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Abstract: The visible and near-infrared (Vis-NIR) reflectance spectroscopy was utilized for the rapid
and nondestructive discrimination of edible oil adulteration. In total, 110 samples of sesame oil and
rapeseed oil adulterated with soybean oil in different levels were produced to obtain the reflectance
spectra of 350–2500 nm. A set of multivariant methods was applied to identify adulteration types
and adulteration rates. In the qualitative analysis of adulteration type, the support vector machine
(SVM) method yielded high overall accuracy with multiple spectra pretreatments. In the quantitative
analysis of adulteration rate, the random forest (RF) combined with multivariate scattering correction
(MSC) achieved the highest identification accuracy of adulteration rate with the full wavelengths
of Vis-NIR spectra. The effective wavelengths of the Vis-NIR spectra were screened to improve
the robustness of the multivariant methods. The analysis results suggested that the competitive
adaptive reweighted sampling (CARS) was helpful for removing the redundant information from
the spectral data and improving the prediction accuracy. The PLSR + MSC + CARS model achieved
the best prediction performance in the two adulteration cases of sesame oil and rapeseed oil. The
coefficient of determination (R2

Pcv
) and the root mean square error (RMSEPcv ) of the prediction set

were 0.99656 and 0.01832 in sesame oil adulterated with soybean oil, and the R2
Pcv

and RMSEPcv

were 0.99675 and 0.01685 in rapeseed oil adulterated with soybean oil, respectively. The Vis-NIR
reflectance spectroscopy with the assistance of multivariant analysis can effectively discriminate the
different adulteration rates of edible oils.

Keywords: oil adulteration; Vis-NIR; reflectance spectroscopy; multivariate analysis; CARS

1. Introduction

Edible oils are rich in essential nutrients for human beings and thus are some of the
most common cooking ingredients in our daily lives [1]. However, different kinds of oils
have different compositions and contents of substances that are beneficial to human health.
For example, rapeseed oil contains more tocopherols [2], and sesame oil is rich in linoleic
acid, oleic acid, and linolenic acid [3]. Fish oil is rich in essential fatty acids, particularly
the omega-3 polyunsaturated fatty acids (n-3 PUFA) [4]. Because the price of edible oil is
highly dependent on its nutritional content, some high-value-added oils are frequently
subjected to adulteration with low-quality oils in the production process to obtain undue
commercial profits [3,5]. In addition, in some cases, some edible oils are even contaminated
by gutter oil from kitchen waste or industrial oil [6]. The unqualified oil not only harms the
economic interests of consumers but also poses an invisible threat to human health [7,8].
The adulteration of edible oil is prone to occur in the production process and has become
a serious worldwide public health problem [9]. Ensuring the quality and safety of edible
oil is a major challenge in food inspection. Hence, it is essential to develop effective and
convenient methods to identify the adulteration of edible oils.
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Although edible oils have obvious characteristics, such as odor and color, which
can be used in preliminary artificial discriminations, the judgments are too subjective and
susceptiblebased on these natural characteristics. Some researchers developed sensors to
accurately sense the external characteristics of oils. For example, the electronic tongue was
developed to qualitatively detect adulteration based on tasting fingerprints [10,11]. However,
the mechanical structure of the sensor is complex, and passivation occurs after long-term
use. In addition to the sensor problems, the discrimination methods of oil quality are
divided into two main research directions. In the first stream, chemical methods, such
as gas chromatography (GC) [12] and inductively coupled plasma mass spectrometry
(ICP-MS) [13], usually determine the quality of oil through specific trace component
detection. The GC and ICP-MS have been successfully applied to detect polycyclic aromatic
hydrocarbons, phthalate esters, and alkylphenols in edible vegetable oils [14] and trace
elements (e.g., Cu, Ge, Mn etc.) [15]. In addition, chemical methods are standard tests with
high accuracy and sensitivity. However, they always require complex pretreatments and
professional operations and are not suitable for quick discrimination. The development
of optical detection technology has led to the second stream of research. Researchers use
spectroscopic methods such as near-infrared spectroscopy (NIR) to identify different oil
types. The NIR can obtain molecular vibration and rotation information by collecting
the absorption spectrum of the target. It is a nondestructive testing method that does
not consume chemical reagents. In view of these advantages, the NIR has been used to
identify adulterated Camellia oleifera [16], identify hogwash oil in blended oil, and classify
nontransgenic and transgenic oil samples [17]. Nevertheless, the NIR spectrum is limited
to the near-infrared band and lacks some key features of other wavebands [18].

The visible and near-infrared (Vis-NIR) reflectance spectrum is generated by the
absorption of radiation, which causes the molecular vibration from the ground state to a
higher internal energy level. Therefore, it reflects the internal and external features of the
objects. In previous studies, the Vis-NIR reflectance spectroscopy has been used to develop
a hybrid proximal sensing method to quickly identify oil-contaminated soil [19] and
measure the spectral characteristics of winter wheat canopy [20]. The Vis-NIR reflectance
spectroscopy can obtain abundant feature information yet requires simple pretreatment and
easy operation and thus exhibits great potential for the rapid identification of adulterated
oils. However, olive oil is the main research object for adulteration identification in previous
studies. Studies on the adulteration of sesame oil, soybean oil, and rapeseed oil widely
consumed in developing countries are still lacking. A systematic solution has not yet been
formed because of the lack of multivariate data preprocessing and modeling methods for
edible oil adulteration research.

In this study, we presented a nondestructive and effective method for identifying
the adulteration of edible oil using Vis-NIR reflectance spectroscopy. The experimental
workflow of oil adulteration detection is shown in Figure 1. A spectroradiometer system
was established to collect the Vis-NIR reflectance spectra of adulterated oil samples. The
three most commonly consumed edible oils (i.e., soybean oil, sesame oil, and rapeseed
oil) were selected as the analysis objects. Multivariant analysis methods, such as partial
least squares regression (PLSR) [21], support vector machine (SVM) [22], random forest
(RF) [23], and K-nearest neighbor (KNN) [24] were applied for qualitatively determining the
adulteration types in oil samples. Beyond the qualitative analysis, the partial least squares
regression (PLSR), support vector regression (SVR) [25], and random forest (RF) were used
for accurate quantitative analysis to determine the adulteration rates of oil samples. Four
pretreatment methods, including standard normal variables (SNV), multivariate scattering
correction (MSC), Savitzky-Golay (SG) smoothing, and wavelet transform (WT) were used
to process the raw Vis-NIR spectra data. In order to establish an efficient and simplified
practical model, the outcomes of four effective wavelength selection algorithms, such as
principal component analysis (PCA), variable importance in projection (VIP), successive
projections algorithm (SPA), and competitive adaptive reweighted sampling (CARS), were
compared and evaluated in this paper.
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Figure 1. Schematic of measurement of Vis-NIR reflectance spectroscopy.

2. Materials and Methods
2.1. Preparation of Experimental Samples

In order to obtain pure samples of rapeseed oil, sesame oil, and soybean oil, the
rapeseed seed (Yangguang 198), sesame seed (Xinyuzhi 10), and soybean (Wandou 33)
were processed with an oil press. The soybean oil was taken as the adulterated oil to
blend with sesame oil and rapeseed oil, respectively. The doping ratios were set as 0%,
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. The 0% represented the
pure soybean oil, and the 100% represented the pure sesame oil or rapeseed oil. In our
experiment, five groups of adulterated samples were generated to ensure the independence
of the oil samples. Each group included nine adulterated sesame oils, nine adulterated
rapeseed oils, and four pure oils (one sesame oil, one rapeseed oil and two soybean oils for
different adulteration experiments). Therefore, there were a total of 110 oil samples for the
adulteration experiments of sesame oil and rapeseed oil.

2.2. The Measurement of Reflectance Spectra

In order to obtain the Vis-NIR reflectance spectra, a simple spectrum measurement
platform was constructed. The platform was mainly composed by a black box, four
halogen lamps (75w), an automatic lifting sample system, a PSR-3500 portable spectrora-
diometer, spectrum acquisition software, and so on, as shown in Figure 1. The portable
spectroradiometer can continuously acquire reflection spectrum of objects in the range of
350–2500 nm with 1 nm resolution. The spectral acquisition experiments were conducted
in the black box to avoid the interference of external light. The oil samples were placed
on the automatic lifting platform with a PVC white board. The height of the lens from the
top surface of oil sample was adjusted to 3 cm. The reflectance spectra of the empty glass
beaker and white board were measured before spectral acquisition experiments of the oil
samples to calibrate the spectrometer [26]. Finally, a total of 110 Vis-NIR reflectance spectra
were obtained for multivariate analysis.

2.3. Preprocessing of Reflectance Spectra

The SNV, MSC, SG smoothing, and WT are commonly used to remove the negative
effect of various spectra data [27]. The SNV method is used to correct the spectral difference
caused by particle scattering among different experimental samples. Similar to the SNV,
MSC is a technique for eliminating the influence of scattering caused by the particle size,
density, and uniformity of the distribution of samples [28,29]. SG smoothing adopts a
fix-size time domain window moving full wavelength to smooth the noise as much as
possible without compromising the original spectrum [30]. WT is a method for local signal
analysis in both time domain and frequency domain. It can locate useful information in
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huge signal data and conduct accurate time-domain and frequency-domain analysis [31]. In
addition, the origin spectra were also applied for a comparative analysis. In this paper, we
conducted a systematic comparison to evaluate the effectiveness of the four pretreatment
methods in the application of Vis-NIR reflectance spectroscopy.

2.4. Selection of Effective Wavelengths of Reflectance Spectra

In order to eliminate redundant information and simplify the prediction models, the
PCA, VIP, SPA, and CARS were adopted to select the effective wavelengths [32]. PCA is a
classical method for dimension reduction. The top loading vectors in PCA represent the
importance of different features. The wavelengths with larger absolute values in loading
vectors possess most of the characteristic information of the original spectra. VIP is a
variable selection method for ranking different individual wavelengths. It evaluates the
correlation between each individual wavelength and its response variable using a cutoff
criterion to segment relevant/irrelevant variables [33]. SPA measures the importance of
each variable by comparing the normal prediction error of the same variable with the
distribution of the displacement prediction error [34]. CARS uses the adaptive reweighted
sampling technique to select the wavelengths with larger absolute value of regression
coefficient in a partial least square model [35]. Then, a 10-fold cross-validation was used
to select a subset of wavelengths with the lowest root mean square error as the optimal
feature set.

2.5. Adulteration Types and Adulteration Rate Prediction Models

To identify the different adulteration types of oil samples, the SVM, RF, and KNN
methods were employed to build the classification models, respectively. SVM maps
spectral data into high-dimensional space by using kernel function and seeks for the
optimal hyperplane to separate samples. RF is a classifier with multiple-decision trees to
classify samples and assess the importance of variables. KNN is a classifier insensitive to
outliers that can classify by measuring the distance between different feature values. KNN
predicts new sample according to its K-nearest neighbors.

In addition, three regression models including PLSR, SVR, and RF were adopted to
predict the oil adulteration rate, which was a very important quantitative indicator for oil
quality inspection. PLSR is a commonly used multivariate analysis method in the Vis-NIR
spectrum analysis, which constructs a regression model of multiple dependent variables
against multiple independent variables. SVR was developed based on the structural risk
minimization principle. It is suitable for the analysis of high-dimensional spectral data
with a small sample set. RF can be used for regression modeling, and the predicted value
in RF regression model is the average output of each decision tree. RF can reduce the risk
of overfitting by the process of averaging decision trees. Therefore, it is commonly applied
for the modeling and analysis of various spectral data.

2.6. Performance Evaluation

In the analysis of the adulteration type, the performance of prediction model was
evaluated by accuracy (ACC), defined as Equation (1). The closer ACC is to 1, the better
performance the evaluated model is. In this paper, the ACC of the calibration set is
represented as ACCC, and the ACC of the prediction set is represented as ACCP.

ACC =
mk
n

(1)

where mk is the number of correctly predicted samples and n is the total number of samples.
For the quantitative analysis of adulteration rate, the performance of the regression

model was evaluated by the coefficient of determination (R2) and root mean square error
(RMSE). In the calibration set, the R2 and RMSE were represented as R2

C and RMSEC,
respectively, and R2

P and RMSEP for the prediction set. The value of R2 is between 0 and
1, reflecting the relative degree of regression contribution. The closer R2 is to 1, the better
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the model is. RMSE evaluates the deviation of the predicted value from the measured
value. A smaller RMSE represents a better model performance. The formulas of the R2

and RMSE are shown in Equations (2) and (3).

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1 (yi − ȳ)2 (2)

RMSE =

√
∑n

i=1(yi − ŷi)2

n
(3)

where n is the number of the samples, yi is the measured value of the ith sample, ŷi is the
predicted value of the ith sample, and y is the average value of all the yi.

Furthermore, a 10-fold cross validation was applied to evaluate the robustness and
generalization of predictive models. In this paper, the spectral data were randomly divided
into ten partitions with equal size. Nine of the ten partitions were combined as the
training data (calibration set), and the remaining one partition was used as validation data
(prediction set). The crossvalidation procedure was repeated 10 times with each of the
10 partitions used exactly once as the validation data. The 10-fold crossvalidation of the
Vis-NIR spectra analysis was shown in Figure 2. The final results were the average of the
10 times estimation.
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Figure 2. 10-fold crossvalidation of the Vis-NIR spectra analysis.

3. Results and Discussion
3.1. The Vis-NIR Reflectance Spectra of the Adulteration Oil Samples

The Vis-NIR reflectance spectra of the 110 adulterated oil samples were shown in
Figure 3a. First, the overview of all the spectra highlighted two main aspects. The re-
flectivity in visible band is relatively lower than that of the most near-infrared band
(780–1700 nm). Moreover, the reflectivity performed significant differences in partial visible
band (380–700 nm). By contrast, the significant differences of the spectra mainly concen-
trated on some peaks in whole near-infrared band. The reflectance spectra of all oil samples
coincided in the range of 1700–2500 nm with no special peaks or troughs. To investigate
the inherent spectral characteristics of different oils, the spectra of the three pure oils were
extracted and shown in Figure 3b. The spectra were similar in fluctuation trends but with
different amplitudes in the Vis-NIR band, which was the critical characteristic that helped
to inspect the composition of different oils. The largest amplitude difference located in
visible band between 400 and 700 nm. The spectrum of sesame oil increased slowly, while
the spectrum of soybean oil had a broad absorption peak, and the spectrum of rapeseed oil
had two relatively narrow absorption peaks in this visible range. The reflectance spectra of
sesame oils in different adulteration rates were shown in Figure 3c. The reflectivity was
the main difference for the spectra in the range of 720–1700 nm. The reflectivity increased
as the soybean oil doping ratio increased. Figure 3d presented the spectra of rapeseed oil
adulterated with soybean oil in different proportions. With the increase in the adulteration
rate of soybean oil, the reflectivity increased, and the spectral shape approached that of
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soybean oil. These spectral features preliminarily demonstrated that the Vis-NIR reflectance
spectroscopy is feasible for oil adulteration.
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Figure 3. The Vis-NIR reflectance spectra of the adulterated oils and pure oils. (a) The overview of
all the spectra; (b) spectra of pure sesame oil, rapeseed oil, and soybean oil; (c) spectra of sesame
oil adulterated with soybean oil in different ratios; and (d) spectra of rapeseed oil adulterated with
soybean oil in different ratios.

3.2. Qualitative Analysis of Vis-NIR Spectra to Identify Oil Adulteration Type

In our study, the experimental samples were divided into seven classes, i.e., pure
sesame oil (100%), low-adulterated sesame oil (60% ≤ ratio ≤ 90%), high-adulterated
sesame oil (10% ≤ ratio ≤ 40%), pure soybean oil (0%), high-adulterated rapeseed oil
(10% ≤ ratio ≤ 40%), low-adulterated rapeseed oil (60% ≤ ratio ≤ 90%), and pure rapeseed
oil (100%). Due to the adulteration rate of 50% being rare in practice, the samples with
adulteration rate of 50% were excluded from the experiment of qualitative analysis. In
order to eliminate the external interference and noise, four pretreatment methods were
used to preprocess the spectral data. The SVM, RF, and KNN were adopted to construct
the prediction models for identifying an oil adulteration type based on the spectral data.
The 10-fold crossvalidation was conducted to the each of the models, and the average
prediction results were shown in Table 1. The SVM and RF achieved the accuracy of
100% with all the pretreatment methods in the calibration set. To be specific, the SVM
model with SNV and MSC pretreatment methods also achieved the average accuracy of
100% in the prediction set. Compared with SVM and RF, KNN failed to obtain desirable
prediction results in both the calibration set and prediction set. The poor accuracy in
the prediction set further indicated that KNN method was apt to overfit in the Vis-NIR
reflectance spectrum. Therefore, the KNN method was not recommended to identify the
oil adulteration types. On the whole, the SVM method outperformed the other methods.
Of note, the SNV and MSC pretreatment methods had the best performance in each of the
three classification methods. Thus, the SNV and MSC pretreatments were recommended
to identify oil adulteration types.
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Table 1. The prediction accuracy of oil adulteration types in different models.

Model Pretreatment ACCCcv ACCPcv

SVM

RAW 1.00000 0.97895
SNV 1.00000 1.00000
MSC 1.00000 1.00000
SG 1.00000 0.98947
WT 1.00000 0.99474

RF

RAW 1.00000 0.97368
SNV 1.00000 0.99474
MSC 1.00000 0.99474
SG 1.00000 0.99474
WT 1.00000 0.99474

KNN

RAW 0.95556 0.81579
SNV 0.99766 0.98947
MSC 0.99766 0.98947
SG 0.84971 0.66316
WT 0.96491 0.84737

To further evaluate the performance of the model (SVM + SNV/MSC) in independent
samples, six pure oils including two brands of sesame oil, two brands of rapeseed oil, and
two brands of soybean oil were collected from the local Walmart stores for experiments.
The Vis-NIR reflectance spectra were measured on the platform as described in Section 2.2.
The constructed model (SVM + SNV) was chosen for the qualitative analysis of the six
samples. All six samples were correctly classified to their categories based on the SVM +
SNV model. The experimental results demonstrated that the presented model had good
robustness for independent samples. Compared with the chromatography method [36],
the Vis-NIR reflectance spectroscopy is a fast and nondestructive method for detecting oil
adulteration with 100% identification accuracy, while the chromatography method relies
on a series of chemical steps and skilled analytical technicians.

3.3. Quantitative Analysis with Full Wavelengths of Vis-NIR Spectra

The reflectance spectra were used to construct the PLSR, SVR, and RF regression mod-
els to determine the accurate adulteration rates of sesame oil and rapeseed oil. For accurate
quantitative analysis, the adulteration rates of sesame oil and rapeseed oil were analyzed
separately in our experiments. Similar to the identification of the adulteration type, the four
pretreatment methods and raw spectra were applied to compare the prediction accuracy
of the adulteration rates. The prediction result of each model was the average prediction
results of 10-fold crossvalidation.

In the study of sesame oil adulterated with soybean oil, the Vis-NIR spectra were
analyzed by the PLSR, SVR, and RF methods combined with different pretreatments.
Table 2 showed the average prediction results based on 10-fold crossvalidation. The
optimal result in PLSR method was obtained with WT pretreatment (R2

Pcv
= 0.97282,

RMSEPcv = 0.05116). The RF model achieved its optimal performance using the MSC
pretreatment (R2

Pcv
= 0.99567, RMSEPcv = 0.01976). While the SVR achieved its optimal

performance using the MSC pretreatment (R2
Pcv

= 0.98209, RMSEPcv = 0.04083). All three
regression methods with different pretreatments can achieve high prediction performance.
The results proved that the Vis-NIR spectra had enormous potential for discriminating
the adulteration of oils with high robustness in different prediction models. Overall, the
RF model with the MSC pretreatment had the best performance in predicting sesame oil
adulterated with soybean oil. The detailed results of the RF model with the MSC pretreat-
ment are shown in Figure 4a. The red points represent the samples in calibration set, and
blue points represent the samples in prediction set. The dispersion of the blue points in
each adulteration rate was larger than the corresponding red points. The boxplots in two
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sides (red boxplots and blue boxplots) of each adulteration rate indicated the statistical
characteristics of the prediction results. The horizontal lines at the bottom and roof of the
boxplots represented the values of lower quartile and upper quartile of the data distribu-
tion, respectively. The horizontal lines in the middle of the boxplots were the median value
of the data distribution. There were some data points beyond the overall boxplot being
regarded as the outliers in the experiments.
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Figure 4. Prediction results of full and effective wavelengths. (a) The predation results of sesame oil adulterated with
soybean oil using RF and MSC pretreatment in the calibration set and prediction set; (b) the predation results of rapeseed
oil adulterated with soybean oil using RF and MSC pretreatment in the calibration set and prediction set; (c) the prediction
results of sesame oil adulterated with soybean oil using the model of PLSR + MSC + CARS in the calibration set and predic-
tion set; and (d) the prediction results of rapeseed oil adulterated with soybean oil using the model of PLSR + MSC + CARS
in the calibration set and prediction set.

In the study of rapeseed oil adulterated with soybean oil, we adopted the same
analysis procedure as the sesame oil adulteration case. The analysis results were shown in
Table 3. The PLSR method achieved its optimal prediction accuracy using SNV pretreatment
(R2

Pcv
= 0.99019, RMSEPcv = 0.02902). The SVR method achieved its optimal performance

using the SNV pretreatment (R2
Pcv

= 0.9882, RMSEPcv = 0.03281). The RF method combined
with the MSC pretreatment achieved the best prediction performance among the three
methods (R2

Pcv
= 0.9929, RMSEPcv = 0.02504), which was consistent with the result of the
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sesame oil adulteration case. It demonstrated that the RF method combined with MSC
pretreatment was a robust model for identifying adulteration rates of sesame oil and
rapeseed oil. The corresponding prediction results of the calibration set and prediction set
were shown in Figure 4b. On the whole, the experiment results proved that the Vis-NIR
reflectance spectroscopy can achieve accurate prediction and provided a new method for
the quantitative detection of oil adulteration rates. In addition, the high-accuracy prediction
results were mainly located at both ends (adulteration rate ≤ 0.2 or adulteration rate ≥ 0.8),
which demonstrated that the Vis-NIR reflectance spectroscopy was more sensitive to pure
edible oil. The identification ability of pure oil is exactly in line with the main demands of
pure oil identification in practice.

Table 2. Prediction results of sesame oil adulterated with soybean oil using full wavelengths.

Model Pretreatment R2
Ccv

RMSECcv R2
Pcv

RMSEPcv

PLSR

RAW 0.99945 0.01058 0.96727 0.05285
SNV 0.99923 0.01201 0.97667 0.04597
MSC 0.99919 0.01212 0.97721 0.04560
SG 0.99999 0.00144 0.97126 0.05197
WT 1.00000 0.00067 0.97282 0.05116

RF

RAW 0.99879 0.01099 0.99201 0.02673
SNV 0.99921 0.00885 0.99531 0.02030
MSC 0.99922 0.00882 0.99567 0.01976
SG 0.99540 0.02142 0.97058 0.05306
WT 0.99807 0.01388 0.98824 0.03380

SVR

RAW 0.99274 0.02694 0.96790 0.05265
SNV 0.99330 0.02588 0.98178 0.04114
MSC 0.99331 0.02585 0.98209 0.04083
SG 0.99268 0.02706 0.96829 0.05473
WT 0.99193 0.02840 0.96695 0.05647

Table 3. Prediction results of rapeseed oil adulterated with soybean oil using full wavelengths.

Model Pretreatment R2
Ccv

RMSECcv R2
Pcv

RMSEPcv

PLSR

RAW 0.99965 0.00873 0.98420 0.03775
SNV 0.99955 0.00948 0.99019 0.02902
MSC 0.99953 0.00958 0.99008 0.02919
SG 1.00000 0.00076 0.98258 0.04026
WT 1.00000 0.00036 0.98210 0.04097

RF

RAW 0.99896 0.01018 0.99353 0.02454
SNV 0.99891 0.01038 0.99277 0.02533
MSC 0.99894 0.01024 0.9929 0.02504
SG 0.99871 0.01133 0.99124 0.02862
WT 0.99890 0.01044 0.99390 0.02372

SVR

RAW 0.99235 0.02766 0.97932 0.04443
SNV 0.99415 0.02418 0.98820 0.03281
MSC 0.99410 0.02429 0.98814 0.03293
SG 0.99289 0.02667 0.97625 0.04716
WT 0.99237 0.02763 0.97201 0.05162

3.4. Quantitative Analysis with Effective Wavelengths of Vis-NIR Spectra

In this section, we intend to evaluate whether effective wavelengths could help to
promote the prediction accuracy of adulteration rates. The full wavelengths of the Vis-
NIR reflectance spectra inevitably comprised the irrelevant features. Extracting optimal



Biosensors 2021, 11, 492 10 of 16

wavelengths can remove the influence of noncritical factors and reduce the complexity of
prediction models. Furthermore, a simplified model can contribute to the downstream
analysis of oil quality detection. Therefore, four effective spectral selection algorithms (i.e.,
PCA, SPA, VIP, and CARS) were applied to extract the effective wavelengths. The obtained
effective wavelengths were then applied to the PLSR, RF, and SVR regression models.
Similarly, the 10-fold crossvalidation was adopted to calculate the average prediction result
of each model. Table 4 presented the optimal prediction results of each spectral selection
algorithm in the two adulteration cases.

Table 4. Prediction results obtained by the better model using effective wavelengths.

Adulteration Type Method Pretreatment Spectral Selection Number R2
Ccv

RMSECcv R2
Pcv

RMSEPcv

Sesame oil
adulterated with
soybean oil

RF SNV PCA 83 0.99881 0.01091 0.99275 0.02470
PLSR SNV SPA 97 0.99621 0.02107 0.94951 0.06516

RF SNV VIP 90 0.99896 0.01014 0.99377 0.02364
PLSR MSC CARS 94 0.99911 0.01022 0.99656 0.01832

Rapeseed oil
adulterated with
soybean oil

RF RAW PCA 98 0.99836 0.01280 0.99047 0.03050
RF RAW SPA 81 0.98602 0.03730 0.92778 0.08287
RF RAW VIP 90 0.99938 0.00789 0.99587 0.01913

PLSR MSC CARS 144 0.99914 0.00991 0.99675 0.01685

In the experiments of sesame oil adulterated with soybean oil, the numbers of effec-
tive wavelengths extracted by four effective spectral selection algorithms were 83 (PCA),
97 (SPA), 90 (VIP), and 94 (CARS), as seen in Table S1. The PLSR and RF were the op-
timal methods for the prediction of the adulteration rate of sesame oil, while the SVR
did not achieve the optimal performance in any of the experiments with four spectral
selection algorithms. The best performance was achieved by the model of PLSR with MSC
pretreatment using the effective wavelengths screened by CARS. The R2

Pcv
and RMSEPcv

were 0.99656 and 0.01832, respectively. Figure 4c showed the scatter plots and boxplots
of the prediction results in the best model (PLSR + MSC + CARS) for sesame oil adul-
terated with soybean oil. One of the important features was that the outliers in effective
wavelength experiment were much less than in the full wavelength experiment (as shown
in Figure 4a,c). It performed a slight improvement to the best model of RF with MSC
using full wavelengths (R2

Pcv
= 0.99567 and RMSEPcv = 0.01976). This represented that

CARS was useful for removing interference and redundant information from the spectral
data. In the experiments of rapeseed oil adulterated with soybean oil, the numbers of
effective wavelengths were 98 (PCA), 81 (SPA), 90 (VIP), and 144 (CARS), as seen in Table
S2. The RF achieved the optimal performance with three effective wavelength selection
algorithms. While the PLSR combined with MSC, the pretreatment achieved the best pre-
diction accuracy (R2

Pcv
= 0.99675 and RMSEPcv = 0.01685) using the effective wavelengths

screened by CARS, which was also better than the best model of RF with MSC pretreatment
using full wavelengths (R2

Pcv
= 0.9929 and RMSEPcv = 0.02504). More concretely, it was

consistent with the best prediction model for sesame oil adulterated with soybean oil.
Figure 4d showed the detail information of the prediction results in the best prediction
model (PLSR + MSC + CARS) of rapeseed oil adulterated with soybean oil.

On the whole, the experiment results demonstrated that the effective wavelengths
were beneficial for accurately predicting the adulteration rates of edible oils. The model
of PLSR with MSC pretreatment was the best model which achieved the highest accuracy
with CARS algorithm in both cases of sesame oil adulteration and rapeseed oil adulteration.
It showed good versatility and robustness. The triple pattern (PLSR + MSC + CARS) was
the recommended model for predicting the adulteration rates of sesame oil and rapeseed
oil. Based on the extracted effective wavelengths, the complexity of prediction model
was significantly reduced with the very limited effective wavelengths. In general, the
experiment results demonstrated the feasibility and effectiveness of the CARS effective
wavelength selection algorithm and highlighted the necessity of eliminating redundant
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data of the spectra. Therefore, we further investigated the distribution and characteristics
of the screened effective wavelengths.

3.5. Analysis of the Distribution and Characteristics of the Screened Effective Wavelengths

The overlap of the effective wavelengths is an important indicator to compare different
spectral selection algorithms. In the experiments, the numbers of the effective wavelengths
extracted by the four spectral selection algorithms were approximate equilibrium, as shown
in Table 4. However, the intersection of the four groups of effective wavelengths was very
rare in both of the adulteration cases, as shown in Figure 5. The Venn diagrams represent
the exact number of intersections between the pairs of the effective spectral selection
algorithms. The patterns of the two adulteration cases were very consistent. The effective
wavelengths extracted by different spectral selection algorithms were significantly different.
The effective wavelengths based on PCA had almost no overlap with other algorithms.
The CARS had very few intersections with VIP and SPA. It indicated that each spectral
selection algorithm had its own specific characteristics. Therefore, it should be careful to
select the effective spectral selection algorithm for improving the accuracy of the prediction
model in edible oil adulteration analysis.

Figure 5. The intersections of the effective wavelengths from the PCA, SPA, VIP, and CARS effective
spectral selection algorithms. (a) The intersections of the effective wavelengths for the optimal models
in sesame oil adulterated with soybean oil. (b) The intersections of the effective wavelengths for the
optimal models in rapeseed oil adulterated with soybean oil.

Then, the distribution of the selected effective wavelengths in the whole spectra
was analyzed, as shown in Figure 6. In general, there was a similar pattern in the case
of sesame oil adulterated with soybean oil (Figure 6a) and in the case of rapeseed oil
adulterated with soybean oil (Figure 6b). PCA picked out a series of wavelengths spread
over the whole band. The PCA identified the effective wavelengths with the larger values
in loading vectors which represented that the selected wavelengths contributed to the
variance of the original spectral data. However, the wavelengths with large variance of
reflectivity may not correlate with adulteration rates. VIP only selected the highly consistent
continuous wavelengths in a visible band in two kinds of adulteration experiments. The
prediction results were not stable, based on the effective wavelengths screened by VIP,
which indicated that the only visible band was not competent to obtain the high-quality
prediction results. Obviously, the small piece of continuous wavelengths in visible band
cannot represent the most characteristic information of the whole spectrum. Therefore,
the VIP is not recommended for selecting effective wavelengths of Vis-NIR spectrum of
edible oils. The SPA was inclined to select the wavelengths at the both ends of the Vis-
NIR spectrum, which ignored the information around the important peaks and troughs
in NIR band. Most of the effective wavelengths screened by SPA were in the range of
1800–2300 nm. The tiny oscillations in the range of 1700–2500 nm (as shown in Figure 3a)
could introduce lots of noise to the prediction model. By contrast, CARS screened the
effective wavelengths at some discrete positions in the whole spectrum. For example,
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some effective wavelengths screened by CARS were located at the steepness of the Vis-NIR
waveform. The wavelengths at the steepness of the Vis-NIR waveform could be critical
features reflecting the adulteration rate of edible oil.

Wavelength (nm) Wavelength (nm)
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R
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ct
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ce

（a） （b）

Figure 6. Effective wavelengths selected by PCA, SPA, VIP, and CARS for the best prediction model (PLSR + MSC + CARS).
(a) Effective wavelengths in sesame oil adulterated with soybean, (b) Effective wavelengths in rapeseed oil adulterated with
soybean. The red vertical line corresponds to the effective wavelengths selected by SPA; the green vertical line corresponds
to the effective wavelengths selected by VIP; and the black vertical line corresponds to the effective wavelengths selected by
PCA. The spectrum of rapeseed oil was chosen as the background reference.

In order to investigate the contribution of individual effective wavelength on adulter-
ation rate, Pearson correlation coefficient (PCC) was employed for evaluating the associa-
tion relationship between the adulteration rate and the reflectivity in individual wavelength.
Based on the best model of the sesame oil adulterated with soybean oil, two representative
effective wavelengths (546 and 1751 nm in visible and NIR bands, respectively) were
selected for analysis. Figure 7a showed that the reflectivity was significantly correlated
with the adulteration rate at a wavelength of 546 nm in the visible band (PCC = −0.98),
while there was a significant positive correlation between reflectivity and adulteration
rate at wavelength of 1751 nm in NIR band (PCC = 0.95), as shown in Figure 7b. In the
experiments of rapeseed oil adulterated with soybean oil, the two representative effective
wavelengths (539 and 1161 nm screened by CARS) were chosen from the best prediction
model. Figure 7c reflected that the reflectivity were significantly negative correlated with
adulteration rates at the wavelength of 539 nm in visible band (PCC = −0.97), and Figure 7d
reflected that there was a positive correlation between the reflectivity and the adulteration
rates at the wavelength of 1161 nm in NIR band (PCC = −0.81). It was consistent with
the experiment of sesame oil adulterated with soybean oil. The results indicated that the
soybean oil had strong reflectivity in the visible band. Actually, the sesame oil and rapeseed
oil showed darker physical colors than soybean oil in the visible band. Nevertheless, the
sesame oil and rapeseed oil performed a strong reflection effect in the NIR band. The
analysis demonstrated that CARS was reliable to select the effective wavelengths in the
Vis-NIR reflectance spectrum.
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Figure 7. The correlation analysis of the adulteration rates and the reflectance of individual wavelength. The scatter plot
of the adulteration rates and the reflectance at the wavelength 546 nm (a) and 1751 nm (b) in sesame oil adulterated with
soybean oil, respectively. The scatter plot of the adulteration rates and the reflectance at the wavelength 539 nm (c) and
1161 nm (d) in rapeseed oil adulterated with soybean oil, respectively. (The PCC and the p-value of the corresponding
significance testing were provided in each of the figures. The red dots are the oil samples, and the blue line is the fitting line
of data points in each of the figures).

4. Conclusions

This study evaluated the reliability and feasibility of Vis-NIR reflectance spectroscopy
for the rapid and nondestructive discrimination of edible oil adulteration. A Vis-NIR
spectroradiometer system was constructed to obtain the reflectance spectra of the sesame
oil adulterated with soybean oil and the rapeseed oil adulterated with soybean oil. Four
commonly used methods (SNV, MSC, SG smoothing, and WT) were applied to evaluate
the impact of pretreatments on spectra data. In the qualitative detection experiments, the
accuracy in the prediction set were 100% with the SNV and MSC pretreatments, which
suggested that the SVM was a powerful model for oil adulteration type identification. In
the quantitative prediction experiments of sesame oil adulterated with soybean oil and
rapeseed oil adulterated with soybean oil, the RF method with MSC pretreatment achieved
the best prediction effect on the two groups experiments with full wavelengths. Then,
the PCA, VIP, SPA and CARS methods were applied to extract the characteristic spectra
from the Vis-NIR reflectance spectra. Compared with the prediction performance of full
wavelengths, the prediction performance of effective wavelength was slightly improved.
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According to our results, the model of the triple pattern (PLSR + MSC + CARS) was the
recommended method for predicting the adulteration rate of sesame oil adulterated with
soybean oil and rapeseed oil adulterated with soybean oil. The Vis-NIR spectra of different
edible oils have significantly different amplitudes at a series of characteristic wavelengths.
Therefore, the presented methodology can be applied to the adulteration discrimination of
other kinds of oils. According to the results reported in this paper, a practical and efficient
detection system could be constructed for the fast discrimination of edible oil adulteration
in a wide range of application scenarios. To achieve this goal, a simplified reflectance
measuring instrument can be designed based on the effective wavelengths. Then, the Vis-
NIR spectra data of different edible oils should be measured to retrain the presented model
for the nondestructive discrimination of various edible oils adulteration. The enhancement
of these related technologies is helpful for the popularization and application of the Vis-NIR
spectroradiometer system for oil adulteration detection.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
bios11120492/s1, Table S1: The effective wavelengths screened by CARS in adulteration experiment
of sesame oil and soybean oil, Table S2: The effective wavelengths screened by CARS in adulteration
experiment of rapeseed oil and soybean oil.
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