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Active maintenance of eligibility 
trace in rodent prefrontal cortex
Dong‑Hyun Lim1,2,4, Young Ju Yoon1,2,4, Eunsil Her3, Suehee Huh2 & Min Whan Jung1,2*

Even though persistent neural activity has been proposed as a mechanism for maintaining eligibility 
trace, direct empirical evidence for active maintenance of eligibility trace has been lacking. We 
recorded neuronal activity in the medial prefrontal cortex (mPFC) in rats performing a dynamic 
foraging task in which a choice must be remembered until its outcome on the timescale of seconds 
for correct credit assignment. We found that mPFC neurons maintain significant choice signals during 
the time period between action selection and choice outcome. We also found that neural signals for 
choice, outcome, and action value converge in the mPFC when choice outcome was revealed. Our 
results indicate that the mPFC maintains choice signals necessary for temporal credit assignment in 
the form of persistent neural activity in our task. They also suggest that the mPFC might update action 
value by combining actively maintained eligibility trace with action value and outcome signals.

Making a causal link between an action and its outcome can be trivial when sensory information about the 
chosen action is available at the time its outcome is revealed. It is often the case, however, that the outcome of 
an action is revealed after a substantial delay without sensory information about the chosen action. In everyday 
lives, feedbacks of a large number of actions are available not immediately, but with a delay on the timescale of 
seconds. Hence, we are frequently faced with the problem of attributing credit of an outcome to an action we 
committed seconds before. There are several candidate neural processes that can be used to solve this temporal 
credit assignment problem. First, synapses activated during action generation may be tagged biochemically, and 
their weights are modified by feedback signals1,2. Empirical studies have found evidence for molecular synaptic 
tagging in the striatum and cortex in rodents3–6 as well as in the insect brain7. Second, spike timing-dependent 
synaptic plasticity beyond millisecond timescale may associate two events that are separated in time at longer 
timescales8. In the hippocampus, a variant of spike timing-dependent synaptic plasticity rule (‘behavioral time-
scale’ synaptic plasticity rule) allows potentiation of synapses that are activated by presynaptic activity up to 
2 s before9. Third, the information about an action may be maintained for a short period of time in the form of 
short-term synaptic weight changes10,11.

As another candidate mechanism, which is the subject of the present study, memory of the committed action 
may be maintained by persistent activity of a population of neurons12. This will be referred to as ‘active’ eligibility 
trace to contrast to the other candidate processes mentioned above (synaptic tagging and synaptic plasticity) 
which will be referred to as ‘silent’ eligibility traces. Active eligibility trace is a plausible neural process given 
that many brain structures maintain working memory in the form of persistent neuronal ensemble activity13. It 
has also been shown that many different brain areas in rats and monkeys maintain choice signals as persistent 
activity over multiple trials12,14. However, to the best of our knowledge, choice-related persistent activity has not 
been demonstrated in an experimental setting that requires temporal credit assignment. In almost all studies so 
far, sensory information about the chosen action was available at the time its outcome is revealed. In this regard, 
we have previously examined striatal neural activity in a task in which a choice must be remembered until its 
outcome is revealed for correct credit assignment; however, we failed to find persistent neuronal ensemble activ-
ity linking a choice and its outcome in the dorsal striatum15. In another study in which monkeys performed a 
task requiring temporal credit assignment across target-cue presentation and choice outcome, neural activity 
related to a target cue subsided following cue offset and then arose again at the time of outcome onset16. Hence, 
even though active eligibility trace is a plausible mechanism for temporal credit assignment, it is yet to be dem-
onstrated empirically.

In the present study, we examined whether the medial PFC (mPFC) maintains eligibility trace in the form 
of persistent neuronal ensemble activity. Given its importance in working memory17–20 we reasoned that the 
mPFC may maintain short-term memory of a chosen action based on active discharges. Our results show that 
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the mPFC neuronal population carries significant choice signals in the form of persistent activity during the 
time period between the animal’s choice and its outcome.

Results
Three rats were trained in a dynamic two-armed bandit (TAB) task in an elevated Y-shaped maze as in our 
previous study15 (Fig. 1a). Each trial began when the rat arrived at the junction between the proximal and distal 
sections of the central stem (’D’ in Fig. 1a; detected by a photobeam sensor) from the proximal side of the maze. 
Following a delay of 2 s, which was imposed by elevating a distal portion of the central stem, the rat was allowed 
to choose freely between two targets that were located at the distal ends of the maze. Each choice was associated 
with one of two different probabilities (12 or 72%) of water (30 μl) delivery that were constant within a block 
of 34–75 trials (59.2 ± 13.1; mean ± SD), but reversed across four blocks (total trials per session, 234.2 ± 27.0; 
mean ± SD) without any sensory cue. Hence, the rat had to discover changes in reward probabilities only by trial 
and error. The outcome of a choice was revealed not immediately after the choice, but when the rat returned to 
the proximal end of the maze (reward zone; ’R’ in Fig. 1a; detected by a photobeam sensor) and waited for 0.5 s. 
The next trial began when the rat broke the photobeam at the junction between the proximal and distal sections 
of the central stem (’D’ in Fig. 1a).

The central stem of the maze was narrow (5 cm) so that the rat’s return trajectories from the left and right 
targets to the reward zone converged on the central stem (Fig. 1b). As a consequence, no explicit sensory cue 
on the animal’s chosen target was available at the time the outcome was revealed (0.5 s following the rat’s arrival 
at the reward zone). Hence, in this task, the animal was required to maintain eligibility trace during the time 
period between trajectory convergence and outcome onset (‘memory’ stage) and combine this information with 
outcome information for correct credit assignment. The onset of memory stage was determined separately for 
each session (Fig. 1c). The mean (± SD) duration of the memory stage was 1.0 ± 0.4 s.

The rats were over-trained in the task (99, 40 and 95 sessions) before unit recording began. Figure 1d shows 
the rat’s performance in the task in a sample recording session. As shown in this example, the rat initially chose 
the lower-probability (12%) target more frequently after block transition. However, after ~ 10–20 trials since 
block transition, the rat switched its preferential choice to the higher-probability (72%) target. Overall, during 
the recording sessions, the rats chose the higher-probability target in 62.6 ± 7.7% (mean ± SD across sessions) 
of trials and rewarded in 50.5 ± 5.5% of trials. During the first 10 trials after block transition, the rats chose the 
higher-probability target in 41.7 ± 13.3% of trials and were rewarded in 37.2 ± 10.8% of trials; during the last 20 
trials of a block, they chose the higher-probability target in 75.4 ± 10.7% of trials and were rewarded in 57.6 ± 8.1% 
of trials (only blocks 2–4 were analyzed). The rats showed slight choice biases (proportion of left choices, 51.4, 
50.8 and 47.9%).

We recorded total 446 single units from the anterior cingulate cortex (ACC), prelimbic cortex (PLC) and 
infralimbic cortex (ILC) in the right hemisphere in three rats (excluding those units recorded near the borders 
between these structures) performing the dynamic TAB task over 12–21 days (Fig. 2a). The recorded units were 
classified into putative pyramidal neurons (n = 298) and putative interneurons (n = 148) based on mean discharge 
rates and spike widths (Fig. 2b). Only putative pyramidal neurons were included in the analysis (78 ACC, 160 
PLC and 60 ILC units; mean discharges rates, 2.0 ± 1.7, 1.8 ± 1.8 and 1.9 ± 2.0 Hz, respectively; mean ± SD).

We first examined whether mPFC neurons carry active eligibility trace signals during the memory stage and 
whether two signals necessary for temporal credit assignment, namely eligibility trace and outcome signals, 
coexist in the mPFC during the reward stage. For this, we examined temporal profiles of mPFC neuronal activ-
ity related to the animal’s choice and its outcome. Neural activity was analyzed in a 500-ms moving window 
that was advanced in 50-ms steps and temporally aligned to memory stage as well as reward stage onsets. To 
control for potential confounding influences of signals related to the animal’s choice and its outcome in the 
previous trials12,14, we ran a multiple regression analysis that included the animal’s choice and its outcome in 
the current and two previous trials as explanatory variables (Eq. 4). Both eligibility trace- and outcome-coding 
neurons were found in the mPFC as shown by sample neurons in Fig. 3a. Figure 3b shows fractions of neurons 
significantly responsive to the animal’s choice [C(t)] or outcome [R(t)] in the current trial. As shown, neuronal 
populations in all three subregions carried significant choice signals (permutation test using trial-shifted data; 
p < 0.05) throughout the memory stage and also during the reward stage. Overall, the return time (time between 
photobeam activations at ‘T’ and ‘R’ in Fig. 1a) was slightly, but significantly shorter following high compared to 
low reward-probability-target choices (3.6 ± 1.5 and 3.7 ± 1.7 s, respectively; mean ± SD; t-test, t(9642) = 3.407; 
p < 0.01). Similar results were obtained when we performed the same analysis excluding those sessions with 
significantly (t-test, p < 0.05) different return times between high and low reward-probability-target choices 
(n = 9 out of 41 sessions; 22.0%; see Supplementary Fig. S1), indicating that the persistent choice signals are not 
because of positional variations associated with different reward probabilities.

The choice signals became progressively weaker since the memory stage onset in all three subregions (Fig. 3b). 
Relative strength of choice signals did not vary significantly across the subregions in the memory stage (first 1 s 
or the entire memory stage in those sessions with memory stage < 1 s; χ2-test, χ2 = 0.445, p = 0.45) or reward 
stage (first 1 s; χ2 = 0.080, p = 0.96; Fig. 3b). Reward signals were weak before reward stage onset, but rose rapidly 
since the reward stage onset so that significant choice and outcome signals coexisted during the reward stage in 
all three subregions. These results indicate that the mPFC maintains active eligibility trace during the memory 
stage and carries concurrent eligibility trace and outcome signals during the outcome stage.

To test whether choice and outcome signals are conjunctively encoded in the mPFC, we examined whether 
mPFC neurons are more likely to encode both choice and outcome signals than expected by chance. Of 78 
ACC neurons, 13 and 48 were significantly responsive to choice and outcome, respectively, during the first 1-s 
time period since reward stage onset (the time the outcome was revealed; 0.5 s following the rat’s arrival at the 
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reward zone), and, of these, 11 were significantly responsive to both choice and outcome. There was a trend for 
ACC neurons to encode both choice and outcome more than expected by chance (χ2-test, χ2 = 3.510, p = 0.06). 

Figure 1.   Behavior. (a) A modified T-maze. A trial began when the animal arrived at the delay point (D) 
from the proximal side of the central stem. Following a 2-s delay at the delay point, the animal was allowed to 
choose freely between two targets (T) and return to the reward location (R) where water reward was delivered 
probabilistically according to the animal’s choice. Blue dashed lines denote photobeam sensors. ‘A’ (approach) 
and ‘C’ (convergence) denote approximate spatial positions for the divergence (outbound) and convergence 
(inbound) of left and right target-associated movement trajectories, respectively. (b) Movement trajectories in a 
sample session. Blue, left choice; red, right choice. Each dot represent the animal’s head position at 33.3 ms time 
resolution. (c) Determination of the time of memory stage onset. The onset of memory stage was determined 
separately for each session according to the animal’s movement trajectories. The graphs show the time course 
of X-coordinates of animal’s position data during the 3-s time period before reward stage onset (time 0). The 
onset of memory stage (red vertical lines) was when the difference in X-coordinates of the left- and right-
choice trajectories became statistically insignificant (t-test, p > 0.05) and maintained that way for at least three 
consecutive time points (100 ms). Top, X-coordinates of all return trajectories following left and right target 
choices (blue and red, respectively) during the sample session. Middle, mean (± SD across trials) X-coordinates 
of return trajectories for the same session. Bottom, mean X-coordinates of return trajectories averaged across 
sessions (± SD; n = 41). (d) Choice behavior during the sample recording session. Tick marks indicate the actual 
choices of the animal (upper, left choice; lower, right choice; long, rewarded; short, unrewarded). Vertical 
solid lines indicate block transitions. Numbers on the top denote mean reward probabilities following left and 
right choices in each block. The gray line shows the probability to choose the left target (PL) predicted by the 
Q-learning model. The black line shows the actual PL in a moving average of 10 trials.
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Analyzing the same time period, of 160 PLC neurons, 27 and 71 were significantly responsive to choice and 
outcome, respectively, and 19 were significantly responsive to both choice and outcome; of 60 ILC neurons, 11 
and 32 were significantly responsive to choice and outcome, respectively, and 10 were significantly responsive 
to both choice and outcome. Both PLC and ILC neurons were significantly more likely to encode both choice 
and outcome than expected by chance (χ2-test, PLC, χ2 = 8.892, p < 0.01; ILC, χ2 = 7.641, p < 0.01). These results 
indicate that choice and outcome signals are conjunctively combined in the mPFC during the reward stage.

We then examined whether individual mPFC neurons carry eligibility trace signals in the form of persistent 
activity. For this, we examined temporal profiles of individual neuronal responses to the animal’s target choice 
during the memory stage using a moving-window analysis (500 ms, advanced in 100-ms steps). As shown in 
Fig. 4a, the majority of mPFC neurons conveyed eligibility trace signals only during certain phases of the memory 
stage; only a small fraction (ACC, 5 out of 78, 6.4%; PLC, 7 out of 160, 4.4%; ILC, 5 out of 60, 8.3%) showed 
significant choice-related activity throughout the entire memory stage. Consequently, neuronal ensemble activity 
went through dynamic changes during the memory stage (Fig. 4b). These results indicate that active eligibility 
trace signals are maintained by dynamically changing, rather than stably maintained, mPFC neuronal popula-
tion activity in our task.

Choice and outcome signals must be combined with value signals in order for the animal to update expected 
outcomes associated with two target choices. In our previous studies using conventional dynamic foraging tasks, 
signals for chosen value (value of the chosen action in a given trial; i.e., left action value in left-choice trials and 
right action value in right-choice trials) were elevated as the animals approached the target locations, so that 
they were combined with outcome signals at the time choice outcome was revealed in numerous brain areas21–25. 
Chosen value and outcome signals would be sufficient to compute reward prediction error and update value of 
the chosen target in a given trial. However, in our previous study in the striatum that used the same task as the 
present one, we failed to observe elevation of chosen value signals at the time of choice outcome15. Instead, action 
value signals were elevated in the dorsolateral (but not dorsomedial) striatum. Given that choice and outcome 
signals were also significant at the time of choice outcome, these results suggest that the dorsolateral striatum 
my update value of the chosen target by combining signals for action value, choice, and outcome. To examine 
neural signals for action value and chosen value in the mPFC, we used a regression model that included left action 
value, right action value, and chosen value along with the animal’s current choice and its outcome (Eq. 5; sample 
neurons coding action value are shown in Fig. 5a). Action values were computed using the hybrid model used in 
our previous study15 (Q-learning model combined with win-stay and lose-switch terms; Eqs. (1)–(3)) which well 
predicted the animal’s actual choice behavior (Fig. 1d). As in the striatum, we failed to find elevation of chosen 
value signals at the onset of reward stage in all three regions of the mPFC. We also found significant action value 
signals (permutation test using trial-shifted data; p < 0.05) in the ACC and PLC (Fig. 5a,b). Signals for left and 
right action values were significantly above chance level during the first 1-s time period since reward stage onset 
in the ACC (permutation test, p < 0.01 for both) and PLC (p = 0.01 and < 0.01, respectively), but not in the ILC 
(p = 0.56 and 0.36, respectively) (Fig. 5b,c). Chosen value signals were significantly above chance level during the 
same time period in the PLC (p < 0.01), but not in the ACC (p = 0.11) or ILC (p = 0.49). In addition, in the ACC, 
chosen value signals were significantly weaker than left action value signals (χ2-test, χ2 = 6.646, p = 0.01). These 
results indicate that chosen value signals are not elevated in the mPFC at the time choice outcome is revealed 
in our task. They also indicate that all the signals necessary for updating action value, namely choice, outcome, 
and action value signals converge in the ACC and PLC during the early reward stage.

Figure 2.   Recording sites and unit classification. (a) Single units were recorded from the anterior cingulate 
cortex (ACC), prelimbic cortex (PLC), and infralimbic cortex (ILC). The diagrams are coronal sections of three 
rat brains at 3.24 mm anterior to bregma. Each diagram represents one brain and each circle represents one 
recording site that was estimated based on histology and electrode advancement history. Units recorded near the 
borders were excluded. Modified with permission from ref.34. (b) The recorded units were classified into putative 
pyramidal cells and putative interneurons based on mean firing rates and spike widths (filtered spike waveforms; 
peak-to-valley). Those units with mean firing rates < 8.83 Hz and spike widths > 0.24 ms were classified as 
putative pyramidal cells and the rest were classified as putative interneurons.
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Discussion
We examined whether the mPFC neuronal population carries memory signals for a chosen action in the form of 
persistent activity in a task that requires credit assignment across a temporal gap of ~ 1 s. We found that all subre-
gions of the mPFC (ACC, PLC and ILC) maintain memory signals for a chosen action in the form of persistent 
ensemble activity during the time period between the animal’s choice of action and its outcome. We also found 
that, unlike in conventional dynamic foraging tasks, chosen value signals are not elevated at the time of outcome 
onset. Instead, action value signals converged with choice and outcome signals in the ACC and PLC. These results 
show that all subregions of the mPFC actively maintain eligibility trace signals, and that they are combined with 
action value and outcome signals in the ACC and PLC when the animal’s choice outcome is revealed.

Our results provide evidence for active eligibility trace in the mPFC in the timescale of seconds. However, 
it remains to be determined whether such active eligibility trace actually contributes to assigning credit of the 
experienced outcome to the chosen action. Even in the case it does, it is unknown whether the mPFC relies 
solely on active eligibility trace to solve the temporal credit assignment problem. Other neural processes than 
active eligibility trace, such as synaptic tagging1,2, may also contribute to solving the temporal credit assignment 
problem in the mPFC. Also unknown is whether and how different brain structures rely on different neural 

Figure 3.   Neural activity related to choice and outcome. (a) Sample neurons coding the animal’s choice [C(t)] 
during the memory stage (left) or choice outcome [R(t)] during the reward stage (right). Orange and light blue 
dashed lines, onset times of the reward and memory stages, respectively. (b) Population data showing temporal 
profiles of choice and outcome signals during the memory and reward stages. Shown are fractions of neurons 
significantly responsive to a given variable (500-ms sliding window advanced in 50-ms steps; n = 78 ACC, 160 
PLC, and 60 ILC units). Cyan, ACC; orange, PLC; purple, ILC. Filled circles, actual data; empty square, trial-
shifted data (control). Light orange and light blue dashed lines, mean onset times (averaged across all sessions) 
of the reward and memory stages, respectively. Colored squares/bars on top, significant differences (permutation 
test, p < 0.05) between the original and trial-shuffled data. Inset, fractions of choice-coding neurons during the 
memory and reward stages (first 1 s each).
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processes to solve the temporal credit assignment problem. We failed to obtain evidence for active eligibility trace 
in the dorsal striatum in the same task as used in the present study15. This might be an indication that the mPFC 
plays a more important role than the striatum in temporal credit assignment in the current task (c.f., Ref.26). 
Alternatively, the mPFC and striatum may rely on different neural processes for temporal credit assignment. In 

Figure 4.   Dynamics of choice-related neural activity during memory stage. (a) Shown are those mPFC neurons 
that are significantly responsive to the animal’s target choice during at least one analysis window (500 ms, 
advanced in 100-ms steps) during the memory stage. Each horizontal line segment indicates significantly 
different (t-test, p < 0.05) neuronal activity between left- and right-choice trials in that analysis time window. 
Neurons were ordered according to the total duration of significant choice-selective responses. Neuronal activity 
was aligned to the onset of memory (left) or reward (right) stage. Light orange and light blue dashed lines, mean 
onset times (averaged across all sessions) of the reward and memory stages, respectively. (b) Trajectories of the 
three principal components of the mPFC neural populations associated with the left (blue) and right (red) target 
choices. Filled circles denote 50-ms time steps. Black triangles, 1 s before memory stage onset; green triangles, 
onset of memory stage; orange triangles, mean onset time (averaged across all sessions) of the reward stage.
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this regard, previous studies have shown evidence for synaptic tagging in the striatum3–5. Note that experimental 
settings vary widely across studies on the neural basis of temporal credit assignment. A given brain structure may 
rely on different neural processes to solve temporal credit assignment depending on task requirement such as 
the length of a temporal gap between an action and its outcome27. Clearly, further studies are needed to clarify 
whether and how different brain structures utilize different neural processes to solve temporal credit assignment 
problem in diverse behavioral settings.

Assuming that the mPFC relies on active eligibility trace to solve the temporal credit assignment problem in 
the present task, it is unclear how the mPFC ascribes credit of a choice outcome to neuronal ensemble activity 
representing a specific choice. Even though the mPFC neuronal population maintained choice signals through-
out the memory stage, only a small fraction of individual mPFC neurons showed persistent choice-related 
activity throughout the memory stage. In other words, choice signals were maintained in the form of dynami-
cally changing neuronal ensemble activity during the memory stage so that neuronal ensemble activity at the 

Figure 5.   Neural activity related to action value and chosen value. (a) Sample neurons coding left action value 
(QL). Trials were grouped into quartiles of left action value. Light blue dashed line, onset time of memory stage 
for the corresponding session. (b) Population data showing temporal profiles of neural signals for left action 
value (QL), right action value (QR), and chosen value (QC) around the onset of reward stage (time 0). Shown 
are fractions of neurons significantly responsive to a given variable (500-ms sliding window advanced in 50-ms 
steps). Light blue dashed line, mean onset time of memory stage. Cyan, ACC; orange, PLC; purple, ILC. Filled 
circles, actual data; empty square, trial-shifted data (control). Black squares/bars on top, significant differences 
(permutation test, p < 0.05) between the original and trial-shuffled data. (c) Action value and chosen value 
signals during the first 1 s of the reward stage. Filled bars, actual data; empty bars, trial-shifted data (control). 
FON, fraction of neurons. *Significant difference between the actual and trial-shifted data (p < 0.05, permutation 
test).
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time of outcome onset differed from that at the time of action selection. It is currently unclear how a choice 
outcome might alter mPFC neural network so that it affects neural representation of the chosen action in a way 
to guide future choices. In fact, this is a problem not limited to temporal credit assignment. The rodent mPFC, 
which plays a crucial role in diverse working memory tasks28, conveys working memory signals in the form 
of dynamically-changing, rather than stably-maintained, neuronal ensemble activity17,18,20. Readout of such 
dynamically-changing neuronal ensemble activity would be trivial if the duration of delay is fixed; a specific 
ensemble activity pattern at the end of delay can be matched to a specific sensory cue presented before delay. 
However, working memory signals are conveyed by dynamically-changing mPFC neuronal ensemble activity 
even when delay duration is not fixed, such as when delay duration is randomized across trials29. We also found 
the maintenance of previous choice signals in the form of dynamically-changing neuronal ensemble activity 
during the time period that varied across trials in the dorsomedial striatum22. Together, these results raise the 
possibility that the brain might be equipped with a mechanism for reading out signals reliably from dynamically-
changing neuronal ensemble activity. Further studies are needed to elucidate whether this is the case and, if so, 
how such readout may be implemented.

A large body of studies have shown that chosen value signals arise at the time of outcome onset in multiple 
regions of the brain including the mPFC in behavioral tasks in which sensory information is available at the 
time of outcome onset14,23,30. These results suggest that these brain areas might update action value by combin-
ing chosen value and outcome signals. However, we found that action value signals are weak in the mPFC at the 
time of outcome onset in the present task. In our previous study that used the same task as the present one, we 
showed that chosen value signals are weak and, instead, action value signals are elevated during the reward stage 
in the dorsolateral striatum15. These results suggest that dynamics of neural signals related to evaluating choice 
outcome might differ drastically depending on the requirement for temporal credit assignment in the mPFC and 
dorsal striatum. These brain structures may rely on action value rather than chosen value signals in updating 
value of the chosen action when sensory information on the chosen action is not available at the time of outcome. 
It remains to be determined whether this is a common rule that can be applied to other brain structures as well.

Methods
Animals.  Three young male Long-Evans rats (~ 11–15 weeks old, 300-360 g) were individually housed in a 
colony room and initially allowed free access to food and water. They were then gradually deprived of water with 
free access to food with extensive handling for 7 days. Their body weights were maintained at > 80% ad libitum 
throughout the experiments. Experiments were performed in the dark phase of a 12-h light/dark cycle. All 
experiments were performed in accordance with protocols approved by the directives of the Animal Care and 
Use Committee of the Korea Advanced Institute of Science and Technology (Approval Number: KA2018-08).

Behavioral task.  The rats performed a dynamic TAB task in a Y-shaped maze that was made of black acrylic 
(Fig. 1a). The central stem was 70 cm long and each of the two distal arms was 20 cm long. The width of the track 
was 5 cm and there was 5-cm wall along the track except around the junction between the central and distal arms 
to allow turning behavior. Each trial began when the rat arrived at the junction between the lower and upper 
segments of the central stem from the reward zone (proximal end of the central stem) and broke a photobeam 
(delay position; ‘D’ in Fig. 1a). The upper segment of the central arm (25 cm long) was elevated before each trial 
onset to prevent the animal from navigating forward. The upper segment of the central stem was lowered 2 s fol-
lowing trial onset (i.e., 2-s delay was imposed at the outset of each trial) allowing the rat to navigate forward and 
choose freely between two targets. The rat’s choice of a target was detected by two photobeam sensors that were 
located in the middle of the distal arms (‘T’ in Fig. 1a). Activation of the left or right target photobeam sensor 
triggered an auditory cue (left, 4.3 kHz; right, 4.5 kHz) until the photobeam-breaking ended. The outcome of the 
rat’s choice was revealed when the rat returned to the reward zone and waited for 0.5 s (reward stage onset). The 
rat’s arrival at the reward zone was detected by a photobeam sensor (‘R’ in Fig. 1a). Positive (30 µl water delivery) 
and negative (no reward delivery) outcomes were signaled by two different sound cues (100 ms; 1 and 9 kHz 
for positive and negative outcomes, respectively in 2 rats and for negative and positive outcomes, respectively 
in 1 rat) that were delivered at the reward stage onset. The next trial began as soon as the animal arrived at the 
delay position and broke the photobeam. No time limit was set for the rats to return to the delay position from 
the reward zone or to make a choice since delay offset. During the recording sessions, the rat stayed 9.1 ± 5.6 
and 3.9 ± 5.0  s (mean ± SD) since the outcome onset in the reward zone in rewarded and unrewarded trials, 
respectively, and arrived at either target arm in 0.7 ± 0.9 s (mean ± SD) since the delay offset. Even though the 
rats approached either target arm in all trials, they failed to activate a target photobeam sensor in some trials 
(n = 184; 1.9% of total trials) that were excluded from the analysis. Each session consisted of four blocks of 34–75 
trials (59.3 ± 13.1, mean ± SD; first block, 40 plus a randomly chosen number between 0 and 20; the other blocks, 
45 plus a randomly chosen number between 0 and 30). One of two reward probability configurations (left:right, 
0.72:0.12 and 0.12:0.72) was chosen randomly for the first block and it was reversed during each block transition 
(0.72:0.12 to 0.12:0.72 or 0.12:0.72 to 0.72:0.12). The rats were trained until they chose the high reward-proba-
bility target > 80% in the steady state (last 10 trials in each block) before unit recording began.

Determination of memory stage onset.  The onset of the memory stage was determined separately for 
each session. We temporally aligned the rat’s X-position data to the time point 3 s prior to the reward stage onset. 
The time point when the difference in X-coordinates of the left- and right-choice trajectories become statistically 
insignificant (t-test, p > 0.05) and maintained that way for at least three time points (100 ms) was marked as the 
onset of the memory stage (Fig. 1c).
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Reinforcement learning model.  We used the same hybrid model we used in our previous study15 to cal-
culate trial-by-trial action values. This model includes simple reinforcement learning and win-stay-lose-switch 
terms. For the chosen action ‘a’ in the t-th trial, the action value qa(t + 1) was updated as follows:

where α is the learning rate and R(t) is the reward (i.e., trial outcome; 1 if rewarded and 0 otherwise) in the t-th 
trial. The total action value [Qa(t + 1)], that includes the action value [qa(t + 1)] and the win-stay-lose-switch 
term, were calculated as follows:

where aWS and aLS are the win-stay and lose-switch terms, respectively. The action value for the unchosen action 
did not change. The probability for selecting the left goal PL(t) was defined as follows

where β is the inverse temperature which defines the degree of exploration during the action selection and γ 
is a term for the bias in selecting the right target. The model parameters were estimated for each rat using the 
maximum likelihood procedure31.

Unit recording.  Single units were recorded with tetrodes from the dorsal ACC, PLC and ILC (Fig.  2a). 
Fifteen tetrodes were implanted targeting the right mPFC (3.24 mm anterior and 1.2 mm lateral to bregma; 
0.7 mm ventral from the brain surface) at an angle 5° toward the midline under deep anesthesia with isoflurane 
(2.5–3.0% [v/v] in 100% oxygen). The tetrodes were gradually lowered into the ACC over 7–15 days. Once the 
recording began, the tetrodes were advanced by 35–50 μm after a daily recording session. Unit signals were 
amplified 5000–10000× , band pass-filtered between 600–6000 Hz, digitized at 34 kHz, and stored on a personal 
computer via a Cheetah data acquisition system (Neuralynx, Bozeman, MO, USA). Unit signals were recorded 
with the animals placed on a custom-made pedestal for 5 min before and after each recording session to test 
the stability of recorded units. The head position of the animals were recorded at 30 Hz by tracking an array of 
light emitting diodes located on the headstage. When the recording procedures were completed, small marking 
lesions were made by passing an electrolytic current (30 µA, 20 s, cathodal) through one channel of each tetrode 
at the end of the final recording, and their locations were verified histologically as previously described32. Unit 
recording locations were determined based on the locations of marking lesions and tetrode advancement his-
tory. Those units that were determined to be near the border between the secondary motor cortex and ACC, 
between the ACC and PLC, or between the PLC and ILC were excluded from the analysis (Fig. 2a).

Isolation and classification of units.  Single units were isolated by manually clustering various spike 
waveform parameters using MClust software (v3.5; A. R. Redish). The identity of a unit signal was determined 
based on the clustering pattern of spike waveform parameters, averaged spike waveforms, baseline discharge 
frequencies, autocorrelograms and interspike interval histograms22. Only those clusters with no inter-spike 
interval < 3 ms, L-ratio < 0.2, isolation distance > 1533, and the number of spikes > 500 were included the analysis. 
The recorded units were classified into putative pyramidal neurons and putative interneurons based on aver-
age firing rates and spike widths. Those units with average firing rates < 8.83 Hz and filtered spike waveform 
widths > 240 μs were classified as putative pyramidal neurons (n = 298) and the rest were classified as putative 
interneurons (n = 148; Fig. 2b). Only putative pyramidal neurons were included in the analysis.

Multiple regression analysis.  Neural activity related to the animal’s choice and its outcome was examined 
using the following regression model:

where S(t) indicates spike discharge rate in a given analysis time window, C(t) , R(t) , and X(t) represent the 
animal’s choice (left or right; dummy variable, − 1 or 1), its outcome (dummy variable, − 1 or 1), and their inter-
action, respectively, in trial t. a0~a9 are regression coefficients and ε(t) is the error term.

Neural activity related to action value and chosen value was examined with the following model:

where QL(t) and QR(t) denote action values for choosing the left and right targets, respectively, and QC(t) 
indicates chosen value (action value of the chosen action in a given trial), that were estimated using the hybrid 
model, in trial t. A(t) is a set of autoregressive terms consisting of spike discharge rates during the same analysis 
time window in the previous three trials as the following:

(1)qa(t + 1) = qa(t) + α · (R(t)− qa(t)),

(2)

ifR(t) = 1

Qa(t + 1) = qa(t + 1) + aWS

else

Qa(t + 1) = qa(t + 1) + aLS,

(3)PL(t) =
1

1+ exp(−β(QL(t)− QR(t)− γ ))
,

(4)
S(t) = a0 + a1C(t)+ a2C(t − 1)+ a3C(t − 2)+ a4R(t)+ a5R(t − 1)+ a6R(t − 2)

+ a7X(t)+ a8X(t − 1)+ a9X(t − 2)+ ε(t),

(5)S(t) = a0 + a1C(t)+ a2R(t)+ a3X(t)+ a4QL(t)+ a5QR(t)+ a6QC(t)+ A(t)+ ε(t),

(6)A(t) = a7S(t − 1)+ a8S(t − 2)+a9S(t − 3).
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Action values are correlated across trials because they are updated incrementally according to the animal’s 
choice outcomes. If neural spikes are also correlated across trials, they may appear as encoding action value even 
though the source of spike serial correlation is unrelated to action value. We included A(t) in the regression model 
to prevent such slowly drifting neural activity from inflating action value signals.

Statistical tests.  Sample sizes were determined based on the sample sizes in our previous study15 in which 
dorsal striatal neural activity was examined in the same behavioral task as used in the present study. Student’s 
t-tests were used to determine the significance of a regression coefficient and the difference between left- and 
right-choice trajectories. Permutation tests were used to determine significance of neural signals for a given vari-
able. We circularly shifted trials of spike count data by a random number (with the constraint that the minimum 
difference of trial number between the original and shifted data is > 10) and assessed how many neurons were 
significantly responsive to a variable of interest. This was repeated 100 times, and the p value for a given variable 
was determined by the frequency in which the number of neurons significantly responsive to a given variable 
was exceeded by that obtained after trial shuffling. χ2-tests were used to test whether choice and outcome signals 
are encoded conjunctively. All tests were two-tailed, and a p value < 0.05 was used as the criterion for a significant 
statistical difference. Results are expressed as mean ± SD.

Data availability
Raw data and code to reproduce this work is archived at: https​://www.dropb​ox.com/sh/ihjk0​bunf3​jmmnl​/
AAAN7​7uo2b​bP3ko​zcL06​-_x7a?dl=0.
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