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This paper investigates relationships between procedural-memory, declarative-memory,
and working-memory skills and adult native English speakers’ novel sound-category
learning. Participants completed a sound-categorization task that required integrating
two dimensions: one native (vowel quality), one non-native (pitch). Similar
information-integration category structures in the visual and auditory domains have been
shown to be best learned implicitly (e.g., Maddox et al., 2006). Thus, we predicted
that individuals with greater procedural-memory capacity would better learn sound
categories, because procedural memory appears to support implicit learning of new
information and integration of dimensions. Seventy undergraduates were tested across
two experiments. Procedural memory was assessed using a linguistic adaptation of the
serial-reaction-time task (Misyak et al., 2010a,b). Declarative memory was assessed
using the logical-memory subtest of the Wechsler Memory Scale-4th edition (WMS-IV;
Wechsler, 2009). Working memory was assessed using an auditory version of the
reading-span task (Kane et al., 2004). Experiment 1 revealed contributions of only
declarative memory to dimensional integration, which might indicate not enough time
or motivation to shift over to a procedural/integrative strategy. Experiment 2 gave twice
the speech-sound training, distributed over 2 days, and also attempted to train at
the category boundary. As predicted, effects of declarative memory were removed
and effects of procedural memory emerged, but, unexpectedly, new effects of working
memory surfaced. The results may be compatible with a multiple-systems account in
which declarative and working memory facilitate transfer of control to the procedural
system.
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INTRODUCTION

Learning new languages becomes increasingly difficult as we age.
Individuals that begin learning a language after the age of seven
are significantly less likely to attain native-like proficiency in that
new language, for syntax and morphology (Newport, 1990) as
well as for speech-sound perception and pronunciation (Flege,
1995, 1999; Díaz et al., 2012). It is, of course, impossible to
equate the real-world language-learning context across infant
and adult learners. However, highly controlled experimental
studies have shown learning advantages for infants over adults
for the same language structure (e.g., Gerken and Knight, 2015,
finds infants learn a type of rule not learned by adults in
Moreton et al., 2015; see also Gerken et al., unpublished).
It has been suggested that the infant brain is particularly
well suited for language learning (Newport, 1990; Goldowsky
and Newport, 1993; Thompson-Schill et al., 2009). However,
there is no consensus about the neural mechanisms underlying
this developmental or maturational difference. This project
focuses on two major factors that may account for variation
in adult L2-learning outcomes: native-language (L1) biases and
reliance on declarative vs. procedural memory systems. We
relate individual differences in these memory-skill domains to
sound-category learning, one crucial aspect of L2 learning that
exhibits wide individual variation for adult learners.

Adults’ experience with their native language leads to L1 biases
that inhibit their ability to process and learn second-language
(L2) speech-sound contrasts (Flege, 1995, 1999; Best et al., 2001;
Iverson et al., 2003; Lotto et al., 2004; Best and Tyler, 2007). These
biases hinder L2 learning and phonological processing (Lively
et al., 1993, 1994; McCandliss et al., 2002; McClelland et al.,
2002; Lotto et al., 2004; Lim and Holt, 2011; Gabay and Holt,
2015; Gabay et al., 2015). However, they likely result in better
processing efficiency in the native language (Zhang et al., 2005;
see also Kuhl et al., 2005).

The second factor that we argue contributes to the disparity
in language learning (including sound-category learning)
between adults and infants is differences in reliance on two
different memory systems: the procedural-memory system
(which subserves implicit learning) and the declarative-memory
system (which subserves explicit learning). Declarative memory
supports conscious recall of facts and events and can store such
information for years (Knowlton and Squire, 1996; Ullman,
2004; Newman et al., 2010; Lum et al., 2012; see also Ullman and
Pierpont, 2005). Learning occurs primarily explicitly through this
system and can be achieved following a single exposure, though
it is strengthened by multiple exposures (Lum et al., 2012).
Within language, declarative memory has been suggested to
store the mental lexicon of memorized word-specific knowledge
(Ullman, 2004). Declarative memory supports lexical knowledge
by encoding, storing, and retrieving semantic knowledge
(Eichenbaum, 2004; Squire, 2004). It is believed to be subserved
by medial temporal lobe structures including the hippocampus
(Squire, 2004).

While learning through the declarative-memory system is
primarily explicit, learning through the procedural-memory
system is primarily implicit. Procedural memory is less accessible

to conscious awareness and enables gradual learning of habits and
skills (Hayne et al., 2000), including sequencing, navigation, and
probabilistic categorization (Lum et al., 2012). In language, the
procedural-memory system is thought to support the learning
and use of rule-governed aspects of grammar (Knowlton and
Squire, 1996; see also Ullman, 2004; Ullman and Pierpont, 2005;
Newman et al., 2010). Implicit learning of sequential regularities
has been linked to an individual’s ability to use contextual and
lexically predictive information when comprehending spoken
language (Misyak et al., 2010a). Evidence of dissociations in
lesion studies has led to the hypothesis that the procedural and
declarative memory systems have distinct neural underpinnings
(Reber, 2013). Procedural memory is believed to be subserved by
the striatum, including the caudate nucleus (Squire, 2004; though
see Carpenter et al., 2016).

In addition to the above-mentioned roles of procedural and
declarative memory in language learning, working memory
has also been demonstrated to make important contributions
to language learning and processing. Working memory plays
an important role in understanding and learning language by
maintaining information in a short-term buffer while it is
being processed (Lum et al., 2012). The phonological loop, a
component of working memory, encompasses a phonological
store and a rehearsal process, and facilitates the learning of
phonological forms of new words (Baddeley et al., 1998; see
also Baddeley and Hitch, 1974; LaBerge and Samuels, 1974).
Reading-comprehension performance—specifically, retrieving
facts and computing pronominal references—has been linked
to working-memory capacity (Daneman and Carpenter, 1980).
Evidence suggests that working memory is closely related
to declarative memory; the prefrontal structures that foster
information retrieval from declarative memory also support
working memory (Buckner et al., 1999; Botvinick et al., 2001;
Simons and Spiers, 2003).

There is growing interest in the idea that certain aspects
of language are best learned implicitly/procedurally (Evans
et al., 2009; Quam et al., 2015). Statistical learning, believed to
underpin much of early language learning, has been linked to
implicit learning (Gómez, 2016). Infants rely more heavily on
implicit/procedural learning than explicit/declarative learning,
because the neural structures that support implicit learning
mature relatively early in typical development, while those that
sustain explicit learning are slower to develop, undergoing
significant maturation through 10 months of age (Jones and
Herbert, 2006; Richmond and Nelson, 2007). Thus, the formation
of memories in infants, an essential underpinning of learning,
is largely unconscious and implicitly driven. Infants’ reliance
on implicit learning and sparse native-language experience may
result in flexibility about which dimensions are relevant to a
language-learning task (Namy and Waxman, 1998; Woodward
and Hoyne, 1999; Namy, 2001; Singh et al., 2013; Hay et al., 2015),
facilitating the learning of new linguistic structures. By contrast,
adults’ over-reliance on explicit-learning strategies (Filoteo et al.,
2010) and their native-language biases (Flege, 1995; Best et al.,
2001; Best and Tyler, 2007) may interact to produce rigidity
in attending to and integrating unfamiliar dimensions when
learning new categories (Quam et al., 2015).

Frontiers in Psychology | www.frontiersin.org 2 October 2018 | Volume 9 | Article 1828

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01828 September 28, 2018 Time: 16:11 # 3

Quam et al. Memory Skills Predict Sound-Category Learning

Models of impaired language like the Procedural Deficit
Hypothesis suggest that procedural deficits are predictive of
poor language-learning outcomes (Ullman and Pierpont, 2005;
Kemény and Lukács, 2010; Hedenius et al., 2011; Lum et al., 2012;
but see Gabriel et al., 2011). In a recent paper, Morgan-Short
et al. (2014) investigated how individual differences in memory
skills affect learning of L2 syntax. At early stages of acquisition,
they found relationships between declarative-learning ability and
syntactic development, whereas at later stages of acquisition,
they found relationships between procedural-learning ability and
syntactic development.

To address the question of whether differences in L2
learning outcomes could be explained by individual differences
in procedural-memory capacity (and/or by working-memory
or declarative-memory capacity), the present study investigates
learning of sound categories. We focus on sound categories
because they are complex and defined over multiple dimensions
(Holt and Lotto, 2006). In order to process speech effectively,
various acoustic dimensions must be integrated and weighted
appropriately to recognize each sound and each word. These
aspects of speech-sound learning present opportunities to extend
theoretical and methodological approaches from the visual
category-learning literature (particularly the COVIS model—see
descriptions below) to test the Procedural Deficit Hypothesis
for language learning. There have been several recent extensions
of approaches from the visual category-learning literature
(in particular, rule-based vs. information-integration category
paradigms) to speech-sound-category learning (Wade and Holt,
2005; Goudbeek et al., 2009; Maddox et al., 2013; Maddox and
Chandrasekaran, 2014; see also Moreton et al., 2015), but none
have linked category learning to individual differences in memory
skills.

Much of the evidence that adults’ reliance on explicit-learning
strategies impairs their learning of new categories comes from the
visual-category-learning literature. The COVIS model of category
learning (Ashby et al., 1998) assumes competition between two
category-learning systems, an explicit, verbal (or “reflective”)
system, and an implicit (or “reflexive”) system. In a line of
research testing the COVIS model (e.g., Waldron and Ashby,
2001; DeCaro et al., 2008; Filoteo et al., 2010), adults have been
taught two different types of category structures. The first is
rule-based category structures, designed so that the distinction
between the categories is verbalizable, or at least available to
conscious awareness (e.g., thick bars vs. thin bars; bars that tilt
to the left vs. bars that tilt to the right). The declarative-memory
system, which relies on working memory and attention, has been
argued to mediate rule-based category learning (Ashby et al.,
1998; Filoteo et al., 2010).

The second type of category structure used by Ashby
et al. (1998) is termed “information-integration” categories.
These category structures are always defined along at least
two dimensions, and integrating the dimensions is required
for successful learning. In contrast to rule-based structures,
information-integration structures are designed so that
the ideal response strategy is not easily verbalizable. The
procedural-memory system has been argued to mediate
information-integration category learning.

Adults, who have mature declarative-memory systems, tend
to over-rely on explicit-learning strategies, which are optimal for
rule-based category learning, but not for information integration
(Filoteo et al., 2010). According to the COVIS model, the two
systems compete during learning, with one system eventually
seizing control of the response (Ashby et al., 1998). Adults often
show an initial bias toward using explicit-learning strategies
and unidimensional rules (Shepard et al., 1961; Bruner et al.,
1962). Over the course of training, some adults successfully
shift to implicit/multi-dimensional strategies, while others persist
in sub-optimal, unidimensional strategies (Smith et al., 2010;
Maddox et al., 2013).

Experimental interventions can sometimes shift adults to
the optimal, multi-dimensional strategy earlier in learning. For
example, Filoteo et al. (2010) found that adults integrated two
dimensions to learn categories more effectively if their access to
explicit learning was blocked by taxing working memory (see
also Maddox and Ing, 2005; Smith et al., 2014). Individuals
with elevated depressive symptoms, associated with suppressed
declarative memory, have also been shown to better learn
information-integration categories than individuals without
elevated depressive symptoms (Maddox et al., 2014).

According to the original COVIS model of dimensional
integration in category learning, working memory, given its
strong relationship to declarative memory, should also be
inversely correlated with success in information-integration tasks
(Ashby et al., 1998). However, given its important roles in
language learning, and somewhat diverse findings on the impact
of working memory in information-integration tasks since the
original COVIS model (e.g., Lewandowsky et al., 2012), it could
either facilitate or impair information integration in an auditory
task like the one used here.

The Present Study
Across two experiments, we taught healthy adults an
information-integration sound-category structure and then
related category-learning outcomes to individual differences
in memory skills. The novel sound categories presented
to participants varied along a phonologically non-native
dimension, pitch, and a native dimension, vowel quality
(second-formant frequency; F2). Optimal learning required
integrating information from both cues. Because of the role
procedural memory putatively plays in infant language learning,
and based on evidence from prior category-learning work
(Maddox and Ing, 2005; Filoteo et al., 2010; Maddox et al.,
2014; Smith et al., 2014), we predicted that adults with stronger
procedural-memory skills would better integrate the two
acoustic dimensions. However, we also assessed learners’
declarative-memory skills and working-memory skills. Recent
follow-ups to the original COVIS model (Erickson, 2008; Ashby
and Maddox, 2011) have indicated contributions of multiple
systems to category learning, and similar updates have been
suggested for the Procedural Deficit Hypothesis for language
learning (Lum and Conti-Ramsden, 2013; Kuppuraj et al., 2016).
Thus, strong declarative- and working-memory skills could
facilitate shifting from a suboptimal dimensional integration
strategy to an optimal strategy.
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EXPERIMENT 1

Materials and Methods
Participants
All study procedures for Experiment 1 were approved by the
Institutional Review Board (IRB) Committee at the University
of Arizona and all participants provided written informed
consent. Twenty-nine undergraduates from the University of
Arizona who were native speakers of English and over the
age of 18 were recruited from the Psychology participant
pool and participated for course credit in one 2-h session.
When participants (occasionally) required more than 2 h to
complete the study and were willing to stay, they were paid
$5/half hour to complete the session. We aimed to recruit a
diverse sample of healthy adults.1 Because of our interest in
individual differences in language acquisition (and because, e.g.,
attention-deficit (hyperactivity) disorder, or AD(H)D, is highly
comorbid with developmental language disorder), we did not
exclude participants on the basis of a diagnosis of AD(H)D
(Fidler et al., 2011). We also included participants with exposure
to other languages as long as they were native speakers of English.
Seven additional participants were tested but excluded from
analyses: 5 because they did not complete all the experimental
tasks, and 2 because they did not click in the correct (right-most)
portion of the screen in any trials in the procedural prediction
task.

The session began with the sound-category-learning
task, which took roughly 30 min. The first portion of the
declarative-memory assessment came next, consisting of

1All research with undergraduate students runs the risk of recruiting a less diverse
sample than the general adult population, in terms of age, socioeconomic variables,
racial/ethnic variables, and cognitive and language skills. As a public university
with relatively open admission criteria, the University of Arizona attracts a more
representative undergraduate population than universities with lower admission
rates. However, it is important to acknowledge the potential bias introduced in any
research conducted with college students.

exposure and immediate recall. Participants next completed
the working-memory assessment, which took on average
16 min, and then completed the delayed recall portion of the
declarative-memory assessment (the entire declarative-memory
assessment took approximately 15 min). Finally, they completed
the procedural-memory assessment, which took roughly
30–40 min. Figure 1 depicts the order of tasks in Experiment 1
(as well as each day of Experiment 2).

Sound-Category-Learning Task
Materials
Auditory stimuli were isolated vowels synthesized using Klatt
(Klatt and Klatt, 1990), a speech synthesizer implemented within
the Praat phonetic software program (version 5.3.43; Boersma
and Weenink, 2008; Weenink, 2009). Sounds were synthesized
at a uniform maximum amplitude of 70 dB SPL (see Weenink,
2009, for details on the voicing amplitude tier in KlattGrid),
0.4 (s) in duration, and contained two features to increase their
naturalness. First, we inserted a pitch declination: between 0.25
and 0.3 s, the pitch gradually decreased to 96% of the original
pitch height, then stayed at that value for the last 0.1 s. Second,
we inserted an amplitude ramp at the end of the sound (using
a custom Matlab script written by Sarah Creel), so that the
amplitude declined linearly from 70 dB SPL to zero amplitude
over the course of 10 ms, rather than clipping off at a higher
amplitude.

The 42 stimuli varied across two dimensions, pitch (F0) and
vowel quality (second-formant frequency, or F2; see Figure 2).
We intentionally included a native-language dimension (F2, used
to differentiate the /i/ vs. /u/ vowels in English) and a non-native
dimension (F0, which is not phonologically contrastive in
English), to simulate L2 learning, in which some L2 dimensions
might overlap with L1 and others will not. F0 ranged from
104 to 296 Hz; F1 was set to 448 Hz; F2 ranged from 1054
to 2366 Hz; and F3, F4, and F5 were set to 2722, 4019, and

FIGURE 1 | Sequence of events for Experiments 1 and 2. Experiment 1 was completed on 1 day, while Experiment 2 was completed over 2 days.
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FIGURE 2 | Synthesized speech stimuli varied in pitch (F0) and
second-formant frequency (F2). Solid and dashed circles indicate two different
sets of stimuli along the category boundary that were presented at the start of
each training day in Experiment 2, but were intermixed with other stimuli in
Experiment 1.

4898 Hz, respectively. The ranges of F0 and F2 and the values
of the other formants were modeled on recordings of the first
author’s vocal range (a female, native-English speaker). F2 values
were intended to range from an exaggerated /u/ to an exaggerated
/i/ vowel. On the F0 and F2 dimensions, the stimuli were
equally spaced along the Bark scale, a logarithmic scale designed
to mimic frequency encoding in the human auditory system
(Zwicker, 1961). Two categories were designed that differed
equally on both dimensions. They could be roughly described
as “high /i/” and “low /u/” categories, based on their centroids,
but note that each category contained stimuli that spanned
the full extent of each auditory dimension. Thus, the verbal
descriptors “high /i/” and “low /u/,” if used as a strategy in
the task, would not lead to high accuracy. Instead, to achieve
high performance in the task, participants had to learn over
training trials where to place the diagonal boundary between the
categories.

Procedure
The experiment and all three memory assessments were
programmed in the PsychoPy software program (version 1.79.00;
Peirce, 2007) and administered on Mac Mini computers running
Yosemite. Participants completed six training blocks, each of
which presented all 42 synthesized stimuli in random order
within each block. Participants sat in front of the computer in a
soundproof testing room and were instructed to categorize each
sound they heard through headphones (Sennheiser HD 280 PRO)
to the best of their ability. In each trial, participants listened to an
auditory stimulus, then responded by pressing one of two keys on
the keyboard. The response keys were labeled with two unfamiliar
symbols (see Figure 3).

Following each response, participants were provided with
either positive or negative feedback, based on their answers.
If participants correctly categorized the sound, then a large smiley
face appeared (in yellow font; see Figure 3). If participants
incorrectly categorized the sound, then a large frowny face
appeared. We used smiley and frowny faces so that the same
feedback could be used with preschool children in related studies

FIGURE 3 | Within-trial sequence for each category-learning trial.

(Quam et al., 2015, unpublished). The timing of presentation
of feedback was based on prior work (Filoteo et al., 2010); it
appeared immediately after the participant’s response and stayed
on the screen for 500 ms. Immediate feedback has been shown to
promote integration of multiple dimensions in category learning
(Maddox and Ing, 2005). As training trials involved key-press
judgments of category membership, we were able to use them to
assess learning outcomes (e.g., by evaluating accuracy in block 6),
rather than having to include separate test blocks. This enabled us
to maximize training time, and thus increase the likelihood that
participants would shift to an information-integration strategy by
the end of the task.

Declarative-Memory Assessment
Materials
The logical-memory subtest of the Wechsler Memory Scale-4th
edition (WMS-IV; Wechsler, 2009) was administered to
participants to measure declarative-memory skills. Materials
were purchased from Pearson-Clinical and adapted for computer
administration. They consisted of two three-sentence-long fake
news stories (one with a male protagonist, one with a female
protagonist), yes/no questions about the stories, and a scoring
rubric for evaluating the accuracy of participants’ recalled details
about the stories. The first author (a female, native-English
speaker) recorded each story. Each recording was 25 s long.
Transcriptions of the stories can be found in the Wechsler
Memory Scale-4th edition.

Procedure
Participants were instructed to pay as much attention as
possible to an auditory reading of a short news story. After
a recording of the story was played over headphones, a
subsequent screen asked participants to type the story as exactly
as possible into a dialog box. Participants then repeated this
procedure for the second story. Following the completion of
the immediate paragraph-recall task, participants completed the
working-memory assessment, which took 20–30 min, depending
on the participant’s speed.2 Participants next completed the
declarative delayed paragraph-recall task: they were asked to

2There is precedent for introducing an intervening task between immediate and
delayed recall, and for the delay between the two tasks to vary depending on the
length of the intervening task (e.g., Gorwood et al., 2008). In our Experiment
1 sample (where both immediate and delayed recall scores were tabulated), the
average delayed recall score (21.79) was less than 1 point lower than the average
immediate recall score (22.66). The strong correlation between immediate and
delayed recall scores in Experiment 1 also indicates strong test-retest reliability

Frontiers in Psychology | www.frontiersin.org 5 October 2018 | Volume 9 | Article 1828

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01828 September 28, 2018 Time: 16:11 # 6

Quam et al. Memory Skills Predict Sound-Category Learning

recall the same stories again and enter their responses into
dialog boxes without any reminder cues. They then answered
“yes” or “no” to a series of questions assessing their memory
for the content of each story. The responses of participants
were individually analyzed and given quantitative results based
on the Wechsler Memory Scale-4th edition response booklet
from Pearson-Clinical. In the statistical analyses reported
in the Results, we used delayed paragraph recall as the
declarative-memory predictor, because it has been shown to
bear a particularly strong relationship to hippocampal function
(Gorwood et al., 2008). However, across the two experiments,
delayed recall was highly correlated with both immediate
paragraph-recall [for Experiment 1, (r(27) = 0.89, p < 0.001);
note that because of the strong correlation in Experiment
1, immediate-recall scores were not coded for Experiment 2,
because coding was time-intensive] and with yes/no question
accuracy [r(68) = 0.60, p < 001].

Working-Memory Assessment
Materials
We employed an auditory version of a reading-span test of
working memory (Kane et al., 2004), designed to quantitatively
measure working memory (Daneman and Carpenter, 1980)
by engaging participants in two concurrent tasks: semantic
plausibility judgments and letter recall. While in previous
reading-span tasks participants recalled a whole word, we asked
participants to recall letters that were presented after each
sentence in the sentence-judgment task. Both the auditory
presentation and the use of letter recall instead of word recall were
intended to reduce the impact of literacy skills on the task (Kane
et al., 2004).

Procedure
Participants first completed training trials to learn the procedure
of memorizing sequences of letters that were played over
headphones, and then entering the letters into a dialog box
in the correct order. The options for letters were listed at the
top of the dialog box, with participants entering “NA” if they
had forgotten one of the letters. The options were “h”, “j”,

across the two tasks. These facts provide some reassurance that the intervening
working-memory task was not inappropriately cognitively taxing, nor was the
delay inappropriately long. Across both experiments, the time between the onset
of the working-memory task and the onset of the delayed recall task varied from
12 to 24 min (M = 16, SD = 3). The time between the onsets of the two tasks was
not correlated with delayed recall performance [r(68) =−0.011, p = 0.929].

FIGURE 4 | Example trial showing the grid of word stimuli displayed on the
computer screen. The cursors (added for emphasis) point to the target string
in each third of the trial (pel, wadim, rud, underlined for emphasis). The other
three words are foils (vot benez jic).

“k”, “l”, “n”, “p”, “q”, “r”, “s”, “t,” “y,” or “NA.” Participants
completed six practice trials of responding to auditory sentences.
Each sentence was either semantically plausible (“correct”) or
implausible (“incorrect”), with participants indicating correct
with the up arrow key and incorrect with the down arrow key.
Participants then practiced the combined sentence/letter task,
during which they heard three sequences that each contained
three sentences, each followed by a single letter. Participants
were instructed to respond incorrect or correct to each sentence
as accurately and quickly as possible; their current accuracy
percentage was displayed in the top right-hand corner to
motivate them to keep their sentence-judgment accuracy above
80%. This was important to ensure that the letter-recall task
was tapping working memory. Were participants to ignore
the sentence-judgment task, they would not be balancing the
letter-recall task with a concurrent task, which is necessary in
dual-task paradigms (like the letter-recall task) to ensure that the
task is tapping working-memory skills as designed (Daneman
and Carpenter, 1980; Kane et al., 2004). At the end of each
sequence, they were prompted to enter the letters at the end of
the sentences into a dialog box.

After practicing the three sequences, participants completed
the main task, which consisted of ten sequences (each sequence
containing three sentences, three letters, and one dialog box
for entering responses). Order of presentation of sentences and
letters was randomized throughout the assessment. Unlike in
previous uses of this method (e.g., Daneman and Carpenter,
1980; Kane et al., 2004), the set size of to-be-recalled letters did
not vary (e.g., between 2 and 5 letters) but was fixed at 3 for all 10
sequences.

We calculated overall sentence accuracy to verify that
participants were attending to both tasks. All participants had
sentence-accuracy scores above 70%, indicating that the task was
tapping working-memory skills as designed. In the statistical
analyses reported in the Results, we used letter-recall accuracy
as the working-memory predictor. Letter-recall accuracy was
computed within each trial (i.e., a trial was correct only if all three
letters were entered in the correct order).

Procedural-Memory Assessment
Materials
We measured procedural-memory skills using a verbal
adaptation (Misyak et al., 2010a,b) of the serial-reaction-time
task (SRT). We chose a linguistic version of the SRT rather than
a more traditional, visual SRT (in which, e.g., a dot appears
in the four screen quadrants following a predictable pattern;
Robertson, 2007) because we are interested in the link between
procedural memory and language learning. Participants were
exposed to visual-auditory strings of three non-words belonging
to an artificial, non-adjacency language developed by Gómez
(2002). Strings had the form aXd, bXe, and cXf, with ending
non-words (d, e, f ) dependent on beginning non-words (a, b,
c). The dependency was non-adjacent because of the variable
intervening item, which was sampled from a set of 24. Beginning
and ending non-words were monosyllabic (beginning words a, b,
and c were pel, dak, and vot; ending words d, e, and f were rud, jic,
and tood). The set of 24 middle X items were bisyllabic (wadim,
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kicey, puser, fengle, coomo, loga, gople, taspu, hiftam, deecha,
wamey, skiger, benez, gesnim, feenam, laeljeen, chila, roosa, plizet,
balip, malsig, suleb, nilbo, and wiffle). A female English speaker
produced auditory word tokens of the non-word items (Gómez,
20023). Written forms of the non-words were presented on the
screen in a 2× 3 grid. The leftmost column of the grid contained
only the beginning non-word items of the string (sampled from
the set [a, b, c]), the center column contained the middle X
tokens (sampled from the set [X1. . .X24]), and the rightmost
column contained only the ending non-word items of the string
(sampled from the set [d, e, f ]). Figure 4 shows the grid of
word stimuli from an example trial, with underlining added
to show the 3 target words. The same visual grid accompanied
all 3 auditory stimuli, and participants were meant to click on
the visual word matching each of the auditory words (cursors
indicate where the participant should click in response to each
of the 3 auditory words). In this example, “pel” and “vot” are
potential initial-string non-word elements, displayed in the
left column; “wadim” and “benez” are potential middle-string
elements, displayed in the middle column; “jic” and “rud” are
potential final-string elements, displayed in the right column.
Positions of targets and foils were pseudo-randomized and
counterbalanced so that each appeared equally often within
upper and lower positions.

Procedure
The procedure was modeled after that used by Misyak et al.
(2010a,b). Participants were first presented with six training
blocks of 72 unique 3-word strings (24 X-elements crossed with 3
dependency-pairs), for a total exposure to 432 strings. Each trial
began by displaying the 2 × 3 grid of non-word tokens. After
250 milliseconds (ms.), participants heard the first non-word
over headphones. Participants then used a computer mouse to
click on the written word that matched the spoken word, with
instructions emphasizing both speed and accuracy. The second
and third non-words were played immediately after the previous
response was registered. Following the third response, the screen
cleared and a new set of non-words appeared 750 ms later. Each
non-word occurred equally often (within a column) as a target
and as a foil, preventing participants from anticipating which was
the target and which was the foil for the initial and middle items.
However, if participants learned the non-adjacent dependencies,
they should subconsciously anticipate the third non-word based
on its relation to the first non-word.

After exposure to the six training blocks, participants were
presented with a test phase of 24 strings of ungrammatical

3Stimuli used in Gómez (2002) were graciously shared by Rebecca Gómez.

non-words, with endings that violated the non-adjacent
dependency that participants learned during the training blocks.
A final recovery block of 72 grammatical strings, similar to the
training blocks, followed the testing block. Participants were
not notified of the transitions between blocks. To measure the
degree of learning of non-adjacency patterns, participants were
presented with a final prediction task. Participants were told
that there were rules governing the sequencing of non-words in
the auditory stimuli and were asked to identify the final target
non-word in 24 stimulus strings upon being cued with only the
first two non-word elements. Each trial in the prediction block
began like training trials—each of the first two non-words was
presented auditorily, and participants clicked the corresponding
word on the screen. However, the third word was not presented
auditorily, so participants had to guess which word would
grammatically complete the string. Prediction-task accuracy
was calculated as the percentage of trials with correct responses
(computed over only trials where participants clicked in the
right-most portion of the screen, so that chance performance is
50%). In the statistical analyses reported in the Results, we used
prediction-task accuracy as the procedural-memory predictor,
because this measure had been used in prior work to investigate
individual differences (Misyak et al., 2010a).

Model-Based Analyses
Next we applied a series of computational models, used in
many previous studies, to identify the category-learning strategy
each participant employed in each learning block. The output
of the modeling procedure was the best-fitting model for each
participant in each of the 6 training blocks. We then computed
the “Number of Linear Blocks:” the number of training blocks
(out of 6 in Experiment 1 and 7 in Experiment 2) in which
each participant’s categorization responses were best fit by either
a sub-optimal linear category boundary (or “GLC,” for “general
linear classifier”; indicating integration of dimensions but a
category boundary that is offset from the true boundary) or an
optimal linear boundary (“OPT”).4 Thus, a higher number of
linear blocks indicates greater integration of the two dimensions
and closer-to-optimal categorization performance.

In the “Results” section, we include Number of Linear Blocks
as a dependent measure in multiple-linear-regression models

4We also calculated another dependent variable, “First Linear Block,” or the first
training block in which each participant used a suboptimal or optimal linear
decision boundary. However, Number of Linear Blocks and First Linear Block were
highly correlated across Experiment 1 and Experiment 2, Day 1: [r(68) = −0.593;
p < 0.001; a negative correlation was expected], and results were similar for both
measures, so we have included only Number of Linear Blocks alongside Block 6
Accuracy.

TABLE 1 | Measures of memory skills.

Measure Experiment 1 Experiment 2

Mean (SD) Range Mean (SD) Range

Procedural prediction accuracy 0.63 (0.21) 0.38–1.00 0.58 (0.19) 0.38–1.00

Declarative delayed recall 22.16 (7.71) 8.00–41.00 18.65 (6.61) 4.00–35.00

Working-memory letter recall 0.90 (0.10) 0.67–1.00 0.87 (0.13) 0.44–1.00
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(alongside accuracy in the 6th training block). Below, we provide
specific details on the modeling procedures (additional details
are available in several previous papers, e.g., Maddox and Ashby,
1993; Maddox, 1999; Maddox et al., 2016; Noh et al., 2016).

Five types of models were included. Each model was fit to each
participant’s responses in each training block, and the best-fitting
model was selected using the Bayesian information criterion
(BIC; Kass and Wasserman, 1995). BIC is defined as:

BICi = 2 ln Li + ln(n)Vi

where Li is the likelihood for model i, Vi is the number of
free parameters in the model, and n is the number of trials in
each block. Notice that BIC penalizes models with more free
parameters. Smaller BIC values indicate a better fit to the data.
The best fitting model was defined as the model with the smallest
BIC value.

The first model assumed random responding (RR).
The second model assumed that the participant used a
unidimensional rule using the X dimension, F0 (UDX). The third
model assumed a unidimensional rule based on the Y dimension,
F2 (UDY). The fourth model assumed a diagonal but sub-optimal
linear decision criterion (general linear classifier; GLC). Note
that only GLC models with positive slopes were accepted as
best-fitting models, as negative slopes would not truly indicate
dimensional integration (since the dimensions are integrated
backward5). Finally, the fifth model assumed that the participant
used the optimal, diagonal linear boundary (OPT). All of these
analyses were replicated with the Akaike information criterion
(AIC, Akaike, 1974) that is also based on maximum-likelihood
estimation procedures but uses a different penalization equation.
The pattern of results mirrored those for BIC. These results will
not be discussed further.

Results
We conducted multiple-linear-regression models for each
outcome measure, to simultaneously consider the impact
of procedural-, declarative-, and working-memory skills on
category-learning outcomes. As described in the Methods,
we chose a priori to measure procedural skills by analyzing
accuracy in the prediction task, and to measure declarative skills
by analyzing delayed paragraph recall. For working memory,
we analyzed letter recall accuracy, as is standard for the
listening-span task (Kane et al., 2004). Means and standard
deviations on these measures are listed in Table 1. None of the
three memory-skill domains was significantly correlated with any
other in either experiment (r’s < 0.25, p’s > 0.15).6

We related the three memory-skill predictor variables to two
measures of category-learning outcomes: (1) accuracy in the

5In some previous applications of this modeling approach, conjunctive rule-based
models were also applied to the data. These models assume that a unidimensional
rule along the X dimension is combined with a unidimensional rule along
the Y dimension. In the present case, these models are poorly distinguished
quantitatively from the GLC and thus are excluded.
6Note that across both experiments combined, procedural and declarative skills
were significantly correlated [r(68) = 0.245, p = 0.041], but regression models were
conducted separately for each experiment, so within-experiment correlations are
more relevant for statistical models.

TABLE 2 | Standardized coefficients betas for all factors in regression models
predicting Block 6 Accuracy, for Experiments 1 and 2.

Factor Experiment. 1 Experiment 2,
Day 1

Experiment 2,
Day 2

Procedural
prediction accuracy

0.110 0.366 0.220

Declarative delayed
recall

0.148 −0.045 0.132

Working-memory
letter recall

−0.175 0.256 0.401

TABLE 3 | Standardized coefficients betas for all factors in regression models
predicting Number of Linear Blocks, for Experiments 1 and 2.

Factor Experiment 1 Experiment 2,
Day 1

Experiment 2,
Day 2

Procedural
prediction accuracy

0.069 0.210 0.412

Declarative delayed
recall

0.506 0.005 0.019

Working-memory
letter recall

0.091 0.386 0.289

6th and final training block (“Block 6 Accuracy”) and (2) total
number of training blocks with a GLC or OPT best-fitting model
(“Number of Linear Blocks”). Number of Linear Blocks ranged
from 0 to 6. Below, we report regression analyses for each
dependent variable in turn. For regression analyses, standardized
coefficients betas and adjusted R2 values are reported throughout
the paper.

Block 6 Accuracy
Accuracy increased significantly over the course of the 6
training blocks from 65.82 to 72.50% [t(29) = 2.68, p = 0.012].
Block 6 accuracy also significantly exceeded chance [50%;
t(28) = 10.87, p < 0.001]. The multiple linear regression model
including procedural prediction accuracy, declarative recall,
and working-memory letter recall as predictors showed no
significant effects (see Table 2 for standardized coefficients betas
for all regression models predicting Block 6 Accuracy across
Experiments 1 and 2).

Number of Linear Blocks
On average, participants used a linear decision boundary (OPT
or GLC) in 2.4 of 6 blocks. The regression model revealed a
significant effect of declarative skills [β= 0.506, t(25) = 2.91,
p = 0.008] on number of linear blocks. The model overall
explained a significant proportion of variance in number of linear
blocks [R2 = 0.213, F(3,25) = 3.53, p = 0.029]. Table 3 reports
standardized coefficients betas for all factors in all regression
models predicting Number of Linear Blocks in Experiments 1 and
2. Figure 5 depicts a scatterplot, with a best-fit line, for Number
of Linear Blocks as a function of declarative-memory skills.

Discussion
In Experiment 1, regression models indicated that surprisingly,
declarative memory significantly predicted the total number of
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FIGURE 5 | Scatterplot, with best-fit line, depicting the impact of
declarative-memory skills on number of linear blocks in Experiment 1. In a
regression analysis that also included procedural-memory skills and
working-memory skills as predictors, declarative-memory skills were the only
significant predictor.

linear blocks, a measure of cue integration in category learning.
The effect of declarative memory is surprising and may indicate
that not enough time or motivation was given for people to
shift over to a procedural/integrative strategy. This possibility
motivated Experiment 2, in which participants received twice the
training (distributed over two training days) and the start of each
training session focused on stimuli near the category boundary,
to encourage dimensional integration. Beginning training with
difficult training items that straddle the category boundary has
been shown to improve learning of information-integration
categories (Spiering and Ashby, 2008).

EXPERIMENT 2

Materials and Methods
Participants
All study procedures for Experiment 2 were approved by
the IRB Committee at the University of Arizona and all
participants provided written informed consent. Forty-one
undergraduates from the University of Arizona were recruited
from the Psychology participant pool, and participated for course
credit, pay ($10/h), or a combination, in two 60- to 90-min
sessions. Inclusion criteria and recruitment procedures matched
Experiment 1. Twenty-four more participants were tested but
excluded from analyses. This number exceeded exclusions in
Experiment 1 mainly because of logistical issues involved with
testing on 2 days; most excluded participants either did not
complete both the category-learning task and the procedural task
within the first 1-h test session (and could not stay to finish it
for pay; 8) or did not return for the second session (5). The
remainder were excluded for computer malfunctions (3), native
languages other than English (4), evidence of current drug use (1),
very poor performance on all tasks, including a very low score on
the working-memory sentence judgment task (11% correct) that

invalidated the procedure (1), and failing to click in the correct
(right-most) portion of the screen in any trials in the procedural
prediction task (2).

The two sessions were typically scheduled 2 days apart (due
to scheduling constraints, two participants’ sessions were 3 days
apart, and two participants’ sessions were 6 days apart). Both
sessions began with the category-learning task, which took
roughly 30 min. On day 1, the second task was the procedural-
memory task. On day 2, the second task was part 1 of the
declarative-memory task, followed by the working-memory task
and part 2 of the declarative-memory task (see Figure 1 for a
diagram comparing the order of tasks between experiments).

Sound-Category-Learning Task
Materials
Materials for the sound-category-learning task were identical to
Experiment 1.

Procedure
The procedure differed in two ways from Experiment 1, with
the goal of promoting increased integration of the pitch and
F2 dimensions in participants’ categorization strategies (i.e.,
more use of diagonal linear categorization boundaries, whether
sub-optimal—GLC—or optimal—OPT). First, twice the training
was given over the course of two different sessions. Second,
while the same inventory of stimuli was presented on each day
of Experiment 2 as in Experiment 1, the order of presentation
differed. From each of the 6 original training blocks, 6 of the 12
stimuli that straddled the category boundary were pulled out of
the block and moved to a “block 0” at the beginning of the task.
The intention of block 0 was to highlight the category boundary
by presenting only stimuli from along the boundary (see Spiering
and Ashby, 2008, for a similar procedure). We hoped that
presenting only boundary stimuli at the start of training would
encourage learners to correctly categorize those stimuli, which
would require learning precisely where the diagonal boundary
was located in the category space and relying on both dimensions
to do so. By contrast, when boundary stimuli were intermixed
with non-boundary stimuli, a learner could achieve fairly high
accuracy overall (as high as 85.7% correct) even if performing at
chance (50% correct) on the boundary stimuli. Different sets of
6 “boundary” stimuli were pulled from blocks 1, 3, and 5 than
from blocks 2, 4, and 6, so that across the entire training, each
“boundary” stimulus occurred 3 times in block 0 and 3 times
across blocks 1–6. Figure 2 indicates the 2 sets of 6 “boundary”
stimuli with solid and dashed circles, respectively. Instead of 6
blocks of 42 trials as in Experiment 1, the task on each day
consisted of 7 blocks of 36 trials: block 0 (containing the difficult
“boundary” stimuli), and blocks 1–6.

Memory Assessments
The procedural-memory, declarative-memory, and working-
memory assessments were identical to Experiment 1.

Results
For each training day, we conducted the same analyses as in
Experiment 1. Means and standard deviations on each memory
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FIGURE 6 | Scatterplot, with best-fit line, depicting the impact of
procedural-memory skills on Block 6 accuracy in Experiment 2, day 1. In a
regression analysis that also included declarative-memory skills and
working-memory skills as predictors, procedural-memory skills were the only
significant predictor.

measure in each experiment are listed in Table 1. The below
results are organized by training day. For each day, as for
Experiment 1, we report regression analyses for each dependent
variable in turn (Block 6 Accuracy and Number of Linear Blocks),
relating them to procedural-, declarative-, and working-memory
skills. The range of Number of Linear Blocks was slightly different
in Experiment 2 than in Experiment 1. Number of Linear Blocks
ranged from 0 to 7 instead of from 0 to 6, because of the inclusion
of block 0 (as in Experiment 1, a score of 7 represents never
using a linear strategy). Accuracy was also higher in Experiment
2 block 6 (on both days) than in Experiment 1 block 6, because
in Experiment 2 block 6, half of the difficult “boundary stimuli”
were pulled out into block 0.

Day 1
Block 6 accuracy
On day 1, accuracy increased significantly between training
blocks 1 and 6 from 57.38 to 75.34% [t(40) = 9.37, p < 0.001].
Block 6 accuracy also significantly exceeded chance [50%;
t(40) = 13.65, p < 0.001]. The multiple-linear-regression
model including procedural prediction accuracy, declarative
delayed paragraph recall, and working-memory letter accuracy
as predictors of block 6 accuracy showed a significant effect
of procedural prediction accuracy [β = 0.366, t(37) = 2.28,
p = 0.028]. However, the model overall did not explain a
significant proportion of variance in accuracy scores [R2 = 0.083,
F(3,37) = 2.20, p = 0.104].7 Table 2 reports standardized
coefficients betas for all regression models predicting Block 6
Accuracy. Figure 6 depicts a scatterplot, with a best-fit line, for
Block 6 Accuracy as a function of procedural-memory skills.

7For comparison, we also computed the correlation between procedural prediction
accuracy and block 6 accuracy, which did not reach the cutoff for statistical
significance: r(39) = 0.30, p = 0.056.

FIGURE 7 | Scatterplot, with best-fit line, depicting the impact of
working-memory skills on number of linear blocks in Experiment 2, day 1. In a
regression analysis that also included declarative-memory skills and
procedural-memory skills as predictors, working-memory skills were the only
significant predictor.

Number of linear blocks
On average, participants used a linear decision boundary (OPT
or GLC) in 2.3 blocks (again, the possible scores ranged from
0–7). The regression model revealed that working-memory skills
significantly predicted the number of blocks in which participants
used a linear strategy [β = 0.386, t(37) = 2.48, p = 0.018]. However,
the model overall did not explain a significant proportion of
variance in number of linear blocks [R2 = 0.091, F(3,37) = 2.33,
p = 0.089].8 Table 3 reports standardized coefficients betas for
all factors in all regression models predicting Number of Linear
Blocks. Figure 7 depicts a scatterplot, with a best-fit line, for
Number of Linear Blocks as a function of working-memory skills.

8For comparison, we also computed the correlation between working-memory
skills and number of linear blocks, which was significant: r(39) = 0.342, p = 0.029.

FIGURE 8 | Scatterplot, with best-fit line, depicting the impact of
working-memory skills on Block 6 accuracy in Experiment 2, day 2. In a
regression analysis that also included declarative-memory skills and
procedural-memory skills as predictors, working-memory skills were the only
significant predictor.
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FIGURE 9 | Scatterplot, with best-fit line, depicting the impact of
procedural-memory skills on number of linear blocks in Experiment 2, day 2.
In a regression analysis that also included declarative-memory skills and
working-memory skills as predictors, procedural-memory skills were the only
significant predictor.

Day 2
Block 6 accuracy
On day 2, accuracy increased significantly between training
blocks 1 and 6 from 71.75% to 76.42% [t(40) = 2.96, p = 0.005].
Block 6 accuracy also significantly exceeded chance [50%;
t(40) = 17.96, p < 0.001]. However, block 6 accuracy on
day 2 did not significantly exceed block 6 accuracy on day 1
(75.34%; n.s.), suggesting that participants may have already
reached asymptotic accuracy on day 1. Block 6 accuracy on the
2 days was significantly correlated [r(39) = 0.69, p < 0.001].
For day 2, the multiple-linear-regression model showed that
working-memory skills significantly predicted block 6 accuracy
[β = 0.401, t(37) = 2.66, p = 0.012]. The model overall explained a
significant proportion of variance in accuracy scores [R2 = 0.148,
F(3,37) = 3.32, p = 0.030]. Figure 8 depicts a scatterplot,
with a best-fit line, for Block 6 Accuracy as a function of
working-memory skills.

Number of linear blocks
On average, participants used a linear decision boundary
(OPT or GLC) in 2.8 blocks. The regression model revealed
that procedural prediction accuracy significantly predicted the
number of linear blocks [β= 0.412, t(37) = 2.66, p = 0.012].
Working-memory skills did not reach the cutoff for statistical
significance [β = 0.289, t(37) = 1.91, p = 0.064]. The model overall
explained a significant proportion of variance in number of linear
blocks [R2 = 0.143, F(3,37) = 3.22, p = 0.034]. Figure 9 depicts a
scatterplot, with a best-fit line, for Number of Linear Blocks as a
function of procedural-memory skills.

Discussion
Whereas Experiment 1 had revealed a significant effect of
declarative memory on sound-category learning, Experiment
2 instead showed significant effects of working memory and
procedural memory. On Day 1, in regression models, procedural
memory significantly predicted accuracy (though note that the

model did not explain a significant proportion of variance and
the correlation between procedural memory and accuracy did
not reach the cutoff for statistical significance), and working
memory significantly predicted the total number of blocks in
which participants used a two-dimensional, linear strategy (while
the latter model did not explain a significant proportion of
variance, the correlation was significant). On Day 2, regression
models showed that procedural memory significantly predicted
the number of linear blocks, while working-memory significantly
predicted accuracy.

We had predicted stronger effects of procedural memory
in Experiment 2 vs. Experiment 1, particularly on Day 2,
when participants were given more time to shift to an
implicit-learning strategy. Even on Day 1, we had expected
that starting the training with the stimuli that straddled the
category boundary (half of the difficult “boundary stimuli”
were pulled out of training blocks 1–6 and presented in
block 0) would encourage participants to use an implicit-
learning strategy (i.e., to rely on procedural memory) rather
than an explicit-learning (declarative-memory-based) strategy.
However, the effects of working memory in Experiment 2 were
surprising. It is not obvious which differences between the
designs of Experiments 1 and 2 might account for the effects
of working memory that emerged only in Experiment 2. It is
possible that starting the training with the stimuli that straddled
the category boundary somehow favored participants with
strong working-memory skills in addition to strong procedural-
memory skills, though the precise reason for this pattern is not
clear.

GENERAL DISCUSSION

Across two experiments, healthy adult participants learned
artificial sound categories and participated in assessments of
procedural-, declarative-, and working-memory skills. Based on
the COVIS model of category learning (Ashby et al., 1998) and
the Procedural Deficit Hypothesis for language learning (Ullman
and Pierpont, 2005; Kemény and Lukács, 2010; Hedenius et al.,
2011; Lum et al., 2012), we had predicted that procedural
skills would best predict learning outcomes for categories that
require integrating two dimensions using a non-verbalizable
strategy. Surprisingly, in Experiment 1, only declarative memory
significantly impacted the number of training blocks in which
participants integrated the cues. In Experiment 2, the trial orders
were redesigned to draw attention to the category boundary
and promote cue integration, and more time was provided
to shift to an implicit-learning strategy, via a second day
of training. Experiment 2 revealed significant effects of both
procedural memory and working memory. On Day 1, procedural
memory significantly predicted accuracy (though note caveats
in the Experiment 2 Discussion, above), and working memory
significantly predicted the total number of blocks in which
participants used a two-dimensional, linear strategy. On Day
2, procedural memory significantly predicted the number of
linear blocks, while working-memory significantly predicted
accuracy.
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The effects of procedural-memory skills on multidimensional-
category-learning outcomes in Experiment 2 (where more
time and encouragement were provided to support using
implicit-learning strategies) provide support for our original
prediction. This prediction was based on the Procedural Deficit
Hypothesis (Ullman and Pierpont, 2005), as well as on the COVIS
model for learning of information-integration category structures
(Ashby et al., 1998). Several recent studies had also provided
additional support for the link between procedural memory and
dimensional integration. For example, learners with elevated
depressive symptoms, which are associated with suppressed
declarative memory, show better information-integration
learning (Maddox et al., 2014). Reducing the time to process
feedback before the next categorization trial also impairs
rule-based but not information-integration category learning,
arguably by reducing access to explicit strategies (Maddox et al.,
2004). Recent work has also shown inverse relationships between
working-memory skills and information-integration learning.
Filoteo et al. (2010) found that taxing participants’ working
memory using an interleaved number-recall task increased
cue integration, putatively by blocking participants’ access to
declarative strategies.

Nevertheless, multiple-linear-regression models also revealed
facilitative effects on category learning of declarative memory
in Experiment 1 and working memory in Experiment 2. These
results are surprising considering our original prediction that
procedural memory would uniquely predict sound-category
learning in an information-integration task. In particular, the
original COVIS model suggested that high declarative ability
should be associated with poor information-integration learning
(Ashby et al., 1998).

However, not all prior evidence supports the notion
that declarative- and working-memory skills are inversely
predictive of information-integration learning. Some studies
have found that working memory is positively correlated with
both rule-based and information-integration category learning.
Lewandowsky et al. (2012) found that working-memory skills
predicted both types of category learning, and predicted the
ability to focus on task-relevant strategies, irrespective of whether
the task required integrating multiple dimensions (see also
Kalish et al., 2017). Craig and Lewandowsky (2012) found that
working-memory capacity predicted category-learning speed but
not the particular strategy participants used. Other studies
have cast doubt on the notion of dissociable category-learning
systems. In an fMRI study, Carpenter et al. (2016) found
substantial overlap in the brain regions recruited for rule-based
and information-integration tasks, including activation in the
medial temporal lobes and hippocampus (see also Stanton and
Nosofsky, 2013).

Even within the COVIS framework, more recent discussions
have focused on system-level interaction, including the possibility
that on some tasks it might be beneficial to flexibly switch
between category-learning strategies trial-by-trial (Erickson,
2008; Ashby and Maddox, 2011). The process associated with
switching between rule-based and information-integration types
of strategies suggests that even highly skilled learners may not
deploy solely procedural strategies. It could be that learners

with strong declarative-memory skills or working-memory skills
better manage the transition between explicit and implicit
strategies. Thus, it could be that our results reflect the
fact that learners with stronger procedural-memory skills are
more successful at integrating multiple dimensions in category
learning, but strong declarative- and working-memory skills are
also beneficial in that they enable learners to efficiently shift over
to an optimal cue-integration strategy. However, the fact that
effects of declarative memory went away in Experiment 2 suggests
that, when provided with enough time and support, participants
shifted to greater use of implicit-learning strategies.

While the sound-category-learning task used here is ideal
for testing how well the COVIS model generalizes to a
language-learning task, it could be a less ideal test of
the Procedural Deficit Hypothesis. The Procedural Deficit
Hypothesis (Ullman and Pierpont, 2005) emerged out of
a proposal that language grammar, particularly structure
involving sequences (e.g., syntax or morphology) is best learned
procedurally, while vocabulary is best learned declaratively
(Ullman, 2004). Thus, it is not entirely clear whether this
theoretical framework would predict that speech-sound learning
is learned via the same route as syntax or morphology. The
unsupervised way in which speech-sound categories in the brain
emerge from experience with speech seems somewhat compatible
with theoretical descriptions of statistical learning of language
structure (Evans et al., 2009), which has been linked to implicit
learning (Gómez, 2016). Nevertheless, extending approaches like
the COVIS framework beyond speech-sound learning and into
the domains of syntax and morphology could prove a more ideal
test of the Procedural Deficit Hypothesis, and such extensions
could be an important area for future research. One challenge
for future work applying COVIS-type models to grammar
learning will be to define the “dimensions” (analogous to the
speech sound dimensions used here, pitch vs. second-formant
frequency) for syntactic or morphological structures in order to
relate dimensional integration to procedural-memory skills.

With regard to the present results, it must be noted that
effects of working memory on category-learning outcomes could
have been limited by ceiling effects on the working-memory
task. Across the two experiments, 14/74 participants (19%)
scored 100% on letter recall accuracy. The design of the
working-memory task appears to have contributed to the ceiling
effects we found, as only a set size of three sentence-letter
combinations was used. This constant set size contrasts with prior
work in which set sizes typically vary between two and five (or
six) sentence-letter combinations (e.g., Daneman and Carpenter,
1980; Kane et al., 2004).

In addition, effects of procedural memory could have been
limited by floor effects on the procedural prediction task. Across
experiments, 27/70 participants (39%) scored at or below chance
overall (50%). However, average procedural prediction accuracy
(60%) is commensurate with prior work (61% in Misyak et al.,
2010b), and ceiling and floor effects on the memory assessments
did not preclude the extraction of meaningful findings. We
still find significant effects of procedural- and working-memory
skills. In future work, we expect that changes to the design
of the working-memory task will reduce ceiling effects for
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working-memory accuracy, and may reveal stronger
contributions of that predictor.

In conclusion, our findings suggest that individual differences
in procedural memory predict accuracy and cue integration
in an information-integration auditory category-learning task.
This supports a model of category learning that argues that
implicit skills predict cue integration (COVIS; Ashby et al., 1998).
However, we also find evidence that both declarative memory
and working memory predict category-learning outcomes. This
result converges with other recent discussions of and follow-ups
to the COVIS model (Erickson, 2008; Ashby and Maddox,
2011) that suggest contributions of multiple systems to category
learning. In particular, it may be that strong declarative- and
working-memory skills enable participants to efficiently switch
away from a suboptimal, declarative, unidimensional strategy and
toward an optimal, procedural, dimensional-integration strategy.
However, much more work is needed to fully characterize
the roles of each of these memory systems in category
learning and cue integration as well as in language learning
generally.
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