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Abstract

Background: Whether right and left heart hemodynamics are associated with myocardial injury in the acute respiratory distress

syndrome (ARDS) is not known.

Methods: We performed a retrospective cohort study of subjects who had right heart catheterization within the ALVEOLI trial

and Fluid and Catheter Treatment Trial. Myocardial injury was assessed using a highly sensitive troponin assay (hsTn; Abbot

ARCHITECT). Hemodynamic variables included right atrial pressure, pulmonary artery wedge pressure, cardiac index and

stroke volume, pulmonary vascular resistance, pulmonary arterial compliance, and pulmonary effective arterial elastance. We

performed linear, logistic, and Cox regression to determine the association of hemodynamic variables with myocardial injury and to

determine if hemodynamics mediated the association between myocardial injury and death.

Results: Among 252 ARDS patients, median day 0 troponin was 65.4 (13.8–397.8) ng/L. Lower cardiac index (� �0.23 SE 0.10;

P< 0.001) and stroke volume (� �0.26 SE 0.005; P< 0.001), higher pulmonary vascular resistance (� 0.22 SE 0.11; P< 0.001),

lower pulmonary arterial compliance (� �0.24 SE 0.06; P< 0.001), and higher arterial elastance (� 0.27 SE 0.43; P< 0.001) were

associated with greater myocardial injury in univariable and adjusted models. Changes in stroke volume, cardiac index, pulmonary

arterial compliance, pulmonary vascular resistance, and arterial elastance were all associated with progressive myocardial injury

over three days. hsTn levels were associated with mortality; however, the association was attenuated after adjustment for each of

stroke volume, pulmonary vascular resistance, pulmonary arterial compliance, and arterial elastance.

Conclusion: Pulmonary vascular hemodynamics are associated with myocardial injury in ARDS, while filling pressures are not.

Pulmonary vascular disease may represent a treatable contributor to myocardial injury in ARDS.
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Introduction

The acute respiratory distress syndrome (ARDS) is a
common cause of respiratory failure1 with persistently
high mortality rates and responsible for substantial morbid-
ity in the short and long term.1–3 Novel diagnostic and
therapeutic paradigms are needed to improve patient out-
come.4,5 Investigators have recently identified right heart
failure and pulmonary vascular dysfunction as important

prognostic factors in ARDS,6–12 and there is increasing
interest in treatment approaches to protect the right ven-
tricle in ARDS.10,13–15 Left heart function is also prognostic
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in critically ill patients16; thus, cardiovascular hemo-
dynamics and pulmonary and systemic vascular function
represent useful and novel diagnostic, prognostic, and thera-
peutic factors in ARDS patients. The mechanism of the
association of cardiovascular hemodynamics with outcome
in ARDS is not defined – one possible mechanism could be
increased right and left heart strain leading to myocardial
injury manifested by increased circulating troponin.
Myocardial injury is common in ARDS and associated
with adverse outcome.17,18 Whether right and left heart
hemodynamics are associated with myocardial injury is
not known; optimizing hemodynamics could represent a
treatable manifestation of critical illness to reduce myocar-
dial injury and possibly improve ARDS outcome. To
address these knowledge gaps including the unknown rela-
tionships between myocardial injury, hemodynamics, and
outcome in ARDS, we performed a multi-center retrospect-
ive cohort study of patients with ARDS with pulmonary
artery catheters in place to determine the association of
right and left heart hemodynamics with myocardial injury
assessed with high sensitivity troponin-I (hsTnI), the associ-
ation of trend in hemodynamics with progressive myocar-
dial injury and whether adjusting for hemodynamics
attenuates the association of myocardial injury with out-
come. We hypothesized that pulmonary vascular hemo-
dynamics would be associated with myocardial injury and
that hemodynamics may mediate the relationship between
myocardial injury and outcome in ARDS.

Methods

Patient population

The study cohort included 252 patients from two previously
completed clinical trials in ARDS. The ALVEOLI trial ran-
domized 549 patients with ARDS from 23 centers to a
higher versus lower level of positive end-expiratory pres-
sure.19 The Fluid and Catheter Treatment Trial (FACTT)
randomized 1000 patients with ARDS from 20 intensive
care units (ICUs) to placement of a central venous catheter
or pulmonary artery catheter and to a liberal or conservative
fluid management strategy.20,21 Inclusion criteria for these
trials was similar and included patients with partial pressure
of oxygen to fraction of inspired oxygen ratio below 300,
acute onset of pulmonary infiltrates, and no suspicion for
elevated left atrial pressure or cardiogenic pulmonary
edema. Relevant exclusion criteria included acute myocar-
dial infarction and chronic lung and neuromuscular disease.
Very few patients in FACTT (27 of 1000) had a history of
chronic heart failure, and the ALVEOLI trial did not report
data on chronic heart failure. We obtained data and plasma
from both trials via the NIH Biologic Specimen and
Data Repository Information Coordinating Center
(BioLINCC).22 The cohort for this study included all 252
patients from both trials who were intubated within 24 h of
study entry, who had available plasma on study day 0, and

who had complete hemodynamic and clinical data available
on trial day 0 including right atrial and pulmonary artery
pressure, pulmonary artery wedge pressure (PAWP), and
cardiac index (CI) as well as height and weight to calculate
cardiac output and stroke volume (SV). A comparison of
clinical and demographic data for the cohort studied herein
who had pulmonary artery catheterization compared to
parent study is shown in the Supplemental Table. Included
and excluded patients had similar age, race, sex, Sequential
Organ Failure Assessment (SOFA) score and PaO2/FiO2

ratio. Excluded patients had slightly lower heart rates and
slightly higher rates of vasopressor use. Rates of death and
number of ICU free days and ventilator free days were simi-
lar between patients included in this analysis and those
excluded.

Participants in both trials gave informed consent, and the
participating institutional review boards (IRB) gave their
approval.19–21 For the present study, the Johns Hopkins
IRB approved the study which is a secondary analysis of
data, and specimens available on request from the
BioLINCC and were de-identified, containing no protected
health information.

Laboratory methods

We measured hsTnI from EDTA anticoagulated plasma
using Abbott Laboratories’ ARCHITECT STAT assay.
The limit of detection for this assay was 2 ng/L. For subjects
with hsTnI below this value, the value was set at 1.3 ng/L
(2 ng/L divided by ˇ2) for analysis. Upper limit of normal,
corresponding to the 99th percentile value of a healthy ref-
erence population, was 26 ng/L.23

Study outcomes and covariates

The goal of our study was to determine hemodynamic fac-
tors associated with myocardial injury. The primary end-
point was hsTn concentration. Relevant covariates
included right and left heart filling pressure assessed by
right atrial pressure (RAP) and PAWP, respectively, CI
and SV, pulmonary vascular resistance (PVR) and pulmon-
ary arterial compliance (PAC), systemic vascular resistance
(SVR) and systemic arterial compliance (SAC), and pul-
monary effective arterial elastance (Ea) and systemic effect-
ive arterial elastance (sysEa). Hemodynamics including
filling pressures and SV and cardiac output were measured
by study investigators at the point of care per guidelines
from the clinical trial protocols. PVR was calculated as
(mean PA pressure�PAWP)/CO, while SVR was calculated
as (mean arterial pressure–RAP)/CO. PAC was calculated
as SV/PA pulse pressure,24 while SAC was calculated as SV/
systemic pulse pressure. Ea was calculated as PA systolic
pressure/SV if mean PA pressure was greater than
25mmHg and PA mean pressure/SV if mean PA pressure
was less than 25.25–28 sysEa was calculated as 0.9�systolic
blood pressure/SV. A subset of 109 patients with available
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hemodynamic and biochemical data on trial day 3 was ana-
lyzed based on the trend in hsTnI between day 0 and day 3.
Patients with hsTnI increasing more than 20% between day
0 and day 3 were considered to have progressive myocardial
injury. We performed logistic regression to determine the
association of change in hemodynamics with progressive
myocardial injury. For a final set of analyses, we determined
the association of exposure variable myocardial injury with
outcome variable of in-hospital 60-day mortality adjusting
for hemodynamics to determine whether the association of
myocardial injury and outcome was dependent or independ-
ent of hemodynamics.

Statistical analysis

The dependent outcome variable was hsTnI concentration.
hsTn was non-normal by Shapiro-Wilk test and was log-
transformed. Hemodynamic variables were considered as
independent variables, and univariable and multivariable
linear regressions were performed to identify which hemo-
dynamic parameters were associated with myocardial injury.
Multivariable models were adjusted for factors of a priori
clinical interest including patient age, sex, and SOFA score
on day 0.29 The assumptions of linear regression were ver-
ified by inspection of the residuals versus predicted values
plot and inspection of the residuals for normal distribution
using Q–Q plots We performed univariable and adjusted
logistic regressions to assess the association of change in
hemodynamics with progressive myocardial injury again
adjusting for age, sex, and SOFA score determined a
priori as a surrogate for severity of critical illness. Finally,
we performed Cox Proportional Hazard models of the asso-
ciation of exposure hsTn level with outcome of 60-day
in-hospital mortality adjusting for each hemodynamic par-
ameter to determine whether the inclusion of hemodynamics
attenuated the relationship between myocardial injury and
outcome in ARDS. A two-tailed p-value of less than
0.05 was considered statistically significant. Data were ana-
lyzed with Stata version 14.0 (StataCorp Inc., College
Station, TX).

Results

Patient demographics and clinical characteristics are shown
in Table 1. Median age of 252 eligible ARDS patients was 49
(39–62) years, median SOFA score 9 (6–11), and 37.7%
received vasopressors. Median day 0 troponin was 65.4
(13.8–397.8) ng/L, and 95.6% of patients had detectable
circulating troponin and 29% of the group died within
60 days.

Hemodynamic data are shown in Table 2. Median right
and left heart filling pressures were elevated, with RAP
12mmHg (interquartile range (IQR) 10–15mmHg) and
PAWP 15mmHg (IQR 12–18mmHg). Median CI was ele-
vated to 3.7 L/min/m2 (IQR 3.04–4.7 L/min/m2) consistent
with hyperdynamic circulatory state. Models assessing the

association of hemodynamic parameters with myocardial
injury are shown in Tables 3 and 4. Right and left heart
filling pressures – assessed via RAP or central venous pres-
sure and PAWP – were not associated with hsTn, whereas

Table 1. Demographics and clinical characteristics for 252 ARDS

patients.

Age (yr) 49 (39–62)

Male sex, n (%) 134 (53.2)

Caucasian race, n (%) 165 (65.5)

Body surface area (m2) 1.9 (1.7–2.1)

Tidal volume (mL) 490 (400–558)

Positive end-expiratory pressure (cm H2O) 10 (5–12)

Plateau pressure (cm H2O) 27 (22–31)

Fraction of inspired oxygen 0.6 (0.5–0.88)

Arterial pH 7.37 (7.3–7.44)

Arterial pCO2 (mmHg) 39 (33–44)

PaO2/fiO2 ratio 138 (93–186)

Arterial PO2 (mmHg) 81 (68–105)

Temperature (�C) 37.6 (37.0–38.2)

Heart rate (bpm) 105 (90–120)

Troponin 65.4 (13.8–397.8)

Vasopressor use, n (%) 95 (38)

Height (cm) 170 (163–178)

Weight (kg) 80 (68–94)

Creatinine, mg/dL 1.2 (0.8–2.0)

Cumulative fluid balance over 3 days (L) 3.1 (�0.6 to 8.6)

Death, n (%) 73 (29)

ICU free days within first 30 days (days) 14 (0–21)

Ventilator free days within first 30 days (days) 17 (0–22)

Note: Data are shown as median (interquartile range) and N (%). PaO2: partial

pressure of oxygen; fiO2: fraction of inspired oxygen; pCO2: partial pressure of CO2.

Table 2. Systemic and pulmonary vascular hemodynamics for 252

ARDS patients.

Systolic BP (mmHg) 109 (97–124)

Diastolic BP (mmHg) 59 (51–66)

Mean arterial pressure (mmHg) 75 (68–86)

Right atrial pressure (mmHg) 12 (10–15)

Pulmonary artery wedge pressure (mmHg) 15 (12–18)

Cardiac index (L/min/m2) 3.7 (3.04–4.7)

Stroke volume (mL) 71 (56–92)

Pulmonary artery systolic pressure (mmHg) 41 (35–49)

Pulmonary artery diastolic pressure (mmHg) 22 (18–27)

Pulmonary vascular resistance (WU) 1.8 (1.2–2.7)

Pulmonary arterial compliance (mL/mmHg) 3.9 (2.8–5.6)

Systemic vascular resistance (WU) 8.9 (6.7–11.4)

Systemic arterial compliance (mL/mmHg) 1.4 (1.0–1.9)

Pulmonary effective arterial elastance (mmHg/mL) 0.53 (0.37–0.74)

Systemic effective arterial elastance (mmHg/mL) 1.4 (1.1–1.9)

Note: Data are shown as median (interquartile range).
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cardiac output and SV were both associated with hsTn in
univariable and adjusted models (Fig. 1). Increasing PVR
and decreasing PAC were associated with larger amounts of
myocardial injury (Fig. 2). Likewise, increasing SVR and
decreasing SAC were also associated with larger amounts
of myocardial injury (Fig. 2). Pulmonary and systemic effect-
ive Ea were both associated with myocardial injury (Fig. 3).

Of 109 subjects with plasma on day 0 and 3, 27.5% had
progressive myocardial injury. After adjusting for age, sex,
and SOFA score, increasing CI and SV and increasing PAC
and SAC were associated with lower odds of progressive
myocardial injury (Table 4). Conversely, increasing PVR
and SVR and increasing pulmonary and systemic Ea were
associated with greater odds of progressive myocardial
injury (Tables 3 and 4).

As shown in Table 5, hsTn level was associated with
mortality in univariable survival analysis. The association
was partially attenuated in magnitude after concurrent
adjustment by each of: SV, PVR, PAC, and Ea.

Concurrent adjustment by each of CI, SAC, SVR, and
sysEa had less impact on the association of myocardial
injury with outcome. In no cases did the hazard ratio
approach 1.0 with adjustment.

Discussion

In this multi-center cohort study of patients with ARDS
with pulmonary artery catheters in place, we investigated
the association of hemodynamic parameters with myocar-
dial injury. First, we report that right and left heart filling
pressure – assessed by RAP and PAWP – is not associated
with myocardial injury, whereas cardiac output and SV, and
PVR and SVR and compliance and pulmonary and systemic
Ea were independently associated with myocardial injury.
Second, changes in these hemodynamic parameters were
all associated with progressive myocardial injury over
three days. Third, pulmonary vascular hemodynamics par-
tially attenuate the magnitude of the relationship between

Table 3. Correlations of myocardial injury with hemodynamic measurements; shown are univariable and adjusted linear regressions with

hemodynamic parameters as independent variables and hsTn as the dependent variable.

Univariable

models

P

Adjusted for age, sex,

SOFA score

P� (SE) � (SE)

Right atrial pressure (mmHg) 0.024 (0.033) 0.7 0.032 (0.034) 0.62

Pulmonary artery wedge pressure (mmHg) 0.033 (0.030) 0.6 0.045 (0.03) 0.48

Cardiac index (L/min/m2) �0.23 (0.1) 0.001 �0.27 (0.11) 0.001

Stroke volume (mL) �0.26 (0.0048) 0.001 �0.25 (0.0048) 0.001

Pulmonary vascular resistance (WU) 0.22 (0.11) 0.001 0.22 (0.11) 0.001

Pulmonary arterial compliance (mL/mmHg) �0.23 (0.065) 0.001 �0.21 (0.069) 0.001

Systemic vascular resistance (WU) 0.20 (0.035) 0.002 0.23 (0.037) 0.001

Systemic arterial compliance (mL/mmHg) �0.22 (0.19) 0.001 �0.23 (0.19) 0.001

Pulmonary effective arterial elastance (mmHg/mL) 0.27 (0.43) 0.001 0.25 (0.44) 0.001

Systemic effective arterial elastance (mmHg/mL) 0.26 (0.23) 0.001 0.25 (0.23) 0.001

SE: standard error.

Table 4. Association of changes in hemodynamic parameters with rising troponin (20% or greater increase) between day 0 and day 3, for 109

patients with available data.

Univariable

models

P

Adjusted for age,

sex, SOFA score

POR (95% CI) OR (95% CI)

Cardiac index (L/min/m2) 0.41 (0.22–0.75) 0.004 0.35 (0.18–0.67) 0.002

Stroke volume (mL) 0.28 (0.13–0.57) 0.001 0.26 (0.12–0.54) 0.001

Pulmonary vascular resistance (WU) 1.65 (1.01–2.68) 0.044 1.72 (1.036–2.86) 0.036

Pulmonary arterial compliance (mL/mmHg) 0.57 (0.35–0.91) 0.019 0.54 (0.33–0.88) 0.014

Systemic vascular resistance (WU) 1.88 (1.16–3.04) 0.01 1.90 (1.16–3.09) 0.01

Systemic vascular compliance (mL/mmHg) 0.59 (0.37–0.93) 0.023 0.57 (0.36–0.91) 0.018

Pulmonary effective arterial elastance (mmHg/mL) 1.98 (0.15–3.39) 0.014 2.01 (1.15–3.51) 0.015

Systemic effective arterial elastance (mmHg/mL) 4.23 (2.05–8.75) 0.001 4.25 (2.04–8.86) <0.001

SOFA: Sequential Organ Failure Assessment; OR: odds ratio; CI: confidence interval.
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myocardial injury and outcome in ARDS to a greater extent
than systemic hemodynamics suggesting a conceptual hypo-
thetical model that targeting pulmonary vascular hemo-
dynamics could contribute in part to reducing myocardial
injury and improve ARDS outcome.

Myocardial injury in ARDS and hemodynamic
mechanisms

Prior work by our group identified that myocardial injury –
manifested by elevated levels of hsTn – is present in over
90% of ARDS patients and is associated with mortality as a
function of underlying critical illness,17 and other groups
have also reported that myocardial injury is associated
with ARDS outcome.30,31 The mechanism of this associ-
ation is not clear; we reported factors reflecting underlying
critical illness were associated with hsTn levels, including
creatinine, SOFA score, and heart rate.17 Rivara et al.
report that ARDS patients with myocardial injury mani-
fested more tricuspid regurgitation and regional wall
motion abnormalities.31 Our present study adds to this evi-
dence base by establishing that markers of increased right
and left heart afterload and indices of forward flow – namely
SV and cardiac output – are associated with myocardial

injury. Causality cannot be inferred on the basis of this
observational study; however, a conceptual hypothesis
could be that ARDS causes pulmonary parenchymal dis-
ease, hypoxemia and alveolar flooding leading to increased
right ventricular afterload, myocardial injury, and reduced
cardiac function. Analogously, increased left ventricular
afterload could induce myocardial injury and reduced car-
diac function by a similar mechanism.

Right heart and myocardial injury

Right ventricular afterload itself has been associated
with outcome in ARDS – Bull et al. reported that the
PVR was associated with mortality in the FACTT
cohort,7 and our group reported both PVR and PAC were
associated with outcome.12 Conceptually, PVR represents
the static right ventricular afterload, whereas PAC
represents the pulsatile RV afterload.32 Our present work
suggests a hypothetical mechanism whereby these markers
of RV afterload could mitigate adverse outcome – that
increased RV afterload leads to more myocardial
injury. Prior work identified clinical factors associated
with PVR such as lower body temperature and higher
ventilator driving pressure and clinical factors associated

Fig. 1. Association of filling pressures and cardiac index and stroke volume with myocardial injury. Panel A: central venous pressure and

troponin; panel B pulmonary artery wedge pressure and troponin; panel C: cardiac index and troponin and panel D: stroke volume and troponin.
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with PAC included lower arterial pH and positive fluid bal-
ance.12 Body temperature and pH were also associated
with myocardial injury.17 Whether targeting RV afterload
therapeutically with fluid restriction, minimizing driving
pressure, minimizing acidosis, and following RV function
with hemodynamics or echocardiography using an ‘‘RV
protective’’ strategy13–15,33 would reduce myocardial

injury is not known but should be explored in a prospective
fashion.

Systemic circulation and myocardial injury

We report that the SVR and the SAC are associated with
myocardial injury. Unlike in the pulmonary circulation

Fig. 2. Association of pulmonary and systemic vascular resistance and compliance with myocardial injury. Panel A: pulmonary vascular resistance

and troponin; panel B: pulmonary arterial compliance and troponin; panel C: systemic vascular resistance and troponin; panel D: systemic arterial

compliance and troponin.

Fig. 3. Association of pulmonary and systemic effective arterial elastance with myocardial injury. Panel A: pulmonary effective arterial elastance

and troponin; Panel B: systemic effective arterial elastance and troponin.
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where the PVR and PAC are likely distributed over the same
anatomic compartment, in the systemic circulation the mus-
cular proximal aorta comprises most of the compliance por-
tion of the circuit whereby the resistance component of the
circuit resides in the smaller arterioles.24 We report that both
pulsatile and resistive afterload is associated with myocar-
dial injury. Arterial compliance has been associated with
outcome in other settings including primary cardiac preven-
tion34,35 and results in increased LV afterload and reduced
left ventricular (LV) function.36 Thus, reduced arterial com-
pliance, which localizes to the proximal aorta and branch
vessels, could represent a surrogate for nascent cardiovascu-
lar risk factors predisposing to myocardial injury and adverse
hemodynamic consequences. The SVR is often pharmaco-
logically manipulated in managing critical illness through
the use of vasoactive drugs. Whether targeting a specific
SVR via choice of vasopressors to reduce myocardial injury
is not known. Reduced arterial compliance and increased
resistance were also associated with higher LV diastolic stiff-
ness,37 which could synergistically cause more diastolic dys-
function and adverse hemodynamic consequences leading to
myocardial injury during critical illness.

Progressive myocardial injury

We report that changes in these hemodynamic parameters
over time are likewise associated with greater or lower odds
of progressive myocardial injury. Given that progressive
myocardial injury is independently associated with ARDS
outcome,18 understanding the pathophysiology of progres-
sive myocardial injury and potential treatment targets could
improve outcome. Our finding that pulmonary hemo-
dynamics attenuate the relationship between myocardial
injury and outcome suggests that targeting pulmonary vas-
cular hemodynamics should be further studied.

Limitations

Limitations of our study include its retrospective, observa-
tional design. As such, causality is not implied and our find-
ings represent hypothesis generating associations. An analytic
limitation is that the optimal approach for formal mediation
analysis of survival data is not clear.38 Hemodynamic data
were only collected for a subset of patients in FACTT and
ALVEOLI and as such, our analysis reflects only a subset of
the entire study cohorts. Similarly, the FACTT and
ALVEOLI datasets do not include data assessing structural
cardiac abnormalities, such as echocardiography, nor
detailed medical therapy for cardiovascular disease, such as
aspirin therapy, statin therapy, or anticoagulants.

Troponin measurements were only available on day 0 and
day 3 time points, andECGand cardiac imaging datawere not
obtained; thus, strict adjudication as to whether the elevation
in hsTn represents myocardial infarction versus myocardial
injury is not possible. However, both trials excluded patients
with clinical cardiac ischemia and enrolled very few patients
with heart failure or structural heart disease19–21; therefore, it
is unlikely that patients with clinical acute MI are included in
our cohort. Finally, this assessment relies on invasive hemo-
dynamics, and fewer patients are assessed with right heart
catheterization in the context of ARDS.39 Pulmonary hemo-
dynamics can be determined using echocardiography,40 and
targeting echo-based hemodynamics should be investigated in
prospective trials. Not all patients in the parent trials under-
went right heart catheterization and it is likely that patients
undergoing right heart catheterization have a different clinical
profile than those that did, which impacts generalizability.
However, comparison of included and excluded patients
shows overall comparable demographics, clinical outcomes,
and degree of critical illness (Supplemental Table).

In conclusion, we report that hemodynamic markers of
pulmonary and systemic afterload are associated with myo-
cardial injury in ARDS. Pulmonary vascular disease may be
involved in the relationship between myocardial injury and
outcome in ARDS and further mechanistic and therapeutic
studies are warranted. Whether targeted therapy to improve
hemodynamics could mitigate myocardial injury in ARDS
should be assessed in future trials and could represent a
strategy to improve ARDS outcome.
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Table 5. Association of myocardial injury with mortality adjusting for

hemodynamic factors.

Hazard ratio per IQR of

day 0 troponin (95% CI) P

Unadjusted 1.0032 (1.00038–1.0060) 0.026

Stroke volume 1.0026 (0.9996–1.0056) 0.085

Cardiac index 1.0030 (1.000072–1.0060) 0.045

Systemic arterial compliance 1.0029 (1.000032–1.0058) 0.047

Systemic vascular resistance 1.0032 (1.00034–1.0060) 0.029

Pulmonary arterial

compliance

1.0026 (0.9996–1.0056) 0.089

Pulmonary vascular

resistance

1.0025 (0.9994–1.0055) 0.11

Pulmonary effective arterial

elastance

1.0027 (0.9998–1.0056) 0.072

Systemic effective arterial

elastance

1.0030 (1.00005–1.006) 0.046

IQR: interquartile range; CI: confidence interval.
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