kg ha-1 fertilizer (11–52–0 N–P2O5–K2O)

banded with seed at the time of planting, while the organically managed sites received neither

chemical fertilizer nor compost [9]. Using the averaged phenotypic data across three environ-

ments, (i) we uncovered three QTLs under conventional management that were associated

with plant height, grain yield and test weight, but none for tillering, kernel weight, grain pro-

tein content, days to flowering and maturity; (ii) we found five QTLs under organic manage-

ment that were associated with plant height, test weight, grain protein content and kernel

weight, but none for flowering time, maturity, number of tillers (tillering) and grain yield; and

(iii) only a single QTL for plant height on 4B was common between the conventional and

organic management systems. No QTL was identified for flowering time, maturity and tiller-

ing averaged across three environments both under conventional and organic management

systems. Although several factors might have contributed to our failure to identify QTLs

explaining most of the phenotypic variance in the ‘Attila’ × ‘CDC Go’ RIL population, low

marker density and uneven marker distribution in the linkage maps are possible reasons. Cur-

rently, a total of 81,587 gene-associated SNPs (90K) is available for wheat genotyping through

the Illumina iSelect SNP array [19], of which at least 5 to 13% could be polymorphic in a given

bi-parental mapping population [20–23]. In order to investigate if an increase in marker den-

sity improves QTL detection, we reanalyzed the same phenotype data averaged over the three

organically managed environments with a subset of 1200 high quality SNPs out of the 90K

SNP array and three gene specific markers (Ppd-D1, Vrn-A1 and Rht-B1) [20]. That study

identified a total of 16 QTLs distributed across 10 chromosomes of which 13 QTLs were not

reported using the DArT-based low-marker-density. The objectives of the present study were

to (1) investigate if the 90K SNPs improve QTL detection in the ‘Attila’ and ‘CDC Go’ RIL

population evaluated across seven environments under conventional management; and (2)

compare the results with our previous studies conducted under organic management.

Materials and methods

Phenotyping and genotyping

The present study was conducted on a mapping population of 167 RILs developed from a

cross between two spring wheat cultivars—‘Attila’ (CM85836-50Y-0M-0Y-3M-0Y) and ‘CDC

Go’. As described in our previous studies [9, 20], ‘Attila’ is a semi dwarf, early maturing and

medium yielding cultivar from the International Maize and Wheat Improvement Center [18],

while ‘CDC Go’ is a medium height, relatively late maturing and high yielding Canadian west-

ern red spring wheat cultivar. The RIL population and the two parents were initially pheno-

typed under conventionally managed field conditions thrice from 2008 to 2010 at the Crop

Research facility of the University of Alberta South Campus (53˚19’N, 113˚35’W), Edmonton,

Canada [9]. Additional phenotypic data were obtained for four years (environments) by phe-

notyping the population from 2011 to 2014 at the same location. Each field experiment was

conducted in a randomized incomplete block design with three replications in 2008 and 2009,

and two replications in all other years. Details on crop rotation, input applications and all agro-

nomic practices have been described in our previous study [9]. Each entry was evaluated for

flowering and maturity time, number of tillers, plant height, test weight, thousand kernel

weight, grain yield and grain protein content, as described in our previous study [9].

DNA extraction and genotyping was done as described in our previous studies [20, 21].

Briefly, DNA was extracted from three weeks old seedlings using a modified Cetyl Trimethyl

Ammonium Bromide (CTAB) method. DNA samples were genotyped at the University of Sas-

katchewan Wheat Genomics lab, Saskatoon, Canada, with the Wheat 90K Illumina iSelect
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SNP array that consisted of 81,587 SNPs [19]. SNP alleles were called with the Illumina

Genome Studio Polyploid Clustering version 1.0 software (Illumina, San Diego, USA) using

default clustering parameters and filtered as described in our previous study [21]. In addition,

the RILs and the two parents were also genotyped with Ppd-D1 [24], Vrn-A1 [25] and Rht-B1
[26] gene specific markers at the Agricultural Genomics and Proteomics lab, University of

Alberta, Edmonton, Canada as described elsewhere [21].

Data analyses

Linkage analysis was performed as described in the ‘Cutler’ × ‘AC Barrie’ mapping population

[21], while all other statistical analyses, including descriptive statistics, test for normality, F

statistics, heritability and ICIM were conducted as described in one of our recent study [20].

Briefly, least squares means, variance statistics, and heritability were computed for each envi-

ronment separately and then averaged across all environments using PROC MIXED and

PROC IML in SAS version 9.3 (SAS Institute Inc. Cary, USA). Genotypes (RILs) were consid-

ered fixed, while years, replications and blocks within replications were considered as random

effects. Both test for normality and the frequency distribution were computed using MiniTab

v14. ICIM was performed on the least squares means of each trait for individual environment

and averaged across all environments with QTL IciMapping v4.0 [27, 28] using a mean

replacement for missing data, 1 cM walking distance, a minimum logarithm of odds (LOD)

score of 2.5 and a model to determine additive effects at individual QTL and

additive × additive epistatic interactions. QTL names were designated following the Interna-

tional Rules of Genetic Nomenclature (http://wheat.pw.usda.gov/ggpages/wgc/98/Intro.htm),

which consisted of three letters for trait acronym, lab designation (dms = Dean Michael Spa-

ner) and chromosome. Genetic maps and QTL graphs were drawn using MapChart v2.1 [29].

The extent of linkage disequilibrium (LD) between the Ppd-D1, Rht-B1 and Vrn-A1 gene spe-

cific markers and all SNPs that mapped on chromosomes 2D, 4B and 5A, respectively, was

evaluated by computing the r2 values using TASSEL version 5.2.30 [30].

Results

Summary of phenotypic traits and markers

Table 1 provides a summary of the descriptive statistics of the two parents and RILs plus F sta-

tistics of the 167 RILs evaluated under conventional management across seven (2008–2014)

Table 1. Summary of least squares means and F statistics of 167 recombinant inbred lines (RILs) derived from ‘Attila’ × ‘CDC Go’ and evaluated

across seven (2008–2014) conventionally managed environments in Edmonton, Canada.

Parents RILs (descriptive and F statistics)

Trait ‘Attila’ ‘CDC Go’ Min Max Mean SD CV (%) F value*

No. of tillers (m-2) 419.6 476.9 393.8 558.6 475.1 6.5 6.1 2.7

Flowering time (days) 54.4 50.6 48.4 60.1 53.3 2.5 4.7 20.7

Maturity time (days) 99.3 96.1 92.8 105.1 97.9 2.7 2.7 5.0

Plant height (cm) 75.1 77.1 62.5 102.0 81.5 8.3 10.2 24.4

Grain yield (Mg ha-1) 5.4 5.1 3.5 5.9 4.7 5.4 11.4 10.8

Test weight (kg hL-1) 77.6 77.7 74.7 79.1 77.0 0.8 1.1 3.6

1000-kernels weight (g) 38.2 39.9 34.8 42.6 39.0 1.7 4.4 2.6

Grain protein content (%) 12.3 12.9 10.9 13.7 12.4 0.6 4.5 4.3

* All F-values were significant at p < 0.001.

doi:10.1371/journal.pone.0171528.t001
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years (environments). ‘CDC Go’ matured about 3 days earlier, produced 57 more tillers m-2,

with kernels 2 g heavier and 0.6% higher grain protein content, but was 2 cm taller and yielded

277 kg ha-1 less grain than ‘Attila’. In our previous study conducted from 2008 to 2010, ‘CDC

Go’ yielded approximately 420 kg ha-1 more grain than ‘Attila’ [9], but it yielded lower grain

when the data were averaged across all seven environments (Table 1). The 167 RILs varied in

height from 63 to 102 cm, required 48–60 days to flowering and 93–105 days to maturity, and

yielded from 3.5 to 5.9 Mg ha-1 grain. The phenotypic distribution of least square means aver-

aged across seven environments was normal (P > 0.050) for all traits, except test weight (S1

Fig). The Shapiro-Wilk test rejected the hypothesis of normality (P = 0.018) for test weight.

Averaged across all seven environments, genotypes differed (p< 0.001) for all traits (Table 1).

Broad sense heritability varied from 0.25 for number of tillers to 0.73 for flowering time

(Table 2).

Detailed results on the SNP and gene specific markers and linkage maps used in the present

study were presented in our previous study [20]. After excluding co-segregating SNPs, a subset

of 1203 markers (1200 SNPs plus Ppd-D1, Vrn-A1a, and Rht-B1) were used for QTL mapping.

The number of markers retained for QTL mapping varied from 4 on chromosome 1D to 150

on 2B (S1 Table). There were no polymorphic markers for both chromosomes 3D and 4D.

The total map length for the 19 chromosomes (excluding chromosome 3D and 4D) was 3442

cM, with each chromosome varying from 14.3 cM on 1D to 324.8 cM on 5B. Map distance

between adjacent markers varied from 0.6 to 48.8 cM, and the overall average was 2.9 cM [20].

QTLs under conventional management

The analyses conducted using the averaged least squares means phenotypic data of the seven

environments uncovered a total of 14 QTLs (Fig 1 and Table 3), which included one QTL each

for tillering per m2 (QTil.dms-6A.1), flowering time (QFlt.dms-5A), plant height (QPht.dms-
4B) and grain yield (QYld.dms-2D.2); two QTLs each for maturity (QMat.dms-4B and QMat.
dms-5A.2), grain protein content (QGpc.dms-2D.2 and QGpc.dms-4B) and test weight (QTwt.
dms-5A and QTwt.dms-5B.3); and four QTLs for kernel weight (QTkw.dms-4A, QTkw.dms-

Table 2. Comparisons of QTLs associated with eight agronomic traits in our previous study [9] and present study. The previous study was based

on averaged phenotypic data of three (2008–2010) conventionally managed environments and genotypic data of 579 DArT and the Rht-B1 gene specific

markers, while the present study was based seven environments (2008–2014) and 1203 SNP and gene specific markers.

Trait Heritability Number of QTLs

identified

Total phenotypic

variance explained

by all QTLs (%)

Genetic variance

(%) explained by

all QTLs

Difference between the two studies:

Present minus previous (%)*

Previous Present Previous Present Previous Present Previous Present Phenotypic

variance

Genetic variance

Flowering time 0.76 0.73 0 1 0.0 16.8 0.0 23.0 16.8 23.0

Maturity 0.38 0.45 0 2 0.0 29.9 0.0 66.5 29.9 66.5

Plant height 0.58 0.62 1 1 19.2 18.4 33.1 29.7 -0.8 -3.5

Thousand kernels

weight

0.37 0.39 0 4 0.0 35.4 0.0 90.8 35.4 90.8

Test weight 0.28 0.35 1 2 10.9 16.2 38.9 46.4 5.3 7.4

Grain yield 0.37 0.44 1 1 17.0 9.3 45.9 21.1 -7.7 -24.8

Number of tillers 0.32 0.25 0 1 0.0 11.2 0.0 44.8 11.2 44.8

Grain protein content 0.64 0.26 0 2 0.0 18.6 0.0 71.7 18.6 71.7

* Differences in phenotypic and genetic variance explained in the present study using SNPs minus the previous study using DArT markers. For both plant

height and grain yield, more variation was explained in the previous study than the current study, which resulted to negative values.

doi:10.1371/journal.pone.0171528.t002

QTLs associated with agronomic traits in the Attila ×CDC Go spring wheat RIL population

PLOS ONE | DOI:10.1371/journal.pone.0171528 February 3, 2017 5 / 20



6A.1, QTkw.dms-6D.2 and QTkw.dms-7B.1). All QTLs associated with each trait exhibited

mainly additive effects and QTL by QTL interactions were negligible (R2 < 2%). The QTL for

tillering mapped at 70 cM on chromosome 6A (QTil.dms-6A.1) and accounted for 11.2% of

the phenotypic variance across seven environments. RILs that had ‘Attila’ alleles at the two

flanking markers for QTil.dms-6A.1, on average, had 3.4 more tillers than those RILs homozy-

gous for ‘CDC Go’ alleles. However, this QTL was not detected in any of the individual envi-

ronments; instead, we found 6 other environment specific QTLs on 4A (QTil.dms-4A), 5A

(QTil.dms-5A), 6A (QTil.dms-6A.2) and 7A (QTil.dms-7A.1, QTil.dms-7A.2 and QTil.dms-
7A.3) that were associated with tillering in 2009, 2013 and/or 2014 environments (Table 3).

The QTL for flowering time mapped at 296 cM on chromosome 5A (QFlt.dms-5A), flanked

by the Vrn-A1 gene, and explained 16.8% of the phenotypic variance across the seven environ-

ments (Table 3). RILs with ‘CDC Go’ alleles at the two flanking markers for QFlt.dms-5A
flowered 2.5 days earlier than those RILs homozygous for ‘Attila’ alleles. When individual envi-

ronments were considered, QFlt.dms-5A was detected at the same confidence interval in four

environments (2009, 2010, 2011 and 2014), and explained from 12.6 to 13.0% of phenotypic

variance of the individual environments (Table 3). In addition, three environment specific

QTLs for flowering time were also detected on 4A (QFlt.dms-4A), 4B (QFlt.dms-4B) and 6B

(QFlt.dms-6B), which individually explained from 7.6 to 9.0% of the phenotypic variance. The

two QTLs for maturity mapped at 80 cM on chromosome 4B (QMat.dms-4B) and at 297 cM

on 5A (QMat.dms-5A.2), which individually explained 15.9 and 14.0%, respectively, and alto-

gether accounted for 29.9% of the phenotypic variance across the seven environments. The

favorable alleles for QMat.dms-4B and QMat.dms-5A.2 originated from ‘Attila’ and ‘CDC Go’,

respectively. RILs that were homozygous for the favorable alleles at the two flanking markers

of each QTL matured about two days earlier than those RILs that were homozygous for the

unfavorable alleles. When individual environments were considered, QMat.dms-4B and QMat.
dms-5A.2 were detected at the same confidence interval in five (2009 to 2014 except 2011) and

four (2009, 2010, 2013 and 2014) out of the seven environments, respectively (Table 3). The

proportion of phenotypic variance explained by QMat.dms-4B and QMat.dms-5A.2 in

Fig 1. The distribution of QTLs associated with eight agronomic traits evaluated across three (2008–2010) organically managed environments

(blue font) and seven (2008–2014) conventionally managed environments (pink font). Map position in centiMorgans (cM) is shown on the left side of

the chromosomes, with each horizontal line representing a marker. QTLs are shown on the right side of each linkage group, with bars indicating their 95%

genetic confidence interval. Details of each QTL under conventional management is given in Table 3, while those QTLs under organic management is

given in S2 Table.

doi:10.1371/journal.pone.0171528.g001
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individual environments varied from 7.4 to 19.4% and from 6.2 to 12.7%, respectively. Fur-

thermore, we also found six environment specific QTLs for maturity on chromosomes 2D, 5B,

6B and 7A that individually explained from 0.8 to 13.3% of the phenotypic variance of the indi-

vidual environments (Table 3).

The QTL associated with plant height across seven environments mapped at 82 cM on

chromosome 4B (QPht.dms-4B) and explained 18.4% of the phenotypic variance. Rht-B1 gene

mapped 34.5 cM distal to QPht.dms-4B and 27 cM distal to one of the flanking SNP markers,

wsnp_Ra_c1146_2307483. RILs that had the ‘CDC Go’ alleles at the two flanking markers for

QPht.dms-4B were 7.7 cm shorter than those RILs that were homozygous for ‘Attila’ alleles

(Table 3). When individual environments were considered, QPht.dms-4B was consistently

detected at the same position in five (2010 to 2014) of the seven environments, but the propor-

tion of phenotypic variance explained by QPht.dms-4B was variable, ranging from 11.9 to

23.9% (Table 3). We also found four environment specific QTLs for plant height on chromo-

somes 2D (QPht.dms-2D.2), 5A (QPht.dms-5A) and 6B (QPht.dms-6B.1 and QPht.dms-6B.2),

which individually explained from 3.2 to 13.3% of the phenotypic variance in the 2009, 2010

and 2013 environments, respectively (Table 3). We found one QTL for grain yield at 66 cM on

2D (QYld.dms-2D.2) that explained 9.3% of the phenotypic variance across the seven environ-

ments. The photoperiod response Ppd-D1 gene mapped 66 cM distal to QYld.dms-2D.2. RILs

with ‘Attila’ alleles at the two flanking markers for QYld.dms-2D.2 produced 375.7 kg ha-1

more grain yield than those RILs homozygous for ‘CDC Go’ alleles. When individual environ-

ments were considered, QYld.dms-2D.2 was detected at the same confidence interval in four

(2010, 2011, 2013 and 2014) of the seven environments, explaining from 6.0 to 11.1% of the

phenotypic variance at individual environments. In addition, five environment-specific QTLs

associated with grain yield were also identified on chromosomes 3A, 6B, 7A and 7D explaining

from 6.3 to 10.9% of the phenotypic variance (Table 3).

The two QTLs associated with test weight across the seven environments were located at 12

cM on chromosome 5A (QTwt.dms-5A) and at 239 cM on 5B (QTwt.dms-5B.3), and they

explained 6.1 and 10.1% of the phenotypic variance, respectively (Table 3). The favorable

alleles for QTwt.dms-5A and QTwt.dms-5B.3 originated from ‘CDC Go’ and ‘Attila’, respec-

tively. RILs homozygous for the favorable alleles at the two flanking markers for QTwt.dms-5A
and QTwt.dms-5B.3 had 0.5 kg hL-1 higher test weight than those RILs with unfavorable alleles.

Neither QTwt.dms-5A nor QTwt.dms-5B.3 were detected in any of the individual environ-

ments; instead, we found two environment specific QTLs at 109 cM on 2B and at 163 cM on

5B that individually explained 7.0 and 9.9%, respectively, of the phenotypic variance for test

weight at individual environments (Table 3).

For kernel weight, we found four QTLs at 120 cM on 4A (QTkw.dms-4A), at 79 cM on 6A

(QTkw.dms-6A.1), at 4 cM on 6D (QTkw.dms-6D.2) and at 158 cM on 7B (QTkw.dms-7B.1).

Each QTL individually explained from 6.7 to 12.1% and altogether accounted for 35.4% of the

phenotypic variance across seven environments (Table 3). RILs homozygous for ‘CDC Go’

alleles at the two flanking markers of each QTL were from 0.9 to 1.1 mg heavier per kernel

than those with ‘Attila’ alleles. When individual environments were considered, both QTkw.

dms-4A and QTkw.dms-6A.1 were detected in the 2009 environment; all other QTLs were not

detected in any of the individual environments. We also found four additional environment

specific QTLs associated with kernel weight on 2B, 3A, 5B and 6A, explaining from 3.0 to

10.5% of the phenotypic variance (Table 3).

The two QTLs associated with grain protein content across seven environments mapped at

62 cM on 2D (QGpc.dms-2D) and at 80 cM on 4B (QGpc.dms-4B).QGpc.dms-2D and QGpc.
dms-4B explained 13.4 and 6.3%, respectively, and together accounted for 19.7% of the pheno-

typic variance across seven environments (Table 3). The favorable alleles for QGpc.dms-2D

QTLs associated with agronomic traits in the Attila ×CDC Go spring wheat RIL population
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and QGpc.dms-4B originated from ‘CDC Go’ and ‘Attila’, respectively. RILs homozygous for

the favorable alleles at the two flanking markers of each QTL showed 0.5% higher grain protein

content than those RILs homozygous for unfavorable alleles. When individual environments

were considered, QGpc.dms-2Dwas detected in two (2009 and 2010) environments, while

QGpc.dms-4Bwas detected only in 2010. In addition, three environment-specific QTLs on

chromosomes 2B, 3A and 5B were detected that individually explained from 6.8 to 8.3% of the

phenotypic variance at a single environment (Table 3).

Chromosomal regions harbouring QTL clusters

The first coincidental QTL mapped on chromosome 5A and was associated with both flower-

ing time (QFlt.dms-5A) and maturity (QMat.dms-5A.2) in the combined data across seven

environments plus plant height (QPht.dms-5A) in 2013 environment (Fig 1, Table 3). This

coincidental QTL explained from 14.0 to 16.8% of the phenotypic variance for flowering time

and maturity across seven environments and from 8.4 to 14.6% of the phenotypic variance for

plant height in two environments (Table 3). RILs carrying the ‘CDC Go’ alleles at the two

flanking markers of the QTL on 5A were different (p� 0.03) from those possessing ‘Attila’

alleles for flowering time, maturity, plant height and test weight, but not for the other four

traits (Table 4). On average, RILs with the ‘CDC Go’ allele at the two flanking markers of the

coincidental QTL on 5A flowered/matured 2 days earlier, were 4 cm shorter and had 0.3 kg

hL-1 higher test weight than those RILs with ‘Attila’ alleles. The second coincidental QTL

mapped on 4B (Fig 1, Table 3) and was associated with maturity (QMat.dms-4B), plant height

(QPht.dms-4B) and grain protein content (QGpc.dms-4B). RILs with ‘Attila’ alleles at the two

flanking markers for this QTL on 4B were different (p� 0.008) than those with ‘CDC Go’

alleles for maturity, plant height and grain protein content, but not for the other five traits

(Table 4). RILs carrying the ‘Attila’ alleles at the two flanking markers matured 2.2 days earlier

and had 0.3% higher grain protein, but were 7.6 cm taller than those homozygous for ‘CDC

Go’ alleles (Table 4). The third coincidental QTL mapped on 2D (Fig 1, Table 3) and was asso-

ciated with both grain yield (QYld.dms-2D) and grain protein content (QGpc.dms-2D). RILs

carrying ‘CDC Go’ alleles at the two flanking markers for the coincidental QTL on 2D were

different (p� 0.001) from those possessing ‘Attila’ alleles for both grain yield and grain protein

content, but not for the other six traits (Table 4). RILs carrying ‘Attila’ alleles at the two flank-

ing markers yielded 335.9 kg ha-1 more grain with 0.4% lower grain protein content than those

homozygous for ‘CDC Go’ alleles (Table 4).

Discussion

Effects of marker density and management on QTL detection

In one of our previous studies in the ‘Attila’ and ‘CDC Go’ RIL population [9], we genotyped

the population with 579 DArT markers and Rht-B1, and phenotyped them at three environ-

ments grown under conventional management. That study identified a total of three QTLs

associated with the averaged phenotypic data over three environments, which included a QTL

for grain yield on chromosome 6A, plant height on 4B and test weight on 1A. Each QTL

accounted for 10.9 to 19.2% of the phenotypic variance [9] and 33.1 to 45.9% of the genetic

variance (Table 2). However, no QTL was identified for the other 5 traits recorded over three

environments. Our previous study was based on a total map length of 2045 cM, with an overall

average map distance among adjacent markers (inter-marker interval) of 3.5 cM [9], while the

present study was based on 1203 informative SNP and gene specific markers, which increased

the genome coverage over two fold (3442 cM instead of 2045 cM) and decreased average inter-

marker interval by 0.6 cM. In the present study conducted using phenotypic data averaged

QTLs associated with agronomic traits in the Attila ×CDC Go spring wheat RIL population
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across seven conventionally managed environments, we found a total of 14 QTLs associated

with all agronomic traits (Table 3). Thus, the SNP-based high density markers not only

increased the number of detected QTLs from 3 to 14, but also the percentage of phenotypic

and genetic variance explained for all traits except plant height and grain yield (Table 2). A

similar trend was observed in the ‘Attila’ x ‘CDC Go’ RIL population phenotyped under

organic management [20].

We recently reanalyzed the phenotypic data generated across three organically managed

environments using the same number of markers as the present study and identified a total of

16 QTLs, of which 13 QTLs were not detected using the DArT-based low marker density [20].

The total phenotypic and genetic variance explained by all QTLs associated with each trait

under organic management varied from 9.3 to 39.4% and from 24.6 to 96.8%, respectively

[20], which was much greater than our previous study using DArT-based linkage maps [9]. In

Table 4. Comparisons of recombinant inbred lines that had the ‘CDC Go’ or ‘Attila’ alleles at the flanking markers of three coincident QTLs on

eight traits evaluated under seven (2008–2014) conventional management environments. RILs with recombinant genotypes at the flanking markers of

each coincident QTL were excluded from analysis.

Trait Chromosome Coincident QTL name ‘Attila’ type

alleles

‘CDC Go’ type

alleles

Difference* F

statistics

p

value

Flowering time (days) 2D QGpc.dms-2D vs QYld.dms-2D.2 53.90 52.90 -1.00 3.00 0.087

Maturity (days) 2D 98.40 97.70 -0.70 1.00 0.317

Number of tillers (m-2) 2D 107.00 106.90 -0.10 0.01 0.938

Plant height (cm) 2D 82.90 80.70 -2.20 1.50 0.217

1000 kernel weight (g) 2D 38.90 39.20 0.30 0.81 0.369

Test weight (kg hL-1) 2D 77.00 77.00 0.00 0.03 0.869

Grain yield (Mg ha-1) 2D 4.95 4.61 -0.34 16.00 0.001

Grain protein content

(%)

2D 12.10 12.50 0.40 23.10 0.001

Flowering time (days) 4B QGpc.dms-4B vs QMat.dms-4B vs

QPht.dms-4B

53.20 53.80 0.60 1.00 0.324

Maturity (days) 4B 97.10 99.20 2.10 25.00 0.001

Number of tillers (m-2) 4B 106.60 107.80 1.20 0.50 0.473

Plant height (cm) 4B 83.90 76.30 -7.60 30.10 0.001

1000 kernel weight (g) 4B 39.10 38.70 -0.40 1.90 0.240

Test weight (kg hL-1) 4B 77.10 77.00 -0.10 1.20 0.280

Grain yield (kg ha-1) 4B 4.74 4.78 0.04 0.40 0.538

Grain protein content

(%)

4B 12.50 12.25 -0.25 7.10 0.008

Flowering time (days) 5A QFlt.dms-5A vs QMat.dms-5A.2 vs

QPht.dms-5A

54.50 52.25 -2.25 32.50 0.001

Maturity (days) 5A 99.00 97.00 -2.00 23.80 0.001

Number of tillers (m-2) 5A 108.20 106.20 -2.00 3.60 0.061

Plant height (cm) 5A 83.60 79.60 -4.00 9.80 0.002

1000 kernel weight (g) 5A 39.00 39.00 0.00 0.20 0.694

Test weight (kg hL-1) 5A 76.90 77.20 0.30 4.80 0.030

Grain yield (Mg ha-1) 5A 4.77 4.73 -0.04 0.27 0.605

Grain protein content

(%)

5A 12.35 12.40 0.05 0.22 0.402

* The difference in leas squares means was calculated by subtracting values for ‘Attila’ type alleles from those of ‘CDC Go’ type alleles. Positive and

negative values for grain yield, grain protein content, test weight, kernel weight and number of tillers indicate that the favorable alleles originated from ‘CDC

Go’ and ‘Attila’, respectively; for flowering, maturity and plant height, positive and negative values indicate the opposite (the favorable alleles originated from

‘Attila’ and ‘CDC Go’, respectively), because selection is made against higher values (against late flowering, late maturity and taller plants).

doi:10.1371/journal.pone.0171528.t004
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general, the Wheat 90K SNP array [19] has significantly improved QTL detection both under

organic and conventional management systems, because many gaps in previous low-density

DArT-based maps were filled by novel SNP markers [20–23]. Given the medium to high heri-

tability for some traits, such as flowering time (0.73) and plant height (0.62), however, a major

proportion of the genetic variance for these traits still remained unexplained, which may partly

be due to low polymorphism on the D genome (S1 Table). Our results from the present and

previous studies [20, 21], together with others [22, 23] clearly suggest that the wheat 90K SNP

array is still not yet an optimal genotyping platform for QTL discovery.

Using the averaged phenotypic data across three organically and seven conventionally man-

aged environments, we uncovered a total of 24 QTLs, of which 6 QTLs were common between

the two managements, while the remaining 18 QTLs were detected either under conventional

(8) or organic (10) environments. The number of QTLs detected for flowering time, maturity,

pant height and tillering remained the same irrespective of the management system and num-

ber of environments. For the other traits, we found one or two fewer QTLs for test weight,

kernel weight and grain yield, and two additional QTLs for grain protein content under con-

ventional than organic management system. Each QTL identified under organic management

individually explained from 5.5 to 18.8% of phenotypic variance, which is similar to the 6.1 to

18.4% phenotypic variation obtained under conventional management. Overall, the total phe-

notypic variance explained by all QTLs associated with each trait under conventional and

organic management system differed from 0.4% for flowering time and plant height to 19.7%

for grain protein content. The six common QTLs between the conventional and organic man-

agement included one for flowering time on chromosome 5A (QFlt.dms-5A), two for maturity

on 4B and 5A (QMat.dms-4B and QMat.dms-5A.2), one for plant height on 4B (QPht.dms-4B)

and two for kernel weight on 4A and 6A (QTkw.dms-4A and QTkw.dms-6A.1). The percentage

of phenotypic variance explained by QFlt.dms-5A and QPht.dms-4B was the same under

organic and conventional management. In the conventional management system, both QMat.
dms-5A.2 and QTkw.dms-6A.1 showed reduction in phenotypic variance by 3.2–3.7%, while

those of QMat.dms-4B and QTkw.dms-4A showed an increase by 5.3–10.0% as compared with

organic management. In a previous study conducted using the DArT-based low density mark-

ers [9], only a single QTL on chromosome 4B (QHt.dms-4B) associated with plant height was

common between the two management systems. Although we identified five more QTLs that

were common between the organic and conventional management systems using the SNPs

than the DArTs, most QTLs still remained management specific.

Comparisons of QTLs with other studies

In western Canada, where the growing season is short and days are long, the development of

early maturing wheat cultivars is important to avoid frost damage, which can affect both yield

and grain quality [31, 32]. In the present study, we found one coincident QTL associated with

both flowering (QFlt.dms-5A) and maturity (QMat.dms-5A.2) between 294 and 298 cM inter-

val on chromosome 5A, which accounted for 14.0–16.8% of the phenotypic variance for both

traits, which is equivalent to a reduction in both flowering and maturity time up to 3 days

(Table 3). One of the vernalization response genes, Vrn-A1, maps on the long arm of chromo-

some 5A [25, 33] and directly influence both flowering time and maturity [34, 35]. In the pres-

ent study, the Vrn-A1 gene is either one of the flanking markers for QFlt.dms-5A and QMat.
dms-5A.2 or mapped 1–2 cM proximal to the coincidental QTL region, which could be due to

one of the following reasons. The first possibility is that the coincidental QTL may be the same

as the Vrn-A1 gene, which is partly supported by high LD values (0.70� r2� 0.75) between

the Vrn-A1 gene specific marker and the SNPs that mapped within the QTL confidence
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interval on chromosome 5A; however, the LD values were not high enough to confidently sug-

gest that the QTL is the same as the Vrn-A1 gene. In addition, the QTL only accounted for 14–

17% of the phenotypic variance, which is not a typical effect for single genes. The alternative

scenario is that the Vrn-A1 gene may be tightly linked with the coincident QTL region, but the

statistical methods used for linkage analysis and QTL mapping failed to discriminate them due

to small number of recombinants in our RIL mapping population to break up the linkage,

which has been discussed in detail in our previous study [20].

One of the QTLs for plant height (QPht.dms-4B) mapped at 82 cM on chromosome 4B

(Table 3). In hexaploid wheat, dwarfing has been achieved mainly through the introduction of

Rht-B1b on chromosomes 4B and Rht-D1b on chromosomes 4D, which have been introduced

in many cultivars grown worldwide [26, 36, 37]. In a RIL population derived from ‘Cutler’ and

‘AC Barrie’, our group has recently reported a very consistent major effect QTL adjacent to

Rht-D1b gene on chromosome 4D that accounted for 38% of the phenotypic variance for plant

height across five environments, which was equivalent to a reduction in plant height by 13 cm

[21]. In the ‘Attila’ x ‘CDC Go’ RIL population, QPht.dms-4B accounted for 18% and 10% of

the phenotypic variance across combined conventionally and organically managed environ-

ments, respectively. In both organic and conventional management conditions, however,

QPht.dms-4B exhibited either strong linkage or pleiotropic effect with a QTL for maturity

(QMat.dms-4B) and grain protein content (QGpc.dms-4B) (Table 4). This coincidental QTL

mapped between 79 and 86 cM on 4B and shortened plant height by 7.6 cm, but increased

maturity by two days and decreased grain protein content by 0.3% (Table 4). This QTL

mapped adjacent to Rht-B1 gene in our previous study conducted using the DArT-based low

density markers [9] and 33.5 cM proximal to the Rht-B1 in the present study conducted using

the SNP-based high density markers. Pairwise LD values between the Rht-B1 gene specific

marker and all SNP markers that mapped on the QTL region on 4B varied from 0.03 to 0.17

(data not shown), which is too low to suggest any association between the coincidental QTL

and the Rht-B1 gene.

We identified a single QTL from ‘Attila’ for tillering (QTil.dms-6A.1) on chromosome 6A

that accounted for 11.2% and 44.9% of the phenotypic and genetic variance, respectively. In

spring wheat, QTLs associated with tillering have been reported near Gli-A2 (Xpsr10) on the

short arm of chromosome 6A and several other chromosomes [38]. For grain yield, we found

a single QTL on chromosome 2D (QYld.dms-2D.2) that explained 9.3% and 22.1% of the phe-

notypic and genetic variance across seven environments, which is equivalent to an increase in

grain yield by 376 kg ha-1 (Table 3). The photoperiod sensitivity gene (Ppd-D1) on chromo-

some 2D has been the focus in breeding for early maturing wheat cultivars to better adapt to

their environments [39, 40]. Different studies have also reported QTLs associated with grain

yield on chromosome 2D [21, 40, 41]. In another study using a RIL population derived from a

cross between ‘Cutler’ and ‘AC Barrie’, our group has recently reported a major coincident

QTL associated with flowering time, maturity and grain yield on 2D, flanked by Ppd-D1 gene,

which resulted in a reduction in maturity up to 5 days, but showed a yield penalty of 436 kg

ha-1 [21]. In the present study, however, the QTL associated with grain yield across the seven

environments mapped 66 cM distal to the Ppd-D1 gene, which is genetically far. Pairwise

LD values between the Ppd-D1 gene and all SNP markers that mapped around QYld.dms-
2D.2varied from 0.002 to 0.035 (data not shown), which is too small to suggests any association

between QYld.dms-2D.2 and the Ppd-D1 gene.

In our previous study using DArT markers, we reported (i) a single QTL associated with

test weight on chromosome 1B (QTwt.dms-1B) that explained 8.3% of the phenotypic

variance across three environments; and (ii) two QTLs associated with kernel weight on chro-

mosome 4A and 6A that together explained 18.7% of the phenotypic variance across three

QTLs associated with agronomic traits in the Attila ×CDC Go spring wheat RIL population
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environments [9]. In the present study using SNP-based high density markers and phenotypic

data across seven environments, we uncovered (i) two QTLs (QTwt.dms-5A and QTwt.dms-
5B.3) associated with test weight that individually explained 6.1 and 10.1%, respectively

(Table 3) and altogether accounted for 16.2% of the phenotypic variance and 46.4% of the

genetic variance (Table 2), and (ii) four QTLs associated with kernel weight (QTkw.dms-4A,

QTkw.dms-6A.1, QTkw.dms-6D.2 and QTkw.dms-7B.1) that individually explained 6.7–12.1%

of the phenotypic variance (Table 3), and altogether accounted for 35.4% of the phenotypic

and 90.8% of the genetic variance (Table 2). Only two of the four QTLs associated with kernel

weight both on chromosomes 4A (QTkw.dms-4A) and 6A (QTkw.dms-6A.1) were common

between the present and previous [9] studies. QTLs for test weight have also been reported on

several chromosomes, including chromosomes 1A, 1B, 1D, 2D, 3B, 3D, 4A, 4D, 5A, 5D, 6B,

and 7A [42–45]. In a RIL population derived from ‘Chuan 35050’ × ‘Shannong 483’, four

QTLs have been reported for kernel weight, which includes a consistent QTL on chromosome

6A (QTkw.sdau-6A) that explained from 6.1 to 13.2% of the phenotypic variance across three

environments [46].

The development of wheat cultivars with high grain protein content or high proportion of

the essential amino acids have been one of the target traits in wheat breeding [47]. In the pres-

ent study, we found two QTLs associated with grain protein content on chromosomes 2D

(QGpc.dms-2D) and 4B (QGpc.dms-4B) that individually explained 13.4% and 6.3% of the phe-

notypic variance, respectively, and altogether accounted for 18.7% of the phenotypic variance

(Table 3) and 71.7% of the genetic variance across seven environments (Table 2). QGpc.dms-
2D mapped 61–65 cM distal to the Ppd-D1 gene. Neither QGpc.dms-2Dnor QGpc.dms-4B
identified in the present study was reported in our previous studies in the ‘Attila’ x ‘CDC Go’

population evaluated under organic management [9, 20]. As discussed above, the QTL for

grain protein content on 4B coincided with maturity and plant height, which could be due to

tight linkage or pleiotropic effect. The QTL for grain yield on 2D (QYld.dms-2D.2) mapped 5

cM distal to the QTLs for grain protein content (QGpc.dms-2D), but the genetic confidence

interval between QYld.dms-2D.2 (62–70 cM) and QGpc.dms-2D (59–63 cM) showed an over-

lap; both QTLs mapped 61–66 cM distal to the Ppd-D1 gene, so neither QYld.dms-2D.2 nor

QGpc.dms-2D are associated with the Ppd-D1 gene. RILs with ‘Attila’ alleles at the two flanking

markers of QYld.dms-2D.2 produced 375.7 kg ha-1 more grain yield but 0.3% lower grain pro-

tein content than those with ‘CDC Go’ alleles (Table 2). QTLs for grain protein content have

been previously reported on several chromosomes [48, 49].

Conclusions

The increase in marker density was highly useful in detecting 14 QTLs of which 13 QTLs were

not detected in our previous study using the DArT-based low marker density. However, over

50% of the genetic variance of five traits (flowering time, plant height, test weight, grain yield

and number of tillers) still remained unexplained even after doubling marker density, which

may be due to gaps on some chromosomes and/or lack of SNP polymorphism on some chro-

mosomes, such as 3D and 4D. Only 6 of the 14 QTLs identified under conventional manage-

ment were common with those identified under organic management, which clearly suggest

the management specificity of the majority of QTLs. Our results from the different studies

conducted in the ‘Attila’ × ‘CD Go’ population using both low and high density markers sug-

gest the need in conducting management specific gene discovery studies and provides insight

on difficulty in directly utilizing genes or major effect QTLs identified based on phenotypic

data from conventional management to make selection under organic management.
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