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Abstract: Natural products have been extensively used for treating a wide variety of disorders. In
recent times, Brucine (BRU) as one of the natural medications extracted from seeds of nux vomica,
was investigated for its anticancer activity. As far as we know, this is the first study on BRU anticancer
activity against skin cancer. Thus, the rational of this work was implemented to develop, optimize
and characterize the anticancer activity of BRU loaded ethosomal gel. Basically, thin film hydration
method was used to formulate BRU ethosomal preparations, by means of Central composite design
(CCD), which were operated to construct (32) factorial design. Two independent variables were
designated (phospholipid percentage and ethanol percentage) with three responses (vesicular size,
encapsulation efficiency and flux). Based on the desirability function, one formula was selected and
incorporated into HPMC gel base to develop BRU loaded ethosomal gel. The fabricated gel was
assessed for all physical characterization. In-vitro release investigation, ex-vivo permeation and MTT
calorimetric assay were performed. BRU loaded ethosomal gel exhibited acceptable values for the
characterization parameters which stand proper for topical application. In-vitro release investigation
was efficiently prolonged for 6 h. The flux from BRU loaded ethosome was enhanced screening
optimum SSTF value. Finally, in-vitro cytotoxicity study proved that BRU loaded ethosomal gel
significantly improved the anticancer activity of the drug against A375 human melanoma cell lines.
Substantially, the investigation proposed a strong motivation for further study of the lately developed
BRU loaded ethosomal gel as a prospective therapeutic strategy for melanoma treatment.

Keywords: brucine; ethosome; transdermal drug delivery; skin; optimization

1. Introduction

Nanotechnology is a discipline involves the design, development, characterization
and application of nanoscale carrier systems in different aspects of nanomedicine [1]. It
compromises various techniques in treatment, especially in the case of cancer therapy
in order to increase drug efficacy, selectivity and support the transporting of poorly wa-
ter soluble drugs [2,3]. Skin cancer is a form of malignancy that is extensively spread
in many countries. In certain cases, the most appropriate strategy for skin cancer treat-
ment is through transdermal delivery since it would deliver higher concentrations of the
medications to the target site directly [4].

Molecules 2021, 26, 3454. https://doi.org/10.3390/molecules26113454 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-5445-5877
https://orcid.org/0000-0002-8051-1614
https://orcid.org/0000-0002-3221-9168
https://orcid.org/0000-0001-6549-0926
https://doi.org/10.3390/molecules26113454
https://doi.org/10.3390/molecules26113454
https://doi.org/10.3390/molecules26113454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26113454
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26113454?type=check_update&version=1


Molecules 2021, 26, 3454 2 of 17

In recent times, transdermal drug delivery systems have gained much attention
owing to their high competence factors, such as more patient compliance, low frequency
of dosing and avoiding many other problems usually related to the conventional oral
dosage form [5]. Several dosage forms fall under the category of transdermal drug delivery
systems, encompassing a variety of dosage forms such as gel, emulgel, nanoemulgel and
patches [6].

One of the key restrictions in delivering the medication via the skin is the low perme-
ability of these drugs through the skin barrier, which could result in lower transdermal
flux. As a result, enhancement of drug penetration became a necessary object that could
be achieved via different strategies including the use of penetration enhancers. Ethanol
is one of the most common enhancers that have the capability to advance the passage
of the medication through the skin and facilitate the percutaneous diffusion. Relatively
modern topical drug delivery systems incorporating ethanol have been developed, such as
ethosome [7]. Several literatures had shown the effectiveness of a ethosomal carrier over
other a nanocarrier which propose its substantial influence in drug delivery systems [8].

Ethosome has been identified as a superior drug delivery carrier in improving drug
skin penetration. It principally started as a vesicular carrier with elastic membrane that
improve the solubility of the materials and facilitated its incorporation. It was composed of
phospholipid, cholesterol, water and ethanol [9]. Ethosome possesses bilayer, aqueous and
lipid layers; thus, it could incorporate both hydrophilic and hydrophobic drugs. Ethosome
can be fabricated easily without any complicated manufacturing protocol [10] and provides
higher stability and solubility for the incorporated therapeutic agent [11]. Moreover, it
could improve the pharmacokinetic parameters and enhance the drug efficacy and increase
the therapeutic window [12,13].

BRU has been widely used as a natural medication which is the main constituent of
Strychnos nux-vomica seed [14]. Several uses were reported for BRU as an analgesic [15]
with anti-inflammatory [16], anti-proliferative and antitumor activity [17,18]. In order to
enhance BRU efficacy and overcome its low solubility, several prospects were studied
to develop new formulations incorporating BRU [19]. Based on that, it was motivating
to develop innovative appropriate formulations like ethosome to deliver BRU with least
drawbacks [20]. Consequently, to reach more optimized formulation, quality by design
(QbD) concept has been applied using different methodologies to obtain the best quality
design [21].

QbD is a systematic organized process that is concerned with the quality of the phar-
maceutical product. It proceeds by running specific key factors signifying the independent
variables, and examining their influence on the dependent observed responses [22]. In
other words, QbD offers and executes a perfect outline for the model to be designed and
to meet the desired standards [23]. Response surface methodology (RSM) is a tool that
produces large amount of data from the least work. It correlates with Central Compos-
ite Design (CCD) which is one of the most prevalent software that is based on specific
mathematical, statistical equations and certain graphs for modeling the design [24,25].

In these contexts, BRU loaded into different ethosomal formulations was prepared,
followed by characterization and optimization using CCD. The optimized formula was
loaded into a gel formulation that could be positively applied to the skin. BRU loaded
ethosomal gel was characterized as a topical preparation for its physical properties and in-
vitro and ex-vivo permeation studies. Ultimately, it was examined for its in-vivo antitumor
activity and compared to free drug, blank ethosome and conventional gels.

2. Results
2.1. Experimental Design for the Ethosomal Formulations
Statistical Analysis of the Data

Twelve experiments were run via CCD software attempting to optimize the fabricated
ethosomal formulations and record the influence of the independent variables on the
dependent response as displayed in Table 1. As known for p-value, if being less than
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0.05, this confirms a statistically significant model [26]. According to that, it was apparent
that the best-fit model compared to the other models was the linear one for all responses.
As shown in Table 2, p-value < 0.0001 was detected for all independent variables in all
responses, a matter that confirms the significant effect of these variables on the studied
response. On the other hand, higher F-value is more desirable as per exhibited for all
responses in our study that indicate less error in the model. Additionally, it was signified
that F-value of the 3 models was 42.04, 42.74 and 160.61 for Y1, Y2 and Y3, respectively,
which revealed a significant model. Furthermore, non-significant lack of fit is mandatory
to fit the model, and as shown in the observed responses Y1, Y2 and Y3, it was 2.43, 1.81
and 1.08 with relative p-value 0.2489, 0.3349 and 0.5160, respectively, which considered
good non-significant lack of fit [27].

Table 1. Composition of various ethosomal formulations based on the experimental design and the resultant values of
observed response.

Formula

Independent Variables Dependent Response
PDI

X1 (%) X2 (%) Y1
(nm)

Y2
(%)

Y3
(µg/cm2·h)

F1 0.39 7.5 152 ± 2.5 61.4 ± 1.4 0.49 ± 0.025 0.250
F2 0.5 10 142 ± 1.7 74 ± 2.6 0.55 ± 0.035 0.230
F3 0.75 7.5 154 ± 2.0 66 ± 1.7 0.46 ± 0.04 0.311
F4 0.75 7.5 166 ± 1.5 70.2 ± 1.9 0.45 ± 0.035 0.290
F5 1 10 150 ± 1.4 76.3 ± 1.3 0.51 ± 0.04 0.271
F6 0.5 5 180 ± 2.1 55.8 ± 2.2 0.41 ± 0.05 0.321
F7 1 5 192 ± 2.0 58.9 ± 2.4 0.37 ± 0.031 0.401
F8 0.75 7.5 160 ± 1.6 68.6 ± 1.7 0.44 ± 0.038 0.304
F9 0.75 7.5 168 ± 1.8 71.5 ± 2.5 0.47 ± 0.035 0.281

F10 0.75 11.0 118 ± 1.5 77 ± 1.2 0.59 ± 0.04 0.214
F11 1.10 7.5 180 ± 2.5 73.5 ± 1.6 0.42 ± 0.038 0.282
F12 0.75 3.96 218 ± 3.0 50.2 ± 1.8 0.33 ± 0.015 0.336

X1: phospholipid concentration; X2: ethanol concentration; Y1 vesicular size; Y2: encapsulation efficiency; Y3: flux.

Table 2. Statistical and regression analysis results for all responses.

Source
Y1 Y2 Y3

F-Value p-Value F-Value p-Value F-Value p-Value

Model 42.04 <0.0001 * 42.74 <0.0001 * 160.61 <0.0001 *
X1 5.68 0.0410 * 9.59 0.0241 * 22.79 0.0010 *
X2 78.39 <0.0001 * 0.2856 <0.0001 * 298.4 <0.0001 *

Lack of Fit 2.43 0.2489 1.81 0.3349 1.08 0.5160

R2 analysis

R2 0.9033 0.9047 0.9727
Adjusted R2 0.8818 0.8836 0.9667
Predicted R2 0.8052 0.8310 0.9483

Adequate Precision 17.707 17.681 34.550

Model Linear Linear Linear

Remark Suggested Suggested Suggested

X1: phospholipid concentration; X2: ethanol concentration; Y1: vesicular size; Y2: encapsulation efficiency; Y3: flux; *: significant.

2.2. Vesicular Size and Size Distribution (PDI) Determination

Vesicular size of the prepared ethosome and their corresponding PDI values was
estimated and found to be ranged between 118 ± 1.5 to 218 ± 3.0 with PDI 0.214 and
0.336 respectively as was illustrated previously in Table 1. It was shown that upon using
constant percentage of ethanol X2 (5%) and increasing phospholipid concentration X1 from
0.5 to 1%, the vesicular size Y1 increased from 180 to 192 nm for F6 and F7, respectively.
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The same result was observed upon using 7.5% X2 and increasing X1 from 0.39 to 1.1%,
Y1 would increase from 152 to 180 nm for F1 and F11, respectively. Similar findings were
detected upon using 10% X2, increment in Y1 was observed from 142 to 150 nm for F2 and
F5, respectively. This indicates the direct correlation between phospholipid concentration
and the size of the ethosomal vesicle upon using fixed ethanol concentration. This finding
could be explained on the basics of phospholipid function that construct lipid layers around
the ethosome, which result in increasing the size. On the other hand, it was noticed that
upon increasing X2 from 3.96 to 11%, a subsequent decrease in the ethosomal vesicular
size from 218 to 118 nm for F12 and F10, respectively, was recorded. A reverse action
was observed for ethanol concentration variable X2 which points toward decreasing the
vesicular size because of the great stabilization provided to the ethosome that resulted
in smaller vesicular size [28]. The influence of both independent variables X1 and X2 on
the BRU loaded ethosome vesicular size (Y1) is visibly explained through 2D contour and
3D-response surface plot as displayed in Figure 1A,B.
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Figure 1. (A) 2D contour graph, (B) 3D response surface plot demonstrating the influence of independent variables (X1) and
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The influence of these variables was further emphasized using the following regression
equation that revealed the positive effect of variable X1 in addition to the negative action
related to variable X2 on Y1:

Y1 = 225.68 + 29.79 X1 − 11.071 X2 (1)

Moreover, the linear correlation between the predicted versus the actual responses
illuminating that the predicted R2 for Y1 is (0.8052) which was in realistic agreement
with the adjusted one (0.8818) as described in Table 2. The residual value is apparent as
dispersed between the two sides of the line suggesting a reasonable correlation among that
experimental data and the predicted value as portrayed in Figure 1C. Also, the ability of
the system to suggest the model is enhanced since the R2 value is near to one (0.9033) in
addition to the anticipated adequate precision that was 17.707 indicating that the model
could navigate the design space.

2.3. Encapsulation Efficiency (EE)

The percentage of BRU encapsulated into the developed ethosome was calculated
and represented as % of EE that ranged between 50.2 ± 1.8 and 77 ± 1.2% as presented
in Table 1. It was observed that increasing concentration of X1 from 0.5 to 1% while keeping
X2 constant (5%), the EE increased from 55.8 to 58.9% for F6 and F7 respectively. On the
same track, on increasing X1 from 0.39 to 1.1% while maintaining X2 concentration (7.5%),
the EE raised from 61.4 to 73.5% for F1 and F11, respectively. There was a similar result
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upon increasing X1 from 0.5 to 1% while keeping X2 concentration (10%), the EE increased
from 74 to 76.3% for F5 and F10, respectively. From the previous data, it could be concluded
that there was a progressive influence of phospholipid on the EE of the obtained ethosome.
This could be ascribed to the vesicular size, where the larger the vesicular size, the greater
would be the space that could entrap large amount of BRU, which could provide higher
percentage of EE as a result [29]. Likewise, greater phospholipid concentration could build
multilayer that have the ability to entrap more BRU within the layers which could enhance
the EE as well [30]. Moreover, cholesterol plays a crucial role in improving the EE due to
its structure as a rigid steroid, hence a lower permeability of the vesicles and hindering
of the leakage [31]. As for ethanol concentration, the same positive effect of phospholipid
was detected, since the higher the concentration of ethanol, the better the ethosomal EE.
This is most likely due to improvement of the drug solubility which helps in increasing the
encapsulation of the drug inside the formulation [32].

The derived polynomial equation for that investigated factor (Y2) that clarifies its
relation with all responses is given as:

Y2 = 30.945 + 11.256 X1 + 3.675 X2 (2)

It was noticed that both responses X1 and X2 provided significant model terms. Ad-
ditionally, as displayed in Table 2, the adjusted R2 signified value of 0.8836 which was
concomitant with the predicted R2 (0.8310) which probably affirms the linearity of the data
as further confirmed in Figure 2C. Alongside, the value of R2 was recorded (0.9047) and the
required adequate precision of 17.68 which indicate the capability of the model to direct
the design space. Figure 2A,B displayed the 2D contour and 3D response surface plot of
EE that emphasized the positive impact of all variables Y1, Y2 and Y3.
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2.4. Ex-Vivo Study (Skin Permeation Study)

Study of skin permeation was implemented and permeation parameters with the perme-
ation profile of all examined formulations are displayed in Figure 3 and Table 1. SSTF value
of all ethosomal formulations were ranged between 0.33 ± 0.015 to 0.59 ± 0.04 µg/cm2·h. It
was remarkable that along with increasing X1 from 0.5 to 1% while keeping concentration
of X2 (5%) constant, the flux from ethosome would decrease from 0.41 to 0.37 µg/cm2·h
for F6 and F7, respectively. Likewise, upon using 7.5% X2 and increasing X1 from 0.39 to
1.1, the flux decreased from 0.49 to 0.42 µg/cm2·h for F1 and F11 respectively. Similarly,
increasing X1 from 0.5 to 1% upon using 10% X2 resulted in lowering in flux from 0.55 to
0.51 µg/cm2·h for F2 and F5, respectively. In light of the previous findings, it was stated
that increasing the concentration of phospholipid while keeping concentration of ethanol
constant would result in a negative effect as it decreased the value of SSTF. However, it
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was obvious that increment in concentration of X2 from 3.96 to 11% provided enhancement
in the percentage of flux from 0.33 to 0.59 µg/cm2·h. Definitely, this indicated synergistic
effect of ethanol on the drug permeation across the skin, which could be returned to its
effective role as a penetration enhancer [33]. In addition to the lipid-softening effect of
ethanol that facilitate the penetration of the drug and improve the permeation as well [34].
In view of this, the skin permeation is affected by varying the concentration of phospholipid
and ethanol [35,36].
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Figure 3A,B depict 2D contour graph and 3D surface plot that provide interpretation
for the variable effect on the value of flux response. Further, as detailed in Table 2, the
predicted R2 was 0.9483, which revealed a reasonable correspondence with the adjusted R2

(0.9667) in addition to the proper value of R2 (0.9727) and adequate precision (34.55) that
represent adequate signal. The following is the regression equation that clarifies the role of
the variables on the flux:

Y3 = 0.2817 − 0.0894 X1 + 0.0323 X2 (3)

2.5. Optimizing the Independent Variables

Optimization process is aimed to adopt the optimum constraints to reach the utmost
desirability and get ethosomal formulation with proper quality features [37]. A numerical
optimization was processed via the desirability function depending on the resultant data
that were obtained from various graphs drawn by the design software [38]. The goal in
optimizing the ethosome was dependent on assigning the independent variables toward
certain parameters; namely, to minimize both phospholipid and ethanol concentration in
addition to adjusting the responses as to minimize the vesicular size and maximize both
the EE and the flux. The selected formula was easily predicted using point prediction
option in the software. As shown in Table 3, 0.55% phospholipid and 9.2% ethanol were
the predicted independent variables that was expected by CCD; however, the predicted
response values were 140 nm for the vesicular size, 71.1% EE and 0.531 µg/cm2·h for the
flux of the drug from the skin membrane. The previous predicted values for response
suggested the maximum desirability value (0.603) as seen in Figure 4A, in addition to
the overlay plot that labels the zone at which the optimized criterion is met (Figure 4B).
The previous suggested values of the independent variables were used to develop the
optimized ethosome and compare the result of its characterization with the predicted
response. The obtained experimental value of responses were vesicular size of (145.6 nm),
EE (72.9%) and Flux of (0.513 µg/cm2·h), which proved to be very close to that of the
predicted values proposed by the CCD system.
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Table 3. Predicted and experimental value of response at the optimized conditions.

Dependent Variables Symbol Constraints

Vesicular size (nm) Y1 Minimize
EE (%) Y2 Maximize

Flux (%) Y3 Maximize

Response Predicted values Experimental values

Y1 (nm) 140 ± 1.9 145.6 ± 2.3
Y2 (%) 71.1 ± 2.4 72.9 ± 2.1

Y3 (µg/cm2·h) 0.531 ± 0.04 0.513 ± 0.03
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2.6. Vesicular Size, PDI and Zeta Potential of Optimized BRU Loaded Ethosomal Formulation

The vesicular size of the optimized BRU loaded ethosomal formulation was assessed
(145.6 nm) with good PDI value (0.259) and the related distribution curve was presented in
Figure 5A. Concerning the ethosomal surface charge, zeta potential was estimated and it
showed a charge of −23.3 ± 8.2 mV as revealed in Figure 5B. In fact, the presence of ethanol
in the preparation shifted the charge toward negative that could successfully enhance the
electrostatic repulsion and inhibit aggregation of vesicles which would improve the stability
of the formulation.
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According to the obtained results in the previous investigations, HPMC gel base was
fabricated and mixed with the optimized BRU loaded ethosome in order to attain BRU
loaded ethosomal gel formulation. The ethosomal gel is more applicable for skin treatment
and was subjected to further evaluations to be compared with conventional BRU loaded
gel.

2.7. Characterization of the Developed BRU Loaded Ethosomal Gel

Table 4 displays the different characters that were evaluated for the developed gel
and ethosomal gel. Physical examination of BRU loaded gel and ethosomal gel certified
homogeneity, smoothness and the acceptable physical appearance of the formulations.
In order to avoid any skin irritation upon application, pH measurement confirmed that
the values were satisfactory. Furthermore, viscosity and spreadability results revealed
reasonable data that being adequate for skin application.

Table 4. Characterization of BRU loaded gel and ethosomal gel formulations.

Parameters BRU Loaded Gel BRU Loaded Ethosomal Gel

Visual examination Smooth and homogenous Smooth and homogenous
pH 5.8 ± 0.2 6.0 ± 0.3

Viscosity (cP) 4840 ± 375 4416 ± 277
Spreadability (mm) 41.7 ± 2.2 35.5 ± 0.7 *

Values are expressed as the mean ± SD (n = 3). * p < 0.05 compared to BRU gel.

2.8. Morphological Evaluation

BRU loaded ethosomal gel was evaluated for its morphological characterization via
scanning electron microscopy as displayed in Figure 6. It was apparent that vesicles were
spherical with smooth surfaces.
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2.9. In Vitro Release Experiment

Profile of in-vitro release experiment was designed and the percentage of BRU released
from all developed formulations, as well as from BRU suspension, is portrayed in Figure 7.
The percentage of BRU released from BRU loaded gel, BRU loaded ethosome and BRU
loaded ethosomal gel was 68.87 ± 3.9, 50.87 ± 4.5 and 33.67 ± 3.92% respectively over
a period of 6 h. It was apparent that the percentage of BRU released from loaded gel
is significantly greater than that released from ethosome and ethosomal gel (p < 0.05).
This could be accredited to the gel composition that includes higher aqueous content that
could speed up the transfer of BRU out of the gel in to the release media. Moreover, the
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percentage of BRU released from ethosome was significantly larger than that released from
ethosomal gel (p < 0.05). Actually, viscosity of the formulation plays a vital role in the
release study, hence ethosomal formulation being less viscous than ethosomal gel that
would facilitate the transport of the entrapped BRU to the dissolution media [39].

1 
 

 

Figure 7. Profile of In vitro release experiment from BRU preparations at 37 ◦C. Data are expressed
as the mean ± SD (n = 3). * p < 0.05 comparable to BRU suspension, • p < 0.05 comparable to BRU
loaded gel and + p < 0.05 comparable to BRU loaded ethosome.

2.10. Ex-Vivo Investigation

Skin permeation investigation across skin rat was executed and the permeation pattern
together with specific ex-vivo parameters was depicted in Figure 8 and Table 5. It was
noticed that the amount of BRU permeated through skin membrane after 360 min from BRU
loaded ethosome was 2.89 ± 0.18 µg/cm2, which is significantly larger than that permeated
from BRU loaded ethosomal gel (2.4 ± 0.16 µg/cm2), BRU loaded gel (1.95 ± 0.16 µg/cm2)
and BRU suspension (1.27 ± 0.07 µg/cm2) (p < 0.05). As a result, it was detected that
the permeation from BRU loaded ethosome was enhanced by 2.42 ± 0.12 folds showing
optimal SSTF (0.513 ± 0.03 µg/cm2·h) which is significantly higher than that from other
formulations in the study (p < 0.05). On the other side, permeation from ethosomal gel
formulation was enhanced by 1.89 ± 0.12 folds displaying SSTF value 0.4 ± 0.03 µg/cm2·h
which is significantly less than that of ethosome itself and greater than the values of gel
formulation that improve the permeation by approximately 1.53 ± 0.126 folds with SSTF
value 0.325 ± 0.027. As a matter of fact, lower permeation from BRU loaded gel was due to
its colloidal nature [40]. However, higher values corresponding to BRU loaded ethosome
is returned to its lower viscosity than BRU loaded ethosomal gel that resulted in higher
release and higher permeation as well [13,41].
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Figure 8. Outline skin permeation study of BRU from developed formulations. Data are expressed as
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gel and + p < 0.05 comparable to BRU loaded ethosomal gel.

Table 5. Special parameters related to ex vivo investigation from BRU formulations.

Formula SSTF µg/cm2·h ER

BRU suspension 0.212 ± 0.01 1
BRU gel 0.325 ± 0.027 * 1.53 ± 0.126 *

BRU ethosome 0.513 ± 0.03 *,# 2.42 ± 0.12 *,#

BRU ethosomal gel 0.40 ± 0.03 *,#,� 1.89 ± 0.12 *,#,�

Values are stated as mean ± SD (n = 3). * p < 0.05 when compared to BRU suspension. # p < 0.05 compared to
BRU gel and � p < 0.05 compared to BRU ethosome.

2.11. In-Vitro Cytotoxicity

Evaluating cytotoxicity of the developed BRU ethosomal formulation was a very im-
portant factor in determining the possibility of applying such a nanocarrier in skin cancer
treatment. In view of that MTT colorimetric assay was investigated for BRU suspension, blank
ethosome and BRU loaded ethosomal gel against A375 cell line. As apparent in Figure 9, per-
centage of cell viability was significantly lessened for BRU loaded ethosomal gel achieving
lower IC50 values of 29.91 ± 5.59 µg/mL if compared to that of BRU suspension exhibiting
IC50 value 65.96 ± 9.7 µg/mL (p < 0.05). The reduced cell viability upon treating with BRU
loaded ethosomal gel could be attributed to the sustained release of BRU from ethosome
which result in existence of the drug in contact with the tumor cells providing greater
anticancer effect [42]. Additionally, it was noteworthy that including the drug within the
ethosomal formulation would ameliorate its cytotoxic effect more than the free drug [43].
However, treating the cancer cells with these formulations, BRU suspension and BRU
loaded ethosomal gel, showed a concentration dependent cytotoxicity [44]. On the other
hand, higher percentage of cell viability was demonstrated in case of blank ethosome that
could reach more than 95% indicating that it does not have any cytotoxic effect against
cancer cells. This actually proved the prominence of the ethosomal gel as a carrier for the
drug [45].
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Figure 9. In-vitro cytotoxicity study of BRU suspension. Blank ethosome and BRU loaded ethosomal
gel against A 375 cell line for 48 h. Data are expressed as mean ± SD (n = 3). * p < 0.05 comparable to
control, # p < 0.05 comparable to blank ethosome and $ p < 0.05 comparable to BRU suspension.

3. Materials

BRU was supplied from Alpha Chemika, (Mumbai, India). Ethanol, soy lecithin,
cholesterol and hydroxy propyl methyl cellulose (HPMC K15M) were purchased from
Sigma Aldrich (St. Louis, MO, USA). Fetal bovine serum (FBS) was supplied from Sigma
Aldrich (St. Louis, Mo, USA). Tetrazolium dye (MTT reagent) was procured from Loba
Chemie (Mumbai, India). All other chemicals of analytical grade were obtained from
Sigma, (St. Louis, MO, USA).

3.1. Experimental Design Study

A two factor, three level (32) factorial design was developed via (RSM) using Design-
Expert version 12.0 software (Stat-Ease, Minneapolis, MN, USA). Fundamentally, sequences
of preliminary studies were executed in order to determine the main factors of the inves-
tigation. Accordingly, phospholipid percentage (X1) and Ethanol percentage (X2) were
nominated to represent the independent variables that were inspected for their effects
on the vesicular size (Y1), encapsulation efficiency (Y2) and flux (Y3) of the developed
ethosome. Data in Table 6 demonstrated two independent variables that showed their
responses on the dependent variables (Y1), (Y2) and (Y3) using three different levels (−1, 0,
1). To check the statistical analysis of the data and the designed model, Analysis of variance
(ANOVA) was implemented. Next, certain graphs were plotted such as 2D Contour and
3D-response surface in addition to mathematical equations for the response which help to
illustrate the relationship between the data as follow:

Y = bo + b1X1 + b2X2 + b12X1X2 + b11X2 + b22X2 (4)

Table 6. Independent variables, level of variation and the dependent variables.

Independent Variable Symbol
Level of Variation

−1 0 +1

Phospholipid (%) X1 0.5 0.75 1
Ethanol (%) X2 5 7.5 10

In which Y signifies the dependent variable whereas b0 symbolizes the intercept;
b1, b2, b12, b11 and b22 are the regression coefficients. X1 and X2 represent the main
factors; X1X2 represents the interactions between main factors and X12, and X22 specify the
polynomial terms.
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3.2. Preparation of BRU Loaded Ethosome

BRU loaded ethosome was prepared by thin film hydration method that reported
previously by Sakdiset et al. [28]. Concisely, BRU (50 mg) was used in addition to same
amount of cholesterol and both were added into clean, desiccated round bottomed flask.
The quantified amount of phospholipid (Table 1) was added to the flask and the mixture
was dissolved in ethanol. Afterward, ethanol was evaporated using rotary evaporator
(Heidolph, GmbH, Co, KG, Germany) to form a thin lipid film at the internal wall of the
flask by allowing rotation at 100 rpm and heating up to 60 ◦C. The thin film was then
hydrated using 10 mL hydroalcoholic solution (phosphate buffer pH 7.4 and ethanol) and
kept at room temperature for 1 h to attain the final dispersion. To get a suitable vesicular
size, BRU dispersion was sonicated using probe sonicator (XL-2000, Qsonica, Newtown,
CT, USA) for 30 s at 150 watt.

3.3. Characterization of Ethosomal Formulations
3.3.1. Vesicular Size, Polydispersibility Index (PDI) and Zeta Potential Measurement

Vesicular size and PDI for all BRU loaded ethosome were examined measuring their
dynamic light scattering at 25 ◦C and a scattering angle of 90◦ [46]. Zeta potential determi-
nation was assessed for the optimized BRU ethosomal gel in which the formulation surface
charge was measured through the electrophoretic mobility using Zetasizer apparatus
(Malvern Instruments Ltd., Worcestershire, UK) [47].

3.3.2. Encapsulation Efficiency (EE)

The percentage of BRU encapsulated within the ethosomal system was estimated
using centrifugation method. Centrifugation was permitted for 30 min at 30,000 rpm
operating ultracentrifuge (Hitachi micro ultracentrifuge CS-FNX 120). At that point, the
free drug was analyzed in the supernatant spectrophotometrically at λmax 264 nm by
means of spectrophotometer (U.V. Spectrophotometer, JENWAY 6305) [48]. The following
equation would help in calculating the percentage of EE:

EE% = (T − F)/T (5)

whereas, T is the total quantity of BRU in the ethosome and F is the quantity of free drug.

3.4. Ex-Vivo Investigation
3.4.1. Preparing Animal Skin

In order to investigate the permeation study, rat skin was selected as it is easily
accessible, economically cheap and very comparable to human skin. Basically, by means of
an electric clipper, the abdominal region of a male Wistar rat was shaved. Then, the rat skin
was removed after scarifying the animals using inhaled chloroform. Until further studies,
the detached skin was preserved at freezer [49].

3.4.2. Skin Permeation Study

Since the amount of drug permeated through the skin reflects its activity a modified
Franz diffusion cells was prepared in our lab in order to determine the amount of drug
permeated across the rat skin [50–52]. The skin membrane was attached to a glass tube of
permeation area 4.91 cm2 from one end and suspended into the receptor media containing
phosphate buffer pH 7.4 (100 mL) and sodium azide (0.02%) at 37 ± 0.5 ◦C. Ethosomal
formulation (0.5 mL) was added into the donor area and the tubes were protected from
media evaporation by Parafilm (Bemis, Oshkosh, WI, USA) and allowed to stir at 100
rpm [53]. At different time intervals and up to 6 h, 1 mL of the sample was taken, measured
spectrophotometrically at 264 nm using UV spectrophotometer (Jenway 6305 UV/Visible,
Staffordshire, UK) and substituted with equivalent amount of fresh vehicle for tolerating
the sink conditions [51]. Steady state transdermal flux (SSTF) and enhancement ratio (ER)
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were calculated for all formulations where they represent permeation parameters related
to ex vivo study.

SSTF indicates the amount of permeated drug/(area × time); and ER denotes SSTF-
test/SSTF-control.

3.5. Incorporation of Optimized Ethosomal Formulation into HPMC Gel

The optimized BRU loaded ethosome was mixed with gel base prepared from HPMC
(4% w/w). Simply, the required amount of the gelling agent was sprinkled slowly in
a distilled water and kept on a magnetic stirrer (Jeio Tech TM-14SB, Medline Scientific,
Oxfordshire, UK) for 2 h., to get the desired clear gel base. Regarding BRU loaded gel
preparation, primarily; the drug was dissolved in ethanol then mixed with the prepared
HPMC gel, the final concentration of the gel was 50 mg Bru in 20 g gel.

3.6. Characterization of the Developed BRU Loaded Ethosomal Gel
3.6.1. Visual Examination

All fabricated preparations including BRU loaded gel and BRU loaded ethosomal gel
were inspected visually for homogeneity.

3.6.2. pH Measurement

Evaluating pH of the formulations were carried out by means of calibrated pH me-
ter (MW802, Milwaukee Instruments, Szeged, Hungary) in order to insure weather the
formulation irritant or not.

3.6.3. Spreadability

500 mg of gel or ethosomal gel was added between two slides and certain weight
placed over them for 1 min. The formulation would spread in between the slides and the
diameter of the spreading area was calculated [54].

3.6.4. Viscosity

Brookfield viscometer (DV-II+ Pro, New York, NY, USA) was utilized to determine
viscosity of BRU loaded gel and BRU loaded ethosomal gel formulation at room tempera-
ture [55].

3.6.5. Morphological Evaluation

In concern with the morphology of the preparation, scanning electron microscopy
(SEM), (JSM-6390LA, JEOL, Tokyo, Japan) was helpful in determine the structure of the
optimized ethosomal gel formulation. Applying different magnifications (1000 to 95,000)
and under vacuum, the sample was tested at 5 kv [56].

3.7. In-Vitro Release Experiment

The percentage of BRU released from BRU loaded gel, BRU loaded ethosome and
BRU loaded ethosomal gel was determined and compared to that released from free
BRU suspension using ERWEKA dissolution system (ERWEKA, GmbH, Heusenstamm,
Germany). Glass tubes of the examined formulation (equivalent to 5 mg BRU) covered with
cellophane membrane (MWCO 2000–15,000) from one end were placed into 750 mL PBS
7.4 kept at 37 ± 0.5 ◦C and. The apparatus rotated at 50 rpm and samples were withdrawn
at definite time intervals up to 12 h and analyzed at λmax 264 nm.

3.8. Cell Line

Melanoma cancer cells A375 were attained from American Type Culture Collection,
(ATCC, Manassas, VA, USA). A375 cells were cultured in RBMI medium, supplemented
with 10% heat- inactive (FBS) and augmented with 1% penicillin, 1% streptomycin and
4 mmol/L L-glutamine, using CO2 and incubated at 37 ◦C.
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3.9. In-Vitro Cytotoxicity

The cytotoxic activity of BRU in all formulations including free BRU, the optimized
ethosomal formulation and blank ethosome was examined on A375 cell lines by MTT
assay [57]. Primarily, 3000 cells per well were seeded in to a 96-well plate and treated with
fixed concentrations of BRU free drug, blank ethosome, BRU loaded gel and optimized BRU
loaded ethosomal gel for 48 h. Afterward, MTT dye was added to check the cytotoxicity in
each well in the and incubated for 4 h. The supernatant was detached, followed by adding
DMSO to each well and were shaken for 10 min, then the absorbance was estimated at
570 nm [58].

3.10. Statistics

All experimental data were confirmed as mean ± SD related to three independent
experiments at least. Data were compared to each other and statistically calculated using
A one-way analysis of variance (ANOVA) was utilized to compare data from each other
through SPSS statistics software, version 9 (IBM Corporation, Armonk, NY, USA). If p <
0.05, the difference would be verified as statistically significant.

4. Conclusions

In the current study, BRU loaded into optimized ethosomal formulation was well de-
signed using response surface methodology and incorporated in to an HPMC gel base. The
developed BRU loaded ethosomal gel demonstrated suitable vesicular size in nano scale
with adequate physical characteristics, appropriate encapsulation efficiency accompanied
with optimum flux. The in-vitro release of BRU was greatly affected when embedded in to
ethosomal gel. Further, the flux through rat skin was significantly enhanced when being in
ethosomal form. These findings revealed that the newly fabricated ethosomal gel could
be a better alternative to conventional gel when supplied via the transdermal application.
In addition, ethosome could be considered as a probable therapy for skin cancer, which
would be further proved using in-vivo investigations to emphasize the efficiency of these
preparations.
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