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Quantitative PET Imaging and Clinical
Parameters as Predictive Factors for Patients
With Cervical Carcinoma: Implications
of a Prediction Model Generated Using
Multi-Objective Support Vector
Machine Learning
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Abstract
Purpose: Quantitative features from pre-treatment positron emission tomography (PET) have been used to predict treatment
outcomes for patients with cervical carcinoma. The purpose of this study is to use quantitative PET imaging features and clinical
parameters to construct a multi-objective machine learning predictive model. Materials/Methods: Seventy-five patients with
stage IB2-IVA disease treated at our institution from 2009–2012 were analyzed. Models predicting locoregional and distant failure
were generated using clinical parameters (age, race, stage, histology, tumor size, nodal status) and imaging features (12 textural,
9 intensity, 8 geometric features, 2 additional imaging features) from pre-treatment PET. Model features were selected based on a
multi-objective evolutionary algorithm to maximize specificity given a fixed moderately high sensitivity using support vector
machine learning methods. Model 1 used clinical parameters only (C), Model 2 used imaging features only (I), and Model 3 used
clinical and imaging features (CþI). Sensitivity, specificity, area under a receiver-operating characteristic curve (AUC), and
p-values were compared to assess ability to predict locoregional and distant failure. Results: CþI had the highest performance for
both locoregional failure (AUC 0.84, p < 0.01; specificity: 0.86; sensitivity: 0.79) and distant failure (AUC 0.75, p < 0.01; specificity: 0.75;
sensitivity: 0.75). Conclusions: Based on a moderately high fixed sensitivity and optimized for specificity, the model using both
clinical parameters and imaging features (CþI) had the best performance in predicting both locoregional failure and distant failure.
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Introduction

[18F] fluoro-2-deoxy-D-glucose (FDG) based positron emission

tomography (PET) imaging has become increasingly utilized for

radiation therapy treatment planning1 and to characterize meta-

bolic aspects of the target tumor.2-4 Allal et al demonstrated the

prognostic value of standardized uptake value (SUV) from pre-

treatment PET in patients with head and neck cancer treated with

radiation with or without chemotherapy.5 Patients with tumors

with high tumor SUV max had a significantly lower 3-year local
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control (55% vs. 86%, p ¼ 0.01) and disease-free survival (42%
vs. 79%, p ¼ 0.005) compared to patients with tumors with low

FDG uptake. In the setting of cervical cancer, 287 patients with

Stage IA2-IVB disease who underwent pre-treatment PET fol-

lowed by surgery, chemoradiation, or palliation were assessed

for SUVmax, tumor volume, sites of lymph node metastases, and

histology, and only SUVmax was identified as an independent

predictor of death from cervical cancer.6

Development of a range of complex image analytics has led

to the expansion of the field of “radiomics,” which utilizes data

beyond the single value represented by SUVmax, a value lim-

ited by patient-specific and image-acquisition-specific fac-

tors.7,8 Radiomics is a method of quantitative data extraction

from radiographic imaging to find image correlates to tumor

characteristics.9,10 A potential application is to identify com-

plex image intensity, shape, and textural features that predict a

tumor’s behavior, response to treatment, and oncologic out-

comes, but very few multi-parametric studies have looked at

these relationships.11

In cervical carcinoma, even with optimal therapy, at least

20% of patients with locally advanced disease confined to the

pelvis will fail distantly.12,13 Identifying these patients early

may allow physicians to tailor their treatment to achieve a

more durable treatment response and prevent distant failure

with additional systemic treatment. The goal of this study is

to build a predictive model, using pre-treatment clinical and

imaging characteristics, that determines likelihood of locor-

egional and distant failure for cervical carcinoma patients,

enabling the selection of patients who should be considered

for further systemic therapy. While radiomics analyses have

been explored for treatment outcome prediction for cervical

carcinoma after radiation or chemoradiation therapy,14-19

these analyses often focus on some individual radiomic fea-

tures or use a single objective during the model training. In

this work, we present a multi-objective model to predict

distant failure and locoregional failure for cervical carci-

noma patients.

Methods and Materials

Patients and Clinical Parameters

Following institutional IRB approval at UT Southwestern Med-

ical Center (approval no. 082013-008), departmental records

were reviewed to identify patients treated for cervical carci-

noma with definitive intent between 2009 and 2012, allowing

time for follow-up. Because this is retrospective review study,

informed consent was waived. Patients with stage IB2-IVA

disease treated with definitive chemoradiation and high dose

rate (HDR) intracavitary brachytherapy (without outback

chemotherapy), with complete clinical data and retrievable

pre-treatment PET/CT scans were identified (n ¼ 75). A retro-

spective analysis of clinical parameters, pre-treatment PET/CT

imaging characteristics and features, and oncologic outcomes

for these patients was performed.

These 75 patients (characteristics described in Table 1) were

used to build the locoregional and distant failure prediction

models. Clinical parameters (age, race, stage, histology, tumor

size, and nodal status at diagnosis) were obtained from chart

review.

Events were defined as follows: local failure (LF) includes

failure in the area receiving high-dose treatment, including

cervix, pelvic side wall, parametria, vagina; regional failure

(RF) includes failures occurring in areas receiving external

beam alone, including pelvic lymph nodes; distant failure

(DF) includes distant metastases, including para-aortic lymph

nodes (unless included in the treatment field); and loco-

regional failure (LRF) is any combination of LF and RF

events. Only LRF and DF were analyzed as outcomes for

the model; the models were designed to predict for these

outcomes.

PET/CT images were acquired with a Siemens Biograph 64

(Siemens Medical Solutions USA, Inc. Malvern, PA USA)

with 4 detector rings, a spatial resolution of 7-8 mm, and a

slice thickness of 5 mm. Segmentation of patients’ primary

tumor was performed on pre-treatment PET and CT imaging

using the imaging informatics system Velocity (Varian, Palo

Alto, CA). The clinical target volume (CTV), including the

anatomical cervix and PET-positive extension of tumor,

was contoured by the clinician investigators using SUV-

based thresholding on the primary cervical lesion to include

all the PET-avid areas with an SUVmax value of �4 into the

CTV (excluding the bladder) for purposes of subsequent

analysis. SUV-based intensity metrics were calculated within

the edited ROI, and additional image features (referred to as

texture and geometry features) were extracted. For intensity

features, the mean, median, standard deviation, maximum

and minimum value, skewness, kurtosis, and variance were

calculated based on the intensity histogram. Before extracting

Table 1. Patient Characteristics.

Number 75 (100%)

Mean age (range in years) 46.9 (26.2-72.1)

Race

African American 22 (29%)

Hispanic 27 (36%)

White 23 (31%)

Asian 2 (3%)

Other 1 (1%)

Histology

Squamous cell carcinoma 63 (84%)

Adenocarcinoma 9 (12%)

Adenosquamous carcinoma 2 (3%)

Other 1 (1%)

FIGO stage

IB2 21 (28%)

IIA 4 (5%)

IIB 31 (41%)

IIIB 13 (17%)

IVA 6 (8%)

IVB 0 (0%)
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the texture features, a gray level co-occurrence matrix

(GLCM) was constructed, using histograms with 64 bins

and 3D analysis of the tumor region with 26 neighboring

voxels and 13 directions in 3D space. Construction of this

GLCM allowed 12 texture features to be extracted. Geometry

features (a description of the shape, size, or the relative

position of the tumor), metabolic tumor volume (MTV),

which is defined as the volume of tumor having at least

40% of max SUV, and total lesion glycolysis (TLG), which

is defined as TLG ¼ MTV*mean SUV, were obtained. The

complete list of clinical and imaging features used in this

study is in Table 2.

Multi-Objective Predictive Model Construction

In most radiomics studies, predictive models are constructed

based on a single objective such as overall accuracy or

AUC.11 However, overall accuracy alone may not be a good

measure for the predictive models, which can lead to low

sensitivity or specificity when positive and negative events

are imbalanced in training datasets.20 Although AUC pro-

vides a better measure than overall accuracy by taking both

sensitivity and specificity into account, it can be a misleading

measure of the predictive model performance.21-24 Lobo et al

summarized 5 drawbacks of AUC measure as follows: “(1) it

ignores the predicted probability values and the goodness-of-

fit of the model; (2) it summarizes the test performance over

regions of the ROC space in which one would rarely operate;

(3) it weights omission (falsely predicted positive fraction)

and commission errors (falsely predicted negative fraction)

equally; (4) it does not give information about the spatial

distribution of model errors; and, most importantly, (5) the

total extent to which models are carried out highly influences

the rate of well-predicted absences and the AUC scores.”21 To

overcome the limitations of the conventional single-objective

based models, a multi-objective radiomics model was

designed to train the predictive model, where both sensitivity

and specificity are considered as the objective functions

simultaneously. Assume that sensitivity and specificity are

denoted by fsen; fspe, respectively, that is:

fsen ¼ TP
TP þ FN

; ð1Þ

fspe ¼
TN

TN þ FP
; ð2Þ

where TP is the number of true positives, TN is the number of

true negatives, FP is the number of false positives, and FN is

the number of false negatives. The goal of the proposed model

is to maximize fsen and fspe simultaneously to get the Pareto-

optimal solutions:

f ¼ max
a;b

fsen; fspe
� �

ð3Þ

where a ¼ a1; � � � ; aNf g denotes the model parameters and

b ¼ b1; � � � ; bNf g denotes the input features. In this work, a

support vector machine (SVM) was used to build the predictive

model.25 Using an iterative multi-objective immune algorithm

(IMIA),25 the predictive model is optimized through both fea-

ture selection and model parameter optimization. From the

Pareto-optimal solutions, the final predictive model was

selected to have the highest specificity with a minimum sensi-

tivity 0.75. Five-fold cross validation (80% of patients to train,

20% of patients to test)20,26 was used to validate the model.

Patients were grouped into the training and testing subsets

randomly.

To systematically investigate the influence of the input of

different features, 3 versions of the models were built to predict

each of the 2 primary outcomes, LRF and DF (total of 6 mod-

els). The first model used clinical parameters only (age, race,

stage, histology, tumor size, and nodal status at diagnosis); the

second model used imaging features only (including intensity,

texture, geometric features, and an expanded set of imaging

features that included MTV and TLG); the third model used

a combination of clinical and all imaging parameters. Not

every clinical and imaging parameter was significant for each

outcome; the models were built on all available features and the

Table 2. List of Clinical and Imaging Features.

Clinical features (6) Texture features (12) Intensity features (9) Geometric features (8) Additional imaging features (2)

Age Energy SUV Max Volume MTV

Race Entropy SUV Min Major Axis Length TLG

Stage Correlation SUV Mean Minor Axis Length

Histology Contrast SUV Median Eccentricity

Tumor Size Variance SUV Standard Deviation Elongation

Nodal Status Sum Mean SUV Variance Orientation

Inertia SUV Sum V Bound

Cluster Shade SUV Skewness Perimeter

Cluster Tendency SUV Kurtosis

Homogeneity

Max Probability

Inverse Variance

MTV ¼ metabolic tumor volume. TLG ¼ total lesion glycolysis.
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minimum optimal set was selected during the model optimiza-

tion by IMIA.

Experimental Setup and Evaluation

This study used IBM SPSS Statistics Software version 24

(IBM, Armonk, NY) to perform correlation and survival

analysis and to generate receiver-operating characteristic

(ROC) curves. Sensitivity, specificity, AUC, and the p-

value of the ROC function were compared for each model.

All the experiments were run 10 time, and mean as well as

standard deviation values are calculated. ROC curves were

compared with the unpaired t-test at a significance level of

0.05. The model was built in MATLAB2019b. All the fea-

tures are extracted full-automatically. Five-fold cross valida-

tion is performed for all the models. In our experiment, each

fold in cross validation can be considered as held-off set in

each test as this fold has never been seen by the model

trained on the other 4 folds.

Results

Median follow-up time for the study population was 27.4

months (range: 3.4-83.5 months, 3 patients with <6 months

follow up). Follow-up was short for some patients due to

non-compliance. The median number of external beam radia-

tion therapy fractions was 25 at a median dose per fraction of

180 cGy. Patients received a median number of 5 fractions of

HDR intracavitary brachytherapy at a median dose per fraction

of 600 cGy.

The sensitivity, specificity, area under the ROC curve

(AUC), and p value for each predictive model is listed in

Table 3. Additionally, we assessed the ability of each clinical

parameter and each imaging parameter to predict outcomes.

These data are provided in Table 4. When compared to the 3

versions of the models for each outcome, the combined model

using both clinical and imaging features as input outper-

formed the other models that used clinical or imaging features

alone (Figure 1). The combined model using both clinical and

imaging features had excellent prognostic power for locore-

gional failure, with an AUC of 0.84 (p < 0.01) and specificity

of 0.86 at a sensitivity of 0.80, and for distant failure, with an

AUC of 0.75 (p < 0.01) and specificity of 0.75 at a sensitivity

of 0.75. The combined model also outperformed all individual

clinical and imaging parameters. Of note, as shown in Table 4,

Table 3. Model Performance.

Locoregional failure

Model Sensitivity Specificity AUC 95%CI

C 0.75 + 0.03 0.75 + 0.01 0.80 + 0.01 [0.55, 0.94]

I 0.79 + 0.01 0.86 + 0.03 0.84 + 0.02 [0.66, 0.95]

CþI 0.80 + 0.02 0.86 + 0.02 0.84 + 0.02 [0.69, 0.96]

Distant Failure

Model Sensitivity Specificity AUC 95%CI

C 0.75 + 0.02 0.73 + 0.01 0.75 + 0.01 [0.64, 0.86]

I 0.75 + 0.01 0.75 + 0.02 0.74 + 0.01 [0.61, 0.88]

CþI 0.75 + 0.01 0.75 + 0.02 0.75 + 0.03 [0.61, 0.87]

C ¼ Model using clinical parameters only. I ¼ Model using imaging features

only. CþI ¼ Model using clinical parameters and imaging features.

Table 4. Individual Performance of Each Clinical and Imaging

Feature.

Locoregional failure

Spearman’s rho

(P value)

AUC

(P value)

Hazard ratio

(P value)

Age -0.18 (0.12) 0.39 (0.12) 0.97 (0.16)

Race 0.03 (0.82) 0.52 (0.82) 0.99 (0.96)

Stage 0.18 (0.12) 0.61 (0.14) 1.38 (0.07)

Tumor Size 0.06 (0.62) 0.54 (0.62) 1.05 (0.66)

TLG 0.06 (0.59) 0.54 (0.58) 1.00 (0.79)

SUV_max -0.07 (0.56) 0.46 (0.07) 0.98 (0.56)

Energy 0.09 (0.46) 0.55 (0.07) 0.00 (0.55)

Entropy -0.08 (0.52) 0.45 (0.07) 0.87 (0.90)

Contrast 0.04 (0.74) 0.52 (0.07) 1.00 (0.63)

Variance 0.08 (0.48) 0.55 (0.07) 2.52 (0.81)

Max Probability 0.00 (0.99) 0.50 (0.07) 0.00 (0.37)

Inverse Variance 0.09 (0.45) 0.56 (0.07) 3.10 (0.78)

Distant Failure

Spearman’s Rho

(P Value)

AUC

(P Value)

Hazard Ratio

(P Value)

Age -0.17 (0.15) 0.39 (0.15) 0.98 (0.36)

Race -0.16 (0.16) 0.40 (0.19) 0.64 (0.10)

Stage 0.09 (0.46) 0.55 (0.47) 1.23 (0.26)

Nodal Status 0.23 (0.05) 0.63 (0.07) 1.86 (0.05)

MTV -0.03 (0.79) 0.48 (0.78) 1.00 (0.59)

Contrast -0.07 (0.55) 0.46 (0.54) 1.00 (0.47)

Inertia -0.06 (0.63) 0.46 (0.63) 0.96 (0.32)

Cluster Shade -0.15 (0.20) 0.40 (0.19) 0.99 (0.19)

Homogeneity -0.39 (0.00) 0.25 (0.00) 1.00 (0.00)

Max Probability 0.13 (0.29) 0.58 (0.28) 0.96 (0.84)

Figure 1. Receiver-operating characteristic (ROC) curves for the 4

models to predict for distant failure. Blue line ¼ C ¼ Model using

clinical parameters only. Orange line ¼ I ¼ Model using imaging

features only. Yellow line ¼ CþI ¼ Model using clinical parameters

and imaging features.
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using stage alone had very poor predictive value and was not a

significant predictor for LRF or DF for the 2 groups of

patients. The selected features in 3 models for locoregional

failure and distant failure are shown in Tables 5 and 6. When

predicting locoregional failure, 3, 13 and 13 features are

selected for C, I and CþI models, respectively. In these fea-

tures, stage is selected in both C and CþI models, while

SUV_median, SUV_kurtosis, Energy, Cluster tendency are

selected in both I and CþI models. The number of selected

features in 3 models for distant failure is 5, 9, 8 for C, I and

CþI models, respectively. Age and nodal status are selected

in both C and CþI. SUV_var, SUV_kurtosis, and MTV are

selected in both I and CþI models. We also evaluated the

importance of each individual selected feature, which adopted

the same strategy in our previous study34. Specifically, for

each test sample, we manually changed each selected feature

value to their minimal and maximal value, and then the mod-

ified test sample is fed into the trained model. The importance

of individual feature can be evaluated by the AUC change of

prediction model as shown in Tables 5 and 6. A larger differ-

ence indicates the greater contribution of this feature on pre-

diction results. The important features for locoregional failure

prediction are Stage, Correlation and Variance, while Stage,

SUV Kurtosis and MaxProbability are the important features

for distant failure prediction, respectively. To better visualize

the change, the magnitude of AUC changes for all the selected

features in the 6 models are shown in Figure 2. A larger

difference indicates the greater contribution of this feature

on prediction results. Since volume is an important feature

in many outcome predictions, we also evaluate the perfor-

mance based on volume alone. We calculated the AUC values

for the volume alone, which are 0.41 and 0.39 for locoregional

and distant failure prediction, respectively. The correspond-

ing ROC curves are shown in Figure 3.

We found that the combined model still had the best per-

formance regardless of whether stage was used or not

(Table 8). Again, the highest performance (after excluding

stage) was seen in the combined model. For LRF, the AUC

was 0.7 (p < 0.01) and specificity was 0.67 at a fixed sensi-

tivity of 0.75, and for DF, the AUC was 0.78 (p < 0.01) and

specificity was 0.73 at a fixed sensitivity of 0.75. Bivariate

analysis showed that a high probability of distant failure as

determined by the combined model (probability > 0.7) corre-

lated significantly with death (p < 0.01).

A log-rank test was performed to compare survival of

patients who were predicted to have a low probability of dis-

tant metastases (probability < 0.5) compared to the survival of

patients predicted to have a high probability of distant metas-

tases (probability � 0.5) by the combined model. Patients

with a low probability of distant metastases had a mean sur-

vival time (median not reached) of 57.8 months (95% CI:

50.5-65.1) while patients with a high probability of distant

metastases had a median survival time of 19.0 months (95%
CI: 12.6-25.4, p < 0.01) (Figure 4). Figure 5 shows the

Table 5. Selected Features and Importance Analysis of Individual

Feature for Locoregional Failure Prediction.

Locoregional failure Min Max AUC-min AUC-max

C Age 26 72 0.8103 0.8049
Race 1 3 0.7832 0.7913
Stage 0 5 0.7453 0.7832

I SUV_min 0.0236 1.4979 0.8238 0.8022
SUV_median 0.3592 20.4168 0.874 0.8293
SUV_std 0.1312 11.2838 0.8347 0.8238
SUV_kurtosis 1.5531 29.5791 0.8482 0.8022
Energy 11.8221 11.9837 0.8564 0.8509
Entropy 11.8221 11.9837 0.8022 0.8184
Correlation 24.8516 1331.3048 0.8171 0.7602
SumMean 0.3884 17.9764 0.8293 0.8401
Inertia 12.0233 12.5036 0.8672 0.8753
Cluster Shade 0.0767 1.7816 0.7317 0.7236
Cluster tendendy 2.2313 358.0951 0.8374 0.8753
Inverse Variance 0.0031 0.0387 0.8469 0.8835
Orientation 88.8512 87.6894 0.8618 0.8808

CþI Stage 0 5 0.71 0.7019
Histology 0 3 0.7832 0.8157
SUV_median 0.3592 20.4168 0.8076 0.71
SUV_sum 73.0215 68472.169 0.7154 0.748
SUV_skewness 0.2611 4.4762 0.7317 0.7818
SUV_kurtosis 1.5531 29.5791 0.7439 0.7425
Energy 11.8221 11.9837 0.7371 0.7317
Variance 11.9434 11.9961 0.7154 0.7751
Cluster tendendy 2.2313 358.0951 0.8103 0.7995
Homogeneity 30.6399 8124.8148 0.748 0.7398
V_Bound 34 8670 0.7588 0.7561
TLG 73.0215 68472.17 0.7182 0.7669
MTV 188 4759 0.7602 0.7724

AUC-min value and AUC-max value correspond to the results using the min-

imal or maximal value of the corresponding feature, respectively.

Table 6. Selected Features and Importance Analysis of Individual

Feature for Distant Failure Prediction.

Distant failure Min Max AUC-min AUC-max

C Age 26 72 0.6548 0.6674
Stage 0 5 0.7457 0.7339
Histology 0 3 0.8096 0.8143
Tumor size 1 12 0.7191 0.7139
Nodal status 0 2 0.7343 0.733

I SUV_var 0.0172 127.3246 0.7809 0.7704
SUV_kurtosis 1.5531 35.755 0.8061 0.7804
Energy 11.8221 11.9947 0.8017 0.8174
Contrast 0.0679 1.7816 0.7948 0.8017
Variance 11.9435 11.9985 0.7748 0.7757
Inertia 12.0153 12.5036 0.8122 0.8209
Orientation -88.8512 87.6894 0.8122 0.8174
Perimeter 1.96 61.406 0.8174 0.8104
MTV 33 4759 0.7922 0.787

CþI Age 26 72 0.7678 0.7661
Nodal status 0 2 0.8226 0.8113
SUV_std 0.1312 11.2838 0.7809 0.7313
SUV_var 0.0172 127.3246 0.7957 0.7991
SUV_kurtosis 1.5531 35.755 0.8043 0.7987
MaxProbability 11.9107 11.9974 0.7939 0.847
MinorAxisLength 1.1547 14.8646 0.7574 0.7683
MTV 33 4759 0.7861 0.7704

AUC-min value and AUC-max value correspond to the results using the min-

imal or maximal value of the corresponding feature, respectively.
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incidence of distant metastases for patients predicted to have

low probability of distant failure (probability < 0.5) to that of

patients predicted to have high probability of distant failure

(probability � 0.5) by the combined model.

Discussion and Conclusion

Radiotherapy with concurrent chemotherapy is a standard of

care for patients with stage IB2-IVA cervical cancer.27 A

meta-analysis showed chemoradiation was associated with a 5-

year DFS improvement of 8% over patients receiving radiation

alone.28 However, relapses are common in the setting of stan-

dard therapy (with studies showing 5-year distant failure rates of

23%29 and 27%30), indicating the need for additional intensified

therapy to achieve optimal outcome. Adjuvant chemotherapy

has additional survival benefits, with a meta-analysis showing

its association with a 54% reduction in the risk of death and an

absolute benefit of 19% at 5 years (60%-79%) when used after a

course of definitive chemoradiation28 This treatment is associ-

ated with increased toxicity,31 and randomized studies have been

initiated to address its benefit. The OUTBACK trial is a phase III

protocol including unselected patients with stage IB2- IVA cer-

vical cancer who will receive definitive concurrent

Figure 3. Receiver-operating characteristic (ROC) curves for volume

with distant failure and locoregional failure prediction.

A

C

B

D

E F

Figure 2. The magnitude of AUC changes for selected features in 6 models.
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chemoradiation and then be randomized to receive additional

chemotherapy with 4 cycles of adjuvant carboplatin and pacli-

taxel versus no further therapy.32 Unfortunately, due to diverse

eligibility criteria, inclusion of patients at low risk for DF may

result in an inability to show a benefit for OUTBACK che-

motherapy, and unselected administration of chemotherapy may

result in excess toxicity for minimal benefit.

With the goal of identifying a subset of patients for which

benefits of intensified therapy might outweigh its additional

risks, prior studies have attempted to evaluate the use of various

clinical and imaging parameters individually in prognosis and in

predictive models. Studies examining the prognostic ability of

individual parameters include one which found tumor spatial

heterogeneity could predict patient outcomes for sarcoma (p <

0.001).33 Among various FDG PET-CT features, intensity-

volume-histogram variables had the highest association for

locoregional recurrence after radiotherapy in non-small cell lung

carcinoma.34 A study using predictive models created support

vector machine and logistic regression models that used a com-

bination of clinical and FDG PET-CT parameters to predict

pathologic tumor response to chemoradiation in esophageal car-

cinoma.35 The support vector machine model achieved very high

accuracy (AUC 1.00) when spatial-temporal PET features were

combined with conventional PET-CT measures and clinical

parameters. Most of the PET prognostic studies for cervix cancer

are qualitative correlative studies36-38 or have focused on single

quantitative measures like textural analysis.39 Using a cohort of

14 cervical cancer patients treated at a single institution, El Naqa

et al found that a combination of intensity-volume histogram

(IVH) metrics and texture features extracted from PET images

had high predictive power for response to treatment.11 The mod-

els in our study were constructed using a larger dataset consist-

ing of 75 patients for model training and testing. Additionally,

we used both clinical and a more expansive set of imaging

parameters to build our model with the highest predictive power,

which had an AUC of 0.84 for locoregional failure prediction.

Nevertheless, for distant failure prediction, the model achieved

lower AUC of 0.75. The performance difference between distant

and locoregional failure prediction could be caused by the

regions used to extract features. In this work, all radiomic fea-

tures were extracted from segmented primary lesion. For distant

metastasis, regions surrounding the tumor or “Shell”40 may pro-

vide more prognostic information on tumor metastasis potential,

which was not considered in this work. Incooperating features

extracted from the shell may improve the model performance for

distant failure prediction, which is worthy of investigation in a

future study.

Table 7. The Parameters for SVM in all the Models.

c g

Locoregional failure C -7 + 2 8 + 0

I 13 + 1 8 + 2

CþI 12 + 2 6 + 1

Distant failure C -7 + 2 7 + 0

I -8 + 2 6 + 1

CþI -8 + 2 5 + 1

Table 8. Model Performance Without Stage as a Clinical Parameter.

Locoregional failure

Model Sensitivity Specificity AUC

C 0.75 0.63 0.7

CþI 0.75 0.67 0.7

Distant Failure

Model Sensitivity Specificity AUC

C 0.75 0.61 0.65

CþI 0.75 0.73 0.78

Figure 4. Survival of patients predicted to have low probability of

distant failure (probability < 0.5, blue) compared to survival of

patients predicted to have high probability of distant failure (prob-

ability � 0.5, green) by CþI (model using clinical parameters and

imaging features).

Figure 5. Incidence of distant metastases for patients predicted to

have low probability of distant failure (probability < 0.5, blue) com-

pared to patients predicted to have high probability of distant failure

(probability � 0.5, green) by CþI (model using clinical parameters

and imaging features).

Zhou et al 7



The strengths of this study include a relatively large sample

of patients treated uniformly over a short period with sufficient

risk factors to have local and systemic failures. In addition, the

combined clinical and imaging predictive model approach

helps maximize the prognostic capability. Limitations to our

study are the absence of an external validation set and verifica-

tion at another institution. The utilization of magnetic reso-

nance imaging-based features, which we did not address in

this study, may also add to the predictive capability. Our anal-

ysis was performed using some patients with short follow-up,

which could be seen as another limitation; however, only 3

patients had <6 months of follow up and would not be expected

to have a significant impact on the results. Additionally, we are

focused on early failures, since these patients would theoreti-

cally benefit most from an early intervention that could be

predicted by pre-treatment imaging. Therefore, we feel a longer

follow-up may not be as critical to address this clinical

question.

When provided a high sensitivity and then optimized to

maximize specificity, we found that the most complex model

using clinical parameters and imaging parameters had the best

results, compared to the other 2 models and to all the individual

clinical and imaging parameters, for locoregional failure and

distant failure. The combined model could be used to select

patients at high risk for distant or locoregional failure who

would potentially benefit from additional adjuvant therapy as

administered in the OUTBACK protocol.
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